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Datasets describing the health status of individuals are important
for medical research but must be used cautiously to protect patient
privacy. For patient data containing geographical identifiers, the
conventional solution is to aggregate the data by large areas.
This method often preserves privacy but suffers from substantial
information loss, which degrades the quality of subsequent dis-
ease mapping or cluster detection studies. Other heuristic methods
for de-identifying spatial patient information do not quantify the
risk to individual privacy. We develop an optimal method based
on linear programming to add noise to individual locations that
preserves the distribution of a disease. The method ensures a
small, quantitative risk of individual re-identification. Because the
amount of noise added is minimal for the desired degree of privacy
protection, the de-identified set is ideal for spatial epidemiological
studies. We apply the method to patients in New York County, New
York, showing that privacy is guaranteed while moving patients
25–150 times less than aggregation by zip code.

patient privacy | spatial epidemiology | linear programming |
data aggregation

S ince the publication of the first disease dot map more than
200 years ago revealed the locations of yellow fever patients

in New York City (1), a collection of methods to analyze health
characteristics and location have coalesced to comprise the field
of spatial epidemiology. Disease mapping, assessing the tendency
of patients to cluster in space, detecting localized clusters of dis-
eases, and testing for clustering around a putative environmental
point source are all distinct activities within the field. Although
spatial analyses of geographical identifiers such as zip codes, street
addresses, and locations on maps may ultimately improve medical
care and public health, the identifiers themselves are protected
health information that pose a threat to patient privacy if disclosed.
Even common identifiers can be linked to individuals; 87% of sub-
jects in one study could be uniquely identified by their gender, zip
code and date of birth (2) and low-resolution dot maps of diseases
published in several medical journals could be used to trace most
patients to single addresses (3).

Although established since the time of Hippocrates (4), the pro-
fessional responsibility to protect patient privacy has been newly
formalized with the passage of the Health Insurance Portabil-
ity and Accountability Act of 1996 (HIPAA) (5). Effective since
2003, HIPAA details specific information disclosures that violate
privacy. Noncompliance may result in fines of up to $250,000
and imprisonment for up to 10 years. The rule defines a cate-
gory of “non-identifiable data sets,” whose dissemination is not
restricted; this is desirable from a research perspective because
it allows analysis by the entire scientific community and makes
independent verification of results possible. Either of two criteria
must be met for a dataset to qualify as non-identifiable. The first
specifies that the dataset must not include any of 18 specific iden-
tifiers, including five-digit zip codes. The first three digits of a zip
code may be included, provided that at least 20,000 people share
the same first three digits. The second criterion specifies that a

qualified individual determines “that there is a very small risk that
the information could be used by others to identify a subject of
the information” (5).

The prevailing method for preserving privacy in spatial data is
aggregating by predefined administrative regions, such as counties
or census enumeration districts. These areas must be larger than
the zip code level to comply with HIPAA. However, aggregation
may compromise subsequent research by erasing useful spatial
information (6); for example, the detection of spatial clusters is
significantly less sensitive and specific when data are aggregated
even by zip code (7). Furthermore, the level of privacy protec-
tion depends on the number of patient records. For example, if
it is revealed that 20 patients having a certain disease reside in a
region containing 20,000 people, then there is a 1

1,000 chance that a
randomly selected individual from the region is one of the patients.
However, if 200 patients with the disease live in the region, then
the probability that a random individual from the region is among
the set of patients increases to 1

100 .
An alternative to aggregation is moving each patient to a new

location to ensure privacy (8), formalized by the family of “geo-
graphical masks” proposed by Armstrong et al. (9). Each is a
deterministic or stochastic function of geographical identifiers
designed to de-identify patient locations while preserving the
approximate spatial distribution of patients. They encompass pre-
vious approaches such as aggregation and translation by fixed
distances, as well as affine transformations, adding independent
noise, and random perturbations adjusted for population density
(10). Although these techniques represent a significant advance
over aggregation, they apply the same transformation indepen-
dent of the local geography, the number of patient records, and,
in several cases, the underlying population counts. Consequently,
the probability that any of the de-identified records originated
from a single individual depends on all of these variables. For
example, consider a geographical mask that moves each record to
a new location with uniform probability inside a circle of radius r
centered at the record. Given a masked case location, it is obvi-
ous that its original location must lie within the circle of radius
r centered at the masked location. If part of this circular region
intersects a body of water or other uninhabited region, then the
area from which the case originated is narrowed, conceivably to
a tiny fraction of the map. In the general case, quantifying the
re-identification probability may be extremely difficult. However,
a quantitative measure of privacy protection is essential to ensure
that the standard of “very small risk” specified by HIPAA is met.
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In a different application, Machanavajjhala et al. (11) ensured
a low disclosure risk by generating a de-identified dataset from
a model of the original data. This approach is sensitive to the
user’s belief about the data, reflected in the choice of model. Fur-
thermore, in order to preserve essential data features needed for
subsequent analysis, these features must be captured by the model.
If the data are sparse, or if the essential features are unknown in
advance, this may not be possible.

We present a principled approach to de-identifying patient loca-
tions based on linear programming that allows the user to specify
the maximum probability of associating any of the transformed
locations with any individual in the population. The solution is
optimal in that it guarantees that patients are moved the min-
imum distance for the level of privacy protection offered. The
method has the advantage that it does not move patients to unre-
alistic locations, such as lakes and rivers. It may be used to create
de-identified datasets that can be shared without restriction for
spatial epidemiological investigations. Application of the method
to de-identifying patients in several counties shows that a high level
of privacy can be achieved while preserving clusters and moving
patients relatively short distances.

LP De-Identification
Given the locations of a set of patients, the aim is to randomly
assign new, de-identified locations that can be associated with the
original patients with very low risk. The distance between the orig-
inal and new locations should be minimized. The original locations
may be any discrete geographical identifiers. We assume that the
data are purely spatial, containing no other identifying informa-
tion such as age or sex. The set A of possible original locations
must be known in advance; for example, this could be all census
block groups in a state or all residential addresses within a city.
The actual patient locations to be de-identified must be contained
in A. The set B of possible final locations to which patients may
be moved is also defined in advance. This could be a different set
than A, such as evenly spaced points on a grid to which patients
at exact addresses will be relocated. If A and B are disjoint, then
no case will be assigned to the original location of any other case.

This problem can be captured by a linear programming (LP)
model, a simple type of mathematical model that consists of a set
of decision variables, constraint equations, and an objective func-
tion (12). The decision variables are the transition probabilities
Pij of assigning a patient in location i ∈ A to a new location j ∈ B
(see Fig. 1). Once values have been assigned to the decision vari-
ables, each of s patients in a list of original locations is moved to
a new location independently of the other patients. If a patient
originates in location i ∈ A, a new location j is drawn from the set
B using a multinomial distribution with probabilities Pij. The goal
is thus to assign a value to each decision variable Pij so that this
procedure ensures privacy and minimizes patient movement.

Constraint equations specify conditions that must be satisfied
by the decision variables Pij. Because the decision variables are
probabilities, each must be nonnegative:

0 ≤ Pij for all i ∈ A and j ∈ B. [1]

In addition, every case must be moved somewhere, so
∑

j

Pij = 1 for all i ∈ A. [2]

A final constraint guarantees that the risk of linking any random-
ized location with any original patient is small. In formal terms, we
specify that the probability that any location from the randomized
dataset originated from any specific individual in the underlying
population is at most ξ :

Pij · ni

N
≤ ni · ξ

s
·
∑

k∈A

nk

N
· Pkj for all i ∈ A and j ∈ B. [3]

Fig. 1. Schematic of transition probabilities. A patient found at each loca-
tion in a set A may transition to any location in a set B. In this example,
the sets A and B are equivalent for simplicity, each consisting of three loca-
tions represented by houses. The nine transition probabilities, represented
by arrows, are variables solved by linear programming.

In this equation, ξ is a user-specified privacy bound between zero
and one. The parameter s ≥ 1 is the number of patients in the
particular dataset to be de-identified; for example, this could be
the number of patients enrolled in a case-control study of a certain
disease. The variable ni is the number of people in region i, and
N = ∑

r∈A nr is the population summed over all possible original
locations. For instance, if the regions are census block groups, then
the constants {ni}i∈A may be corresponding populations drawn
from the same census. If the regions are exact addresses, then ni
is assumed to be 1 for each i and N is the number of possible orig-
inal addresses. Any randomly or methodically chosen member of
the population is guaranteed to belong to the dataset with prob-
ability at most ξ . Consequently, given the de-identified list, one
could expect to search through at least 1

ξ
members of the popu-

lation by any method before encountering one person on the list.
Derivation of this constraint is found in the Appendix.

We wish to move patients as little as possible subject to the con-
straints above. For each i ∈ A and j ∈ B, we define dij to be the
distance between region i and region j. Assuming that each individ-
ual in the study area is equally likely to be in the dataset, a patient
originates in region i with probability ni

N . Hence, the expected dis-
tance that a patient is moved, which is the objective function to be
minimized, is

∑
i∈A

∑
j∈B dij · ni · Pij

N
. [4]

Several standard linear programming techniques to solve LP
models, such as that specified by Eqs. 1–4, have been developed.
When applied to an LP model, they either locate an optimal
solution that minimizes the objective function, or they prove
that no solution exists. The latter happens if no probabilistic de-
identification strategy has a risk of re-identification of at most ξ .
For example, if there are N available individual addresses, then no
strategy to de-identify s ≤ N patients by reassigning new addresses
can achieve a risk of re-identification below s

N . If no strategy exists,
then a larger re-identification risk can be specified (if acceptable
for privacy protection), or the set of available locations can be
expanded.

Simple variations of the linear program make it possible to
capture other objective functions, constraint equations, or deci-
sion variable constraints. Instead of minimizing the expected dis-
tance, the expected squared distance may be used to penalize
long-distance moves more heavily than short moves. In fact, any
objective function that is a linear combination of the decision vari-
ables Pij may be used without complicating the analysis. It is also
possible to limit the number of outgoing transitions from any posi-
tion to its k nearest neighbors, for a fixed k. In general, additional
constraints increase the optimal value of the objective function.
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Fig. 2. Transition probabilities for the optimal strategy to de-identify s ≤
20, 000 patients from New York County, NY, with a maximum re-identification
probability of s

20,000 . Transition probabilities from 3 of the 988 census blocks
are shown, illustrating a few of the many possible transition distributions.
The shading in region j represents the value of the probability Pij of transi-
tions into the region. (A) Patients in one census block (asterisk) may remain
there or may transition to one of several nearby blocks. (B) All patients orig-
inally in one census block (asterisk) are assigned to one neighboring block.
(C) Patients are reassigned from one block (asterisk) to one of four nearby
census blocks. No patients are reassigned to the original census block (i.e.,
Pii = 0).

If a deterministic strategy is preferred to a randomized strategy,
the LP model may be converted into a binary integer program. This
specifies that only the values 0 or 1 may be assigned to the decision
variables. For a fixed j, the set Ij = {i : Pij = 1}, if nonempty, has
the property that

∑
i∈Ij

ni ≥ s
ξ

. In other words, the patients are
binned into a subset of the locations, the number and positions of
the bins minimize the expected transition distance, and the total
population assigned to each bin is at least s

ξ
. In general, the opti-

mal deterministic strategy moves patients farther than the optimal
randomized strategy because the set of deterministic strategies is
contained by the set of randomized strategies.

Application
We determine optimal strategies to randomize patients in New
York County for a range of maximum re-identification risks. The
strategy moves patients much shorter distances than aggregation
by zip code or aggregation by the first three digits of zip code, and
it preserves disease clusters in the data to a greater degree than
either aggregation method. The method also compares favorably
to aggregation for other counties having a range of population
densities.

Stringent De-Identification of Locations. We consider de-identifying
case locations in New York County, NY, grouped by census blocks.
A census block is a small geographical unit typically containing
≈1,500 people (13). According to the 2000 census, the 988 cen-
sus blocks in New York County contain between 0 and 15,112
people. We devise the optimal strategy to de-identify a set of
1 ≤ s ≤ 20, 000 patients with a maximum re-identification proba-
bility of s

20,000 . Transitions from any census block were restricted to
its nearest 100 neighbors. The LP model was solved using CPLEX
LP software (14), resulting in a 988 × 988 matrix of transition
probabilities.

Under the optimal strategy, the expected distance between a
patient’s original and de-identified location is only 265 m. Three
of the 988 matrix rows are illustrated in Fig. 2. These show three
possible configurations: patients are re-assigned to the same cen-
sus block group or one of a few neighboring census block groups;
patients are re-assigned to a single nearby census block group; and
patients are moved to one of several possible census block groups
which do not include the original location. Even from this limited
subset, it is clear that the optimal strategy would be difficult to

devise by hand. In particular, the optimal transition probabilities
are not a monotonic or regular function of the distance between
census block groups, such as a Gaussian function.

Comparison to Aggregation. To examine the relationship between the
re-identification probability and the expected distance moved by
a patient, we calculated the optimal de-identification strategies
for a range of re-identification bounds. Because the total pop-
ulation summed over all census block groups is 1,696,038, the
minimum achievable re-identification probability, corresponding
to complete randomization, is s

1,696,038 , or s · 0.00000059. The
expected transition distance is 6.4 km. The least populated non-
empty census block group contains only one individual, so the
strategy of reassigning patients to their original locations has a
re-identification probability of 1 (which would be realized if one
patient in a “de-identified” set originated from that census block
group) and an expected transition distance of 0 km. The optimal
strategies for de-identifying patients were calculated for a range
of re-identification probabilities between these two extremes, and
the expected distance moved by each patient is shown in Fig. 3.

The optimal LP strategies move patients much less than aggre-
gation when the level of privacy protection is held constant. Aggre-
gation by zip code moves patients an expected 519 m. The least
populated zip code contains 884 people (excluding empty zip codes
and one zip code containing only one person), so there is a max-
imum re-identification probability of s

884 for a set of s ≤ 884
patients under this strategy. The optimal LP strategy at the same
re-identification probability moves patients by only 3.3 m. Aggre-
gating by the first three digits of zip code moves patients an
expected 3.9 km, and has a maximum re-identification probabil-
ity of s

8,188 . At this probability of re-identification, the optimal
LP strategy moves an average patient a much smaller distance
of 149 m. Thus, for the same level of privacy protection, aggre-
gation moves patients 25–150 times farther than the optimal LP
strategy (Fig. 3).

Cluster Detection. To determine the degree to which LP de-
identification preserves spatial clusters in data, we applied a stan-
dard cluster detection algorithm to simulated case-control data
that had been de-identified using the LP method or aggregation.

Fig. 3. Relationship between the re-identification probability, the number
s of patients, and the expected transition distance for the optimal LP strat-
egy to de-identify patients by census block group in New York County, NY.
As the level of privacy protection decreases (from left to right along the x-
axis), patients are moved a smaller distance in expectation. Aggregation by
zip code (green diamond) and first three zip code digits (magenta asterisk)
are suboptimal strategies yielding larger distance movements than the opti-
mal LP strategy at the same re-identification probability. Note that log scales
are used, so the expected transition distance increases 100-fold between tick
marks on the y-axis.

17610 www.pnas.org / cgi / doi / 10.1073 / pnas.0801021105 Wieland et al.
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Fig. 4. Detection of clusters in case-control datasets. One thousand sets
of controls and cases containing a cluster were de-identified using the LP
method (blue line), aggregation by zip code (green diamond), or aggrega-
tion by the first three zip code digits (magenta asterisk). The x-axis shows
the re-identification probability, which ranged from 0.005 to 1 (original
dataset). The y-axis shows the mean p-value of the most likely cluster aver-
aged over all datasets. Clusters de-identified using the LP method were
detected with greater fidelity (i.e. lower p-value) than those de-identified
using aggregation.

We constructed 1,000 datasets of 100 patients representing cases
and 100 patients representing controls. All patients were randomly
placed in census block groups to reflect the underlying population
density, with an excess number of cases within a randomly placed
circular region of radius 1 km to simulate a disease cluster. Each
set of patients was de-identified using the LP method for a range
of re-identification probabilities from 0.005 to 0.5. Each set was
also de-identified using aggregation by zip code and by the first
three zip code digits. SaTScan circular cluster detection software
(15, 16) was applied to each de-identified set, and the p-value of
the most significant cluster found was recorded (Fig. 4).

The mean p-value of the most likely cluster in the original data
sets was 0.029. De-identification using the LP method prior to
applying SaTScan resulted in clusters that were slightly harder to
detect; under the most stringent strategy with a re-identification
probability of 0.005, the mean p-value of the most likely cluster
was 0.057. Aggregation decreased the detectability to a greater
extent while offering less privacy protection. Aggregation by zip
code, corresponding to a maximum re-identification probability
of 0.11, increased the mean p-value of the most likely cluster to
0.094. Aggregation by the first three zip code digits had a maxi-
mum re-identification probability of 0.012 and increased the mean
p-value to 0.21.

Effect of Underlying Population Density. In order to generalize our
results to less densely populated regions, we compared the LP
method to aggregation for three other counties having a range
of population densities. For data sets in Franklin, Plymouth, and
Middlesex Counties in Massachusetts, we calculated the expected
transition distance under the optimal LP strategy for one data
point with re-identification probabilities from 0.1 to 0.0001. We
also calculated the re-identification probability and expected tran-
sition distance under aggregation by zip code and the first three zip
code digits (Table 1). The LP method performed favorably relative
to aggregation for all of the counties. For example, in Plymouth
County, which is about one-hundredth as dense than New York
County, the LP strategy with re-identification probability 0.0001
is expected to move a data point 1.9 km, whereas aggregation by
zip code moves points a farther distance of 3.1 km and has a 5-fold
greater disclosure risk.

Discussion
In the current climate of public concern for patient privacy and
legislation imposing strict controls on the dissemination of patient-
identifiable data, new strategies for de-identifying individual-level
datasets while preserving information for disease surveillance and
epidemiology are needed. It is imperative that strategies quantify
the level of disclosure risk.

For tabular data, such as small area tabulations of demographic,
financial, and social categories, there is a sophisticated body of
research techniques for de-identification. These primarily con-
sist of suppressing certain cells, aggregating rows or columns,
and rounding or adding noise to cells (8, 17–19). These meth-
ods were developed for a different kind of data and problem, and
straightforward application to our individual-level x-y coordinate
data results in previously explored or suboptimal approaches. The
binary integer version of our LP method, which is suboptimal to the
nonbinary method as discussed under LP De-identification, is very
similar in principle to tabular aggregation methods, while having
the advantage of taking the underlying population into account.
Tabular methods that round or perturb data, either naively or to
preserve features in the data, guarantee that a cell value cannot
be known with certainty up to a range of values. These methods
do not incorporate geography or population data not contained in
the table and are thus similar to previous perturbation techniques
for individual-level data. Like those techniques, they would not
guarantee privacy in this setting because the risk of re-identifying a
permuted location depends on the local geography and population
density.

The flexible LP technique presented here for de-identifying
spatial data offers a mathematically well defined re-identification
risk, which is simply the maximum probability that any patient in
the de-identified dataset corresponds to any single individual in

Table 1. Re-identification probability and expected distance moved for LP strategy and aggregation in counties having a range of
population densities

LP method d† Zip 5‡ Zip 3§

County name ρ∗ ξ

s

¶
= 10−1 ξ

s
= 10−2 ξ

s
= 10−3 ξ

s
= 10−4 ξ

s
d, m

ξ

s
d, m

Franklin County, MA 39.3 0.00 0.00 89.6 4,736 2.8 · 10−3 2,640 1.2 · 10−5 13,226
Plymouth County, MA 276.2 0.00 0.00 62.0 1,908 5.5 · 10−4 3,123 8.9 · 10−6 19,115
Middlesex County, MA 687.1 0.00 0.02 31.5 1,105 6.5 · 10−4 1,770 4.9 · 10−6 10,793
New York County, NY 25,846 0.00 0.08 4.3 172 1.1 · 10−3 519 1.2 · 10−4 3,866

∗ρ = population density expressed in people per square kilometer.
†d = expected distance for strategy in meters.
‡Zip 5 = aggregation by five-digit zip code.
§Zip 3 = aggregation by first three digits of zip code.
¶ξ = re-identification probability, s = number of records in the dataset.
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the population. This probability holds even if the complete set of
transition probabilities {Pij} is known to the data recipients.

The strategy ensures that patients are moved as little as possi-
ble to guarantee privacy. In both densely and sparsely populated
areas, the LP strategy can be expected to move patients a smaller
distance than the common practice of aggregating by predefined
regions. In fact, it moves patients a smaller distance, on average,
than every other possible strategy, either deterministic or random,
obeying the same re-identification bound that can be expressed as
a matrix of transition probabilities.

We illustrated the improved accuracy of the method compared
to aggregation for cluster detection for synthetic circular clusters
using a circular scan statistic. Like this statistic, most methods in
spatial epidemiology consider datasets in which each patient is
labeled as a case or a control. This allows the spatial structure of
the disease to be compared with variations in the underlying popu-
lation. It is important to note that prior to applying any statistical
method, both the cases and the controls must be de-identified
using exactly the same strategy. If the control locations do not
represent a threat to privacy, or if they are selected by the end-
user, they may be independently de-identified by the end-user with
the matrix {Pij}. If only the cases are moved, then spurious clusters
may be formed by relocating dispersed individuals to the same or
nearby locations.

The accuracy of the re-identification bound depends on a few
assumptions. First, the underlying population size at each loca-
tion must be known in advance, although the method appears to
be robust to small inaccuracies (see supporting information (SI)
Text). Second, the data recipient must not have knowledge to sug-
gest that membership in the dataset is not completely random;
otherwise it may be possible to apply a denoising technique to
reveal deterministic structure in the data. This is a limitation of
the method because the user may guess that membership is not
random from the de-identified dataset itself. Devising such a de-
noising technique, however, would be difficult in general because
the noise added by the LP model depends on the original data in
a complicated way (20). Third, we assume that no other informa-
tion is available to help identify individuals. Ensuring privacy in
the face of existing or future additional information is a highly
nontrivial problem that has not been adequately addressed by
existing methods for individual-level exact location data (17, 21),
although progress has been made for other types of data (22–24).
In the simplest case, a coarse discrete identifier can be incorpo-
rated into the de-identification procedure. For example, if the final
version of the dataset is to contain both the location and the sex
of each patient, then a de-identification strategy may be devel-
oped independently for each sex represented. This is not always
possible because stratified population data may not be available,
and it becomes intractable for finely grained identifiers or multiple
identifiers having many possible combinations of values.

For individual addresses, we recommend using a population size
of 1 for each address in the LP model. This limits the probability
of associating any household with a case to the re-identification
probability. Because the public may not feel comfortable with any
addresses released in a de-identified set, even if the probability
that an individual at each address has the disease is very small,
the set B of final locations should be grid points or small adminis-
trative units instead of addresses. To minimize the likelihood that
distinct original locations are moved to common final locations, B
should chosen to satisfy the condition that each point in A has a
distinct nearest neighbor in B.

The measure of privacy protection proposed here captures what
is essentially important to a patient: “Will I be identified as having
a disease as a result of the disclosure?” Several other measures
of confidentiality for individual spatial data have also been pro-
posed. These include Spruill’s measure for business data (25),
equivalent in the spatial context to the proportion of records in the
de-identified set that lie closer to their original location than to all

other locations in the original set. The value of the measure for
our LP strategy depends not only on the privacy bound ξ , but also
on the number and locations of original records and on the partic-
ular values for destination locations drawn from the multinomial
distribution. However, Spruill’s measure does not always capture
intuition about privacy. For example, creating a de-identified set
by permuting the order of the exact locations of all patients in
the original set measures well by Spruill but is clearly unaccept-
able for privacy protection because it reveals all the locations.
Conversely, assigning completely random locations to de-identify
a dataset of two patients measures poorly by Spruill but would
certainly preserve privacy.

Armstrong et al. (9) also proposed four other measures of confi-
dentiality. The first of these is a qualitative measure of vulnerabil-
ity to geographical knowledge, under which our LP strategy has no
disclosure risk. The second measures the ability to infer from the
de-identified set regions within the map having a high disease risk.
Like aggregation and random perturbation, our LP method may
reveal regions of high disease risk. However, this is both a strength
and a liability of the method because the de-identified set may be
used to assess spatial variation in the disease risk. The third mea-
sures the ability to re-identify all the patients, given the identity
of some of the patients, and the final confidentiality measure is
the minimum number of unlabeled locations from the original
dataset that can be used to compromise the entire de-identified
set. As with aggregation, there is minimal risk under our LP strat-
egy by these measures. If one patient is re-identified in a dataset
of s patients created using the LP method with disclosure risk ξ ,
then the problem of re-identifying a different patient is equivalent
to the problem of re-identification starting from a dataset created
with a slightly lower risk of disclosure ξ · s−1

s , but in which one of the
census numbers ni has been overestimated by one in the model.
This is likely to have little effect on the disclosure risk. Please see
SI Text for further discussion of inaccurate census estimates.

Appendix
Here, we derive Eq. 3, which guarantees that the probability that
any location from a de-identified dataset originated from any spe-
cific individual in the underlying population is at most ξ . Consider
the probability of re-identifying a set of s patients that have been
randomized to new locations. Given the set A of possible origi-
nal locations and B of possible final locations, let Pij denote the
probability of transition from location i ∈ A to location j ∈ B.
Given the set of s locations comprising the de-identified dataset,
we require the probability that any one of these derived from one
specific individual to be at most ξ . This is guaranteed if the proba-
bility that a location from the randomized dataset originated from
an arbitrary specific individual is required to be at most ξ

s . Let X
and Y denote the original and transformed locations, respectively.
This condition is formally expressed as

p(patient q|Y = j) ≤ ξ

s
[5]

for every individual q in the population and every location j ∈ B.
The left hand side of this inequality is equivalent to

p(patient q ∩ X = L(q)|Y = j), [6]

where L(q) is the location of individual q, or

p(patient q|X = L(q)) · p(X = L(q)|Y = j) [7]

by the definition of conditional probability. Assuming that all indi-
viduals in location L(q) have an equal chance of having the disease,
we have

p(patient q|X = L(q)) = 1
nL(q)

, [8]
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where nL(q) is the number of people in location L(q). Hence, the
condition expressed by Eq. 5 is

p(X = L(q)|Y = j) ≤ nL(q) · ξ

s
[9]

for every individual q and location j ∈ B. Because the location of
q, L(q), may only take on values in A, this is equivalent to

p(X = i|Y = j) ≤ ni · ξ

s
[10]

for every i ∈ A and j ∈ B. After multiplying both sides of equation
10 by p(Y = j), the left-hand side becomes p(X = i ∩ Y = j), or
p(Y = j|X = i) · p(X = i). Furthermore, p(Y = j|X = i) is sim-
ply the transition probability from location i to location j, so it is
equivalent to the decision variable Pij. Hence, Eq. 10 is equivalent
to

Pij · p(X = i) ≤ ni · ξ

s
·
∑

k∈A
Pkj · p(X = k) [11]

for all i ∈ A and j ∈ B. Assuming that all individuals in the popu-
lation have an equal prior probability of belonging to the original
data set, we have

p(X = i) = ni

N
[12]

for all i ∈ A, where N = ∑
r∈A nr is the total population. Hence,

we obtain

Pij · ni

N
≤ ni · ξ

s
·
∑

k∈A

nk

N
· Pkj for all i ∈ A and j ∈ B. [13]

Eq. 13 is incorporated into the LP model as a set of con-
straint equations. Thus, the final set of transition probabilities
Pij, satisfy this equation for all i ∈ A and j ∈ B. Following the
proof backwards from Eq. 13, this means that the probability
that a location from the de-identified dataset originated from an
arbitrary specific individual is less than or equal to ξ

s for every
location. Since the probability of the union of events is bounded
above by the sum of the probability of events, the probability that
any specific individual is represented in the final data set is at
most ξ .
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