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Although it is generally accepted that plant community composi-
tion is key for predicting rates of ecosystem processes in the face
of global change, microbial community composition is often ig-
nored in ecosystem modeling. To address this issue, we review
recent experiments and assess whether microbial community com-
position is resistant, resilient, or functionally redundant in re-
sponse to four different disturbances. We find that the composi-
tion of most microbial groups is sensitive and not immediately
resilient to disturbance, regardless of taxonomic breadth of the
group or the type of disturbance. Other studies demonstrate that
changes in composition are often associated with changes in
ecosystem process rates. Thus, changes in microbial communities
due to disturbance may directly affect ecosystem processes. Based
on these relationships, we propose a simple framework to incor-
porate microbial community composition into ecosystem process
models. We conclude that this effort would benefit from more
empirical data on the links among microbial phylogeny, physio-
logical traits, and disturbance responses. These relationships will
determine how readily microbial community composition can be
used to predict the responses of ecosystem processes to global
change.

functional redundancy � microbial diversity � modeling

Recent rates of plant and animal species’ extinctions have
spurred ecologists to consider the consequences of biodi-

versity loss. Beyond the ethical and aesthetic reasons for con-
serving it, biodiversity supplies economically valuable ecosystem
goods and services on which human society depends (1, 2).
Although most biodiversity and conservation research has fo-
cused on the value and importance of large organisms, the sheer
abundance of microorganisms confers on them a principal role
in providing ecosystem services, such as water purification and
soil fertility. Bacteria and Archaea alone contain most of the
total nitrogen (N) and phosphorus (P) and up to half of the
carbon (C) stored in living organisms (3), and the metabolic
machinery of microorganisms drives a variety of ecosystem
processes. Indeed, microbes carry out the bulk of decomposition
and catalyze important transformations in the C, N, sulfur, and
P cycles.

Despite their importance to the functioning of ecosystems,
microorganisms are rarely explicitly considered in individual
ecosystem or global process models. In addition to methodolog-
ical hurdles, a primary reason for this gap is their overwhelming
diversity. Estimates of soil microbial diversity range from thou-
sands to a million microbial ‘‘species’’ in a few grams of soil (4,
5), and how this diversity is related to ecosystem processes is
generally unknown (6–8). Moreover, it is infeasible to assess and
track each microbial taxon in an ecosystem, let alone include
even a small fraction of these taxa in ecosystem models.

Because of these obstacles, ecosystem models often ‘‘black
box’’ microbiology. In other words, microorganisms are buried
within equation structure as kinetic constants and response
functions and are ‘‘simplified beyond recognition’’ (9). As a
result, the abundance, diversity, and interactions of microorgan-
isms are often assumed to be unimportant to ecosystem pro-
cesses, particularly in terrestrial ecosystem models. [A number of
ocean ecosystem models include various phytoplankton groups
(e.g., refs. 10 and 11)].

In contrast to microorganisms, it is generally accepted that
plant biodiversity (both richness and composition) affects ter-
restrial ecosystem processes (12–14) and influences ecosystem
responses to disturbances such as CO2 and N addition (e.g., ref.
15). Plant community composition is often incorporated into
large-scale models through the use of functional groups, which
are based on plant traits (14, 16). Global change models—
whether of ecosystems (17, 18), the terrestrial biosphere (19), or
global climate (20, 21)—routinely incorporate 5–10 plant func-
tional groups to improve model predictions. Nonetheless, re-
searchers are calling for a better understanding of the functional
traits of plant species to help predict ecosystem processes under
changing environmental conditions (22–24).

Given the central role of microbes in ecosystem processes, we
contend that microbial composition might be at least as impor-
tant as plant composition for building predictive ecosystem
models. Here we discuss two major hurdles to including micro-
organisms in ecosystem models. The first is a general idea that
microbial composition does not matter to ecosystem processes.
The second is that microbial composition may be too diverse to
model. To address the first hurdle, we outline three conditions
that would need to be true for changes in microbial composition
to matter to ecosystem processes. We then review recent studies
to assess whether particular microbial groups may be more or less
subject to particular disturbances. We address the second hurdle
by proposing a simple model of microbial process rates that
incorporates information on community composition. The
model is used to illustrate how empirical data could be used to
predict microbial process rates under disturbance, even for
relatively diverse communities. Because it is not feasible to add
a parameter for each microbial population in a community, we
consider when coarse information about microbial composition,
such as the relative abundance of a few key clades within a
functional group, could help decrease uncertainty about predic-
tions of ecosystem processes.

A Framework Within the Black Box
Schimel (9) points out that black box ecosystem models make
two implicit assumptions: that microbial processes can be rep-
resented across a range of environmental conditions with one
mathematical function, and that microbial processes are never
limited by the abundance of any microorganism. These assump-
tions are implicit because no major ecosystem models include
parameters that explicitly represent components of microbial
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community composition. At best, some models include total
microbial biomass as a parameter (e.g., ref. 25), but many widely
used models such as CENTURY (26), MEL (multiple element
limitation), (27), and TEM (terrestrial ecosystem model) (28)
contain parameters related to microbial processes but not the
microbial communities themselves. Ocean biogeochemistry
models have only just begun to incorporate explicit parameters
that capture plankton community composition (10, 11, 29).

These models implicitly assume that changes in community
composition will not affect ecosystem processes, because there
is no mechanism for such changes to influence model predic-
tions. This assumption may be valid if microbial composition is
resistant, resilient, and/or functionally redundant (these terms
and others are defined in Table 1.) Microbial composition is
resistant if it is similar across a variety of environmental condi-
tions—in other words, it is difficult to perturb from an original
state. It is resilient if, when composition does change, it recovers
quickly, whether by growth or by physiological or genetic adap-
tation. Finally, microbial composition may change in response to
new environmental conditions but contain functionally redun-
dant taxa such that ecosystem process rates are not altered. If
these conditions are not generally true for microbial communi-
ties, then many current ecosystem models may fail at predicting
the rates of microbe-driven processes under disturbance.

The idea that microorganisms are resistant, resilient, and
functionally redundant is pervasive in ecology. Some microbial
groups show a high degree of metabolic f lexibility and physio-
logical tolerance to changing environmental conditions (e.g., ref.
30), which could result in microbial communities that are
resistant to change. These traits and others associated with
microbes—such as high abundances, widespread dispersal, and
the potential for rapid growth rates—have also led to the
suggestion that microbial communities will be resilient to change
(31, 32). Furthermore, rapid evolutionary adaptation through
horizontal gene transfer could allow sensitive microorganisms to
adapt to new environmental conditions and quickly return the
community to its original composition. The extremely high
abundance and diversity of microorganisms are used as an
argument for functional redundancy, because it is difficult to
imagine that biogeochemical cycling is limited by microbial
abundance (32) or genetic diversity (33).

Fig. 1 illustrates the potential impacts of a disturbance on
microbial composition and/or ecosystem processes. Consider a
disturbance applied to an ecosystem and the microbial commu-
nities within it. Microbial composition might be resistant to the
disturbance, and not change. Alternatively, if the community is
sensitive and does change, it could be resilient and quickly
recover to its initial composition. Finally, a community whose
composition is sensitive and not resilient might produce process

rates similar to the original community if the members of the
community are functionally redundant.

Only if community composition is sensitive to a disturbance,
not resilient, and functionally dissimilar to the original commu-
nity do changes in community composition matter for predicting
ecosystem process rates. In addition, the degree to which a
community is resistant, resilient, and functionally similar will
influence the degree to which community composition matters
to a particular process. For instance, even if microbial compo-
sition is highly sensitive and not resilient to a disturbance, if all
of the taxa perform a process at very similar rates (that is, they
are nearly functionally redundant), then predictions of ecosys-
tem process rates will not be improved much by including
information about microbial composition.

This conceptual framework does not exclude the possibility
that there is little change in microbial composition but large
changes in ecosystem process rates. This scenario would suggest
that the changes are a direct effect of environmental changes, the

Table 1. Summary of definitions used in this article

Term Definition

Functional group All organisms that directly contribute to the rate of a particular functional process in an ecosystem
Functional redundancy The ability of one microbial taxon to carry out a process at the same rate as another under the same

environmental conditions
Functional similarity The ability of two microbial communities to carry out a functional process at a similar rate, regardless of

differences in composition
Microbial composition The richness, relative abundance, and phylogenetic structure of taxa in an assemblage
Microbial taxon A group of phylogenetically related microbes
Resilience The rate at which microbial composition returns to its original composition after being disturbed
Resistance The degree to which microbial composition remains unchanged in the face of a disturbance
Physiological trait A physiological characteristic that determines the contribution of a microbial taxon to a functional process
Physiological response curve The function describing the relationship between the process contribution of a microbial taxon and disturbance

intensity

Fig. 1. A schematic of how disturbance can change microbial composition
and thereby affect ecosystem processes versus when disturbance would not
have this effect (when the microbial community is resistant, resilient, or
functionally redundant).
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result of compositional changes in other organisms such as
plants, or immediate physiological responses of microorganisms
that are not accompanied by compositional changes. An example
of the latter is that some transformations such as decomposition
occur faster at higher temperatures. This is seen immediately,
before changes in composition could be responsible (34).

Resistance of Microbial Composition
To assess whether microbial composition is often resistant to
disturbance, we reviewed studies that experimentally exposed
microbial communities to various disturbances. We searched
Web of Science for papers including ‘‘microb*’’ and ‘‘community
composition’’ in their titles, abstract, or subject words. In addi-
tion, we specifically searched the journal Global Change Biology
for global change experiments that assessed microbial compo-
sition. We did not limit papers by study system, but the majority
of studies returned by these search parameters focused on
terrestrial soils. We acknowledge that there are many manipu-
lative marine studies that we did not pick up in our search. The
disturbances we examined were limited to CO2 enrichment,
temperature, fertilization with mineral nutrients, and enrich-
ment with C substrates (including complex organics such as
manure and potential toxins such as pesticides). We reason that
these four disturbances are typical of those that ecosystems
experience under human-driven global change. Finally, we did
not intend the literature search to be exhaustive, but to be
representative of these types of studies.

We hypothesized that differences in focus and methodologies
among the studies would influence the likelihood of detecting a
compositional response. Therefore, for each study we recorded
the breadth of the taxonomic group targeted (e.g., bacteria and
fungi; methanotrophic bacteria), the habitat, the method used to
examine composition, and the disturbance applied, as well as
whether composition of the target group changed in response to
the disturbance. We also recorded the time after the disturbance
was first applied at which composition was assessed, which is
relevant for the discussion of resilience below.

Papers from this search included studies that targeted com-
position broadly such as with phospholipid fatty acid analysis,
which targets bacteria and fungi. In contrast, other studies
examine narrower functional guilds within the Bacteria by
PCR-amplifying a functional gene followed by a fingerprinting
technique (such as denaturing gradient gel electrophoresis or
terminal restriction fragment length polymorphism). Thus, the
breadth of the taxa studied varied widely and is related to the
methodology used to evaluate community composition. The
methodology itself might also have an influence on whether a
change in composition is detected. For instance, sequencing of
PCR-amplified clone libraries will reveal finer-scale genetic
changes than fingerprinting methods that target the same gene.
Finally, because we were interested in compositional changes,

our search excluded many studies that measure only total
microbial biomass (e.g., those reviewed in ref. 35).

Table 2 summarizes the results by the four disturbance types.
The majority of these studies demonstrate that composition is
sensitive to disturbance. More than 80% of the mineral fertili-
zation (N/P/K), temperature, and C amendment studies found
significant effects of disturbance on microbial composition. In
contrast, the effect of elevated CO2 was found less often, in only
60% of the studies.

These studies did not suggest that broad taxonomic groups are
more or less sensitive to disturbances than narrow taxonomic
groups. Supporting information (SI) Tables S1–S4 list the studies
from the most taxonomically broad (e.g., Bacteria and Fungi) to
the most taxonomically narrow (e.g., ammonia-oxidizing bacte-
ria or Pseudomonads). The studies that did observe composi-
tional shifts are scattered throughout this list. This pattern
suggests that taxonomic breadth is not related to whether a
compositional shift was detected. Perhaps more surprisingly,
there are no patterns suggesting that methodology influences
whether a compositional change was detected. In addition, we
were not able to discern whether particular taxonomic or func-
tional groups are more or less sensitive to particular disturbance
types. Overall, the low number of studies observing a resistant
microbial composition hinders our ability to recognize any
patterns among these studies. However, we can conclude that
microbial composition is generally sensitive to disturbance.

Resilience of Microbial Composition
Even if microbial composition is sensitive to a disturbance, the
community might still be resilient and quickly return to its
predisturbance composition. A number of features of microor-
ganisms, and in particular Bacteria and Archaea, suggest that
resilience could be common. First, many microorganisms have
fast growth rates; thus, if their abundance is suppressed by a
disturbance, they have the potential to recover quickly. Second,
many microbes have a high degree of physiological f lexibility.
This is famously the case for the purple nonsulfur bacteria, which
can be phototrophs under anoxic conditions and heterotrophs
under aerobic conditions. Thus, even if the relative abundance
of some taxa decreased initially, these taxa might physiologically
acclimate to the new abiotic conditions over time and return to
their original abundance. Finally, if physiological adaptation is
not possible, then the rapid evolution (through mutations or
horizontal gene exchange) could allow microbial taxa to adapt to
new environmental conditions and recover from disturbance. All
of these arguments assume that abundance is reduced by a
disturbance, but some microbial taxa may benefit from the new
conditions and increase in abundance. Thus, in order for some
taxa to recover in abundance, those that responded positively to
the disturbance would also need to decrease in abundance to
return the community to its original composition.

Table 2. Summary of studies, including the percentage of studies in which microbial
community composition was sensitive to the disturbance, and the average length of studies
that found resistant versus sensitive composition

Disturbance
No. of
studies

Percentage of
studies sensitive

Average length of study,
years � SD

P valueResistant Sensitive

CO2 increase 20 60 3.3 � 1.9 3.6 � 1.9 0.78
N/P/K fertilization 38 84 4.8 � 4.5 8.2 � 8.7 0.17
Temperature 11 82 1.1 � 1.3 3.0 � 5.0 0.35
C amendments 41 83 0.15 � 0.09 4.9 � 12.6 0.03

The P value reported is the result of a t test (assuming unequal variances) between the study times for the
resistant versus sensitive studies.
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Few studies explicitly focus on the time course of microbial
composition after a disturbance; instead, most focus solely on the
sensitivity of composition. Consequently, we recorded the length
of time between the application of the disturbance and when
microbial composition was assessed for the studies in Tables
S1–S4. If composition is highly resilient, then one should be less
likely to detect a compositional change as time from disturbance
increases.

We compared the time from initial disturbance for those
studies that found composition to be sensitive versus resistant.
Generally, the timing of compositional assessment varied widely,
from just a few hours to decades. For C amendments, the studies
in which microbial community composition changed were sig-
nificantly longer than studies that did not detect a change (Table
2). This result implies that there is a lag in the response of
microbial communities to C additions and does not support the
idea that these communities are resilient. For elevated CO2,
mineral fertilization, and temperature, all studies were equally
likely to find shifts in community composition, regardless of time
since disturbance. On average, the reviewed studies examined
composition after several years of the disturbance application.
Thus, as a conservative boundary, microbial composition is often
not resilient within a few years.

Certainly, the strength of the disturbance and how often it is
applied will have an effect on the resilience of microbial com-
position. Most of the studies we reviewed continued to apply the
disturbance throughout the study (as occurs for most global
change disturbances), rather than a one-time application at the
beginning of the experiment. For instance, Enwall et al. (36)
compared fertilized and unfertilized soil plots that have been
maintained since 1956. The composition of the general bacteria
and ammonia-oxidizing bacteria still differs between the plot
types. In contrast, Stark et al. (37) applied organic and inorganic
forms of N to soil samples and compared the composition of
Actinomycetes, alpha-Proteobacteria, and Pseudomonads. After
10 days composition differed between the soil treatments, but
after 91 days composition differed only among the Pseudo-
monads. Conversely, some of the studies that found no effect of
disturbance on composition might have found an effect if the
study was carried out longer.

Functional Redundancy of Microbial Composition
Our literature survey clearly indicates that microbial communi-
ties are sensitive to disturbance and often do not rapidly recover
to their original state. These responses beg the question of
whether compositional shifts will affect ecosystem processes—
will the disturbed community be functionally similar to the
original community? There are two reasons why changes in
microbial composition might not affect ecosystem process rates.
First, the new community might contain taxa that are function-
ally redundant with the taxa in the old community. Second, taxa
in the new community may function differently but result in the
same process rate when combined at the community level.

What do we know about functional redundancy in microbial
communities? Few studies compare the degree of redundancy
within different microbial functional groups (but see for example
refs. 38 and 39). Functional redundancy is difficult to establish
because it requires detailed knowledge about the microbial
populations that perform a specific process. Furthermore, or-
ganisms that are functionally redundant under one set of con-
ditions may not be under different conditions. In general, we
know little about the distribution of functional traits across
microbial taxa despite years of recognition of this need (9).

Nonetheless, a growing body of literature has begun to address
the more basic question of whether microbial composition
matters to ecosystem processes to any degree versus whether the
members of a functional group are completely redundant. To
address this question, one needs to manipulate microbial com-

position while controlling for the abiotic environment. This is
because any differences in process rates can then be attributed
directly to compositional differences and not simply to physio-
logical responses of the original community under new environ-
mental conditions. In plant communities, composition and di-
versity can be manipulated directly by sowing and weeding plots
in the field. Although this is not an easy task, it is much more
feasible than manipulating microbial community composition in
the field.

A number of approaches can be used to disentangle compo-
sitional versus environmental effects on ecosystem processes. In
one approach, process rates are measured before and after a
disturbance manipulation but before microbial composition
changes. This measurement gives some idea about the direct
effect of the disturbance on process rates independent of com-
munity composition. Schimel and Gulledge (40) review studies
that subject microbial communities from different habitats to
parallel short-term, environmental treatments and compare the
communities’ process rates. For instance, Gulledge et al. (41)
found that rates of methane consumption by methanotroph
communities in response to ammonium fertilization varied de-
pending on whether the communities were associated with paper
birch or white spruce taiga forests. This result suggests that
differences in methanotroph composition are responsible for
differences in the physiological responses.

Although they may not mimic natural communities, bioreac-
tors are useful model systems for linking microbial functional
groups with process rates. Community composition can be
manipulated directly to test the functional contribution of dif-
ferent microbial taxa. In addition, the communities can be
perturbed and monitored for function and composition over
time. For example, Fernandez et al. (42) constructed two dif-
ferent methanogenic bioreactor communities that functioned
similarly before disturbance with a glucose pulse. After the
pulse, the communities metabolized glucose using different
pathways and regained prepulse function at different rates. The
authors were able to attribute these differences to specific groups
of bacteria that showed different metabolic functions.

Transplant experiments can also be used to separate environ-
mental versus compositional effects on process rates (43). If
different microbial communities produce different process rates
in a common environment, then it can be inferred that the
compositional differences are responsible for the functional
differences. Balser and Firestone (44) provide a good example of
how the transplant approach can also be used to make linkages
between microbial taxa and process rates under disturbance.
They transplanted soil microbial communities across a climate
gradient and demonstrated that community composition af-
fected process rates independent of climate. Furthermore, they
used phospholipid fatty acid data to correlate process rates with
specific members of the microbial community and concluded
that nitrification potential and N2O flux were likely driven by
Gram-negative bacteria.

Although not often possible, direct manipulations of microbial
composition can provide useful information about the functional
status of microbial groups, especially when coupled with process
rate measurements. For example, specific taxa can be targeted
for elimination from a community via chemical or physical
means and process rates compared in communities with and
without the taxa (45–47). Wertz et al. (48) manipulated soil
microbial composition by serial dilution and reinnoculation of
sterile microcosms; they found no effect of composition on
functioning in the microcosms. Alternatively, communities can
be artificially constructed to contain specific taxa and to establish
links between composition and process rates (49). For instance,
Bell et al. (50) showed that the diversity and composition of
bacteria influenced respiration rates in aquatic microcosms.
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The literature reviewed in the sections above suggests that
microbial composition is often altered by disturbances and does
not recover over some time. Furthermore, these changes often
impact the rates of ecosystem processes, suggesting that at least
some microbial taxa are functionally dissimilar. In light of these
observations, we propose a broad framework in the next section
for integrating information about microbial composition into
predictive models of ecosystem processes.

Incorporating Microbes into Models: Physiological Traits and
Process Response Curves
As more data are collected on the relationship between micro-
bial composition and ecosystem functioning, explicitly incorpo-
rating microbes into process models will become increasingly
tractable. Indeed, analogous efforts have been successful with
plant functional groups and ecosystem models. However, there
are some gaps to bridge between microbial ecologists and
ecosystem modelers. Modelers are uncertain about how to
aggregate extremely diverse microbial communities into a man-
ageable number of functional units. Conversely, microbial ecol-
ogists often have a poor understanding of the types of studies
that would be useful to modelers in carrying out this aggregation
step. In this section we outline a simple microbial process model
to frame some of the results above and consider how experi-
mentalists might further inform predictive models.

Consider a number of taxa within a functional group that all
contribute to an ecosystem process. The functional group has n
taxa with abundances ai (in units of biomass) and biomass-
specific physiological rates ri. The community process rate R is
the sum of the products of the abundances and the rates:

R � a1r1 � · · · � anrn.

If taxon 1 and taxon 2 have the same physiological rates ri, then
they are functionally redundant, and their abundances can be
aggregated together:

a1r1 � a2r2 � �a1 � a2�r1

If communities 1 and 2 have different compositions but the same
process rates (R1 � R2), then we can define these communities
as functionally similar, although they may contain taxa that are
not functionally redundant.

To predict how microbial processes will respond to distur-
bance, we also need to know the physiological responses of each
taxon to disturbance. Assume that the physiological response
curve r(I) is a linear function of disturbance intensity I:

r�I� � m � I � r0 ,

where m is the slope and r0 is the physiological rate under
undisturbed conditions (Fig. 2). For the microbial community as
a whole, the process rate as a function of disturbance intensity
I would be

R�I� � a1�I�r1�I� � · · · � an�I�rn�I�.

Because it is not feasible to model all taxa and their responses
individually, the challenge is to determine properties of the
functional group that will help predict the responses of ecosys-
tem processes to disturbance. A worthwhile goal for future
experimental studies would be to identify the level of redundancy
in physiological traits and disturbance responses within microbial
functional groups. Then one could estimate the parameters m
and r0 without having to measure them for every taxon. For
example, if there is correspondence between phylogeny and a
physiological trait (r0), or between phylogeny and functional
responses (m), then we could use phylogenetic information to
estimate the parameters. Given that microbial composition is

usually assessed with phylogenetic markers, this information
could be used to predict how members of a functional group
influence ecosystem process rates.

As an illustration of this approach, consider the functional
group in Fig. 3A. All of the taxa in the top clade perform the
functional process at a high rate (denoted by the large circles),
and those in the bottom clade perform the process at a lower rate
(denoted by the small circles). If the total abundance of these two
clades stays the same, then shifts in composition within the two
clades are not functionally important, as taxa within the clades
perform the function at the same rate. In the model more
generally, these clades define the level of aggregation for an
undisturbed community contributing to process R, such that

R � ac1r0c1 � ac2r0c2,

where ac1 and ac2 are the summed abundances of all taxa in clades
1 and 2 and r0c1 and r0c2 are the physiological rates for the taxa
in clades 1 and 2, respectively.

As with the physiological trait in Fig. 3A, the disturbance
responses may also be related to phylogeny. For instance, the
taxa within clade 1 all respond similarly to disturbance A, as do
the taxa within clade 2. Therefore, only the abundances of these
two clades must be considered to predict the overall process rate
R under disturbance:

R�I� � ac1�mc1 � I � r0c1� � ac2�mc2 � I � r0c2� ,

where mc1 and mc2 represent the slopes of the physiological
response curves for clades 1 and 2, respectively. We note that the
abundances under disturbance must be determined before the
calculation of the new process rate unless they are known to be
stable with disturbance.

For modeling purposes, it would be useful to know the
relationships among physiological rates, disturbance responses,
and phylogenetic position among taxa. Then, predictions of
process rates could be estimated based on the abundances of
relatively broad phylogenetic groups. However, we currently lack
the empirical evidence necessary to establish which microbial
processes show a strong correspondence between phylogeny and
physiology. Although this topic has received much attention in
the microbial ecology literature (51–53), few studies have tested
the linkage convincingly.

Disturbance B in Fig. 3 illustrates a case where the physio-
logical response curves are phylogenetically grouped at the level

Fig. 2. A physiological response curve for a microbial taxon. The curve
illustrates the rate at which the taxon contributes to an ecosystem process as
a function of disturbance intensity. For simplicity, this function is assumed to
be linear, although other forms are likely for microbial taxa. The slope m of the
line indicates how quickly the physiological rate changes with I, and r0 is the
physiological rate in the absence of disturbance.
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of subclades (denoted 1A, 1B, 2A, and 2B). In the general model,
we would calculate the process rate as

R�I� � ac1A�mc1A � I � r0c1� � ac1B�mc1B � I � r0c1�

� ac2A�mc2A � I � r0c2� � ac2B�mc2B � I � r0c2� .

This model is considerably more complex than the prior model
because of the heterogeneity in disturbance responses at the

subclade level. In a complex microbial community this situation
is likely to occur but is still tractable for modeling if the
heterogeneity is relatively low and well characterized. For in-
stance, Horz et al. (54) found that two different clades of
methanotrophs responded differently to simulated global
change. The worst-case scenario is that the responses of the taxa
to disturbance are randomly distributed across the phylogeny as
illustrated by disturbance C in Fig. 3. In this case, calculation of
the overall process rate requires the abundances of each indi-
vidual taxon. A similar challenge would arise if the functional
trait itself is not phylogenetically determined (Fig. 3B).

One promising set of tools for overcoming the challenges of
these ‘‘worst-case’’ scenarios are metagenomic or metatranscrip-
tomic approaches. For example, environmental gene tags
(EGTs) could potentially be used as a proxy for physiological
rates or disturbance responses across the whole community, even
if these traits are unrelated to phylogeny (55). With this tech-
nique, the abundances of genes specific to particular environ-
mental processes (such as phosphate metabolism) could be
extracted from community metagenomic data and used in
modeling process rates. Another advantage of this approach is
that multiple EGTs and processes can be examined in a single
sample, rather than constructing separate clone libraries for each
different functional gene of interest.

In our model, when does changing composition matter to
ecosystem processes? Changing the abundance of a taxon will
affect the process rate unless the abundances of other taxa also
change to compensate. In undisturbed communities, exchanging
one taxon for another (with similar biomass) can affect the
community process rate if the two groups have different r0
(physiological rate) values. With disturbance, composition mat-
ters if taxa with different m (disturbance response) values change
in abundance (even if they had the same r0 values). Although
our simple model considers only the total abundances (i.e.,
biomasses) of different taxa, we note that changes in body
size distributions within or across taxonomic groups could also
affect ecosystem process rates as suggested by metabolic scaling
theory (56).

In communities with a large number of taxa, a ‘‘portfolio
effect’’ may prevent the community process rate from changing
with disturbance, even if the taxa change in abundance and are
not functionally redundant (57). The portfolio effect can occur
when positive responses of some taxa are averaged with negative
responses of other taxa, resulting in no net change in function.
Thus, the greater the number of taxa that perform a process, the
more buffered the process is to environmental perturbations
(58). This portfolio mechanism (in addition to functional redun-
dancy) could lead to similarity in community function despite
changes in microbial composition.

Conclusions
There are three ways in which microbial composition might not
matter to ecosystem functioning in the face of disturbance. First,
microbial communities might be resistant to change. However,
we find that microbial composition is, in the majority of cases
that we reviewed, sensitive to elevated CO2, mineral fertilization,
temperature changes, and C amendments. Second, microbial
composition might be resilient and quickly return to its original
state. The literature suggests that, at least over the time scale of
a few years, microbial composition usually still differs from that
of undisturbed communities. Third, even if microbial composi-
tion changes, the new community might be functionally similar
to the original. Although this hypothesis is currently difficult to
test, recent studies suggest that the taxa in many microbial
communities are probably not functionally redundant and dif-
ferent communities are not functionally similar.

How can the information that microbial composition affects
ecosystem functioning be used to improve predictions of eco-

Fig. 3. A stylized illustration comparing the phylogenetic relationship of
physiological traits versus process responses to disturbance among taxa. Dif-
ferent rates of the physiological traits are represented by differently sized
circles (see text for further explanation). In A physiological trait values are
correlated with phylogenetic similarity, whereas in B physiological trait values
are randomly distributed among taxa. Three different disturbances (A, B, and
C) produce process responses from the taxa that are also either phylogeneti-
cally related (disturbances A and B) or randomly distributed among taxa
(disturbance C).
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system process rates under disturbance? The simple model we
presented in the previous section highlights two lacking pieces of
information. First, more data are needed on the responses of
microbial taxa to disturbance, in addition to knowledge about
physiological traits. Microbial taxa may vary in their responses to
different disturbances, and these taxa may not correspond to
functional groups defined by physiological traits.

Second, it would be useful to know the relationship among
microbial phylogeny, physiological traits, and response curves.
Although it is clear that phylogenetic relationships of taxa are
not perfect predictors of microbial physiology (59, 60), there are
phylogenetic signals of physiological traits (e.g., ref. 61). The
genetic scale at which these traits are clustered would guide
modelers in aggregating microbial taxa for their models. Simi-
larly, we know of no studies that address the relationship
between phylogeny and microbial responses to disturbance. For
instance, perhaps the response of microbial taxa to particular C
amendments are predictable at very fine phylogenetic scales
(e.g., �99% 16S rDNA similarity), whereas the responses of taxa
to temperature changes can be aggregated at a broader scale
(such as at �95% similarity).

In sum, there has been increasing recognition that microbes
are relevant to ecosystem processes and enormous progress in
characterizing the response of microbial composition to distur-
bance, particularly in soils. Despite these advances, the field of
microbial ecology lacks a strong predictive framework to inter-
pret the functional consequences of changes in microbial com-
position. Much more empirical work is needed to define micro-
bial functional groups and their responses to various
disturbances. Greater efforts toward improving culture tech-
niques and assessing the physiological responses of microbial
populations under controlled conditions would be especially
useful. Once explicitly incorporated into models, this informa-
tion could greatly enhance our ability to predict ecosystem
responses to global change.
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