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Plants have a sophisticated system for sensing and responding to
their light environment. The light responses of populations and
species native to different habitats show adaptive variation; un-
derstanding the mechanisms underlying photomorphogenic vari-
ation is therefore of significant interest. In Arabidopsis thaliana,
phytochrome B (PHYB) is the dominant photoreceptor for red light
and plays a major role in white light. Because PHYB has been
proposed as a candidate gene for several quantitative trait loci
(QTLs) affecting light response, we have investigated sequence
and functional variation in Arabidopsis PHYB. We examined PHYB
sequences in 33 A. thaliana individuals and in the close relative
Arabidopsis lyrata. From 14 nonsynonymous polymorphisms, we
chose 5 for further study based on previous QTL studies. In a larger
collection of A. thaliana accessions, one of these five polymor-
phisms, I143L, was associated with variation in red light response.
We used transgenic analysis to test this association and confirmed
experimentally that natural PHYB polymorphisms cause differen-
tial plant responses to light. Furthermore, our results show that
allelic variation of PHYB activity is due to amino acid rather than
regulatory changes. Together with earlier studies linking variation
in light sensitivity to photoreceptor genes, our work suggests that
photoreceptors may be a common target of natural selection.

hypocotyl � linkage disequilibrium � natural variation

P lants use three types of photoreceptors to survey their light
environment: phytochromes for red and far-red light and

cryptochromes and phototropins for blue light (1). Changes in
the light environment sensed through these receptors affect
many aspects of plant development. The phytochrome family in
Arabidopsis thaliana consists of five genes, PHYA-PHYE, with
partially redundant developmental functions (2–10). At the
seedling stage, phytochromes regulate emergence from the soil.
Seedlings that germinate underground or in the dark cannot
photosynthesize and extend their hypocotyl upwards toward the
soil surface. Light is a cue that the soil surface has been reached;
light perception, therefore, causes inhibition of hypocotyl elon-
gation and the beginning of photoautotrophic growth. The
primary photoreceptors for this response are PHYA in far-red
light, PHYB in red light, and cryptochromes in blue light. Later
in development, plants use PHYB, PHYD, and PHYE to detect
neighbor proximity by monitoring the ratio of red to far-red
(R/FR) light (4, 5). Because chlorophyll absorbs red but not
far-red light, low R/FR ratios indicate close neighbors or canopy
shade. Neighbor perception can induce a variety of competitive
responses, including stem and leaf petiole elongation and early
reproduction, collectively called the shade-avoidance syndrome.
Notably, the proper response to light depends on whether or not
the plant is native to that environment. For example, the ability
of low R/FR to induce shade-avoidance responses is reduced in
species and populations normally growing under shady condi-
tions (11), an example of adaptive variation in phytochrome-
mediated responses (12, 13).

Phytochromes exist in two photoconvertible forms: Pr, an
inactive red-light absorbing form, and Pfr, the active far-red light
absorbing form. In sunny conditions, which are characterized by
high R/FR ratios, most phytochrome is in the active Pfr form.
Shade causes a decrease in Pfr and a concomitant induction of
shade-avoidance responses. Phytochromes signal through a web
of downstream factors, including a family of related bHLH
transcription factors, the PIFs and PILs (14), GIGANTEA (GI)
(15), and the bZIP transcription factors HY5 and HYH that
integrate signals from multiple photoreceptor pathways (16).
Light-regulated protein degradation, often mediated by the E3
ubiquitin ligase COP1 and associated proteins (17), also is
important for phytochrome signaling.

An evolutionary question of considerable interest is how
selection acts on the different components of metabolic and
developmental pathways. For example, in the case of the antho-
cyanin biosynthesis pathway, which is responsible for producing
flower color pigments, it has been found that genes acting later
in the pathway evolve more quickly than those upstream (18, 19).
Interestingly, for interpretation of light signals, a number of
changes have been found at the top of the pathway in the
photoreceptors themselves. For example, reduced FR sensitivity
of the A. thaliana strain Lm-2 was traced to a single amino acid
change in PHYA that reduced photoconversion and autophos-
phorylation (20). Cloning of an A. thaliana f lowering time
quantitative trait loci (QTL) revealed that it was caused by an
amino acid substitution that stabilized the CRY2 protein,
thereby increasing activation of the photoperiod pathway (21).
Variation in PHYC is responsible for differences in both flow-
ering time and hypocotyl elongation among A. thaliana acces-
sions (22), and a naturally occurring deletion in PHYD increases
stem elongation (3). More generally, phytochrome genes evolve
more quickly than the average plant gene (23), and there is
evidence for positive selection early in the diversification of
PHYA (24).

Although phenotypic variation due to polymorphisms in A.
thaliana PHYA (20), PHYC (22), and PHYD (3) has been
described, PHYB plays by far the largest role for white-light
responses in standard laboratory strains. In addition, PHYB is a
candidate for a white and red light QTL in A. thaliana (25), for
a flowering time QTL in tomato (26), and a bud set QTL in
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poplar (27, 28). Here, we examine the effect of natural variation
in PHYB on differential light response in A. thaliana and find that
polymorphisms in PHYB proteins contribute to variation in A.
thaliana light sensitivity.

Results and Discussion
To determine whether polymorphisms in PHYB could contribute
to variation in light response, we began by examining PHYB
sequence diversity in Arabidopsis. We sequenced the PHYB gene
from Ler and Cvi, two accessions known to segregate for
LIGHT2, a QTL coincident with PHYB (25); 18 additional A.
thaliana accessions; and the sister species A. lyrata. In our
sequence analysis, we also included 14 A. thaliana accessions for
which PHYB sequences were available in GenBank (29). In A.
thaliana, we found 65 synonymous and 14 nonsynonymous
polymorphisms. An additional 15 polymorphisms were identi-
fied in introns. Of the 14 nonsynonymous sites, 7 differentiated
Ler and Cvi (Fig. 1 A and B). A maximum likelihood phyloge-
netic tree revealed three well supported clades: one clade of six
accessions contained the standard laboratory strains Col and
Ler, which originate from Central Europe; another one included
five Russian and Central Asian accessions; and the third clade
comprised of four Spanish accessions (Fig. 1B). The remaining

18 accessions grouped into a large, poorly resolved clade. In
general, the pattern seen is consistent with previously reported
genomic patterns of isolation by distance (30, 31). A similar tree
was obtained by using neighbor-joining methods.

Because the 14 nonsynonymous polymorphisms all fell outside
the functionally important GAF and PHY domains (Fig. 1 A), we
asked whether this pattern could be explained by selection. We
modeled sequence evolution, using maximum likelihood meth-
ods to assess whether substitution rates differed between the
PHY and GAF domains, which are important for chromophore
binding and photoconversion (32), and the rest of the protein.
For codon position 3, where polymorphisms are usually silent,
there was no evidence for different rates (P � 0.95). However,
the substitution rate for codon positions 1 and 2, where poly-
morphisms frequently cause amino acid changes, was signifi-
cantly lower in the GAF and PHY domains (P � 0.009)
compared with the rest of the protein. We only found evidence
for depressed substitution rates at positions 1 and 2, suggesting
that the reduced sequence diversity in the PHY and GAF
domains is due to selection on protein sequence and function,
rather than local variation in mutation rate.

The observed distribution of nonsynonymous sites might
reflect that the GAF and PHY domains are more highly
constrained than the rest of the protein. However, we found no
evidence that mutations induced in the laboratory and known to
compromise PHYB function unevenly affected the PHY and
GAF domains: 12 of 29 missense mutations are in the GAF or
PHY domains (32; P � 0.4554, Fisher’s exact test, comparing
mutation rate in the GAF and PHY domains with the rest of the
protein). Thus, with respect to overall activity, the GAF and
PHY domains are unlikely to be more highly constrained than
the rest of the protein. An alternative explanation is that the
observed pattern is a result of adaptive evolution, indicating that
domains other than the PHY and GAF are better targets for
selection. We used the McDonald–Kreitman test (33) to look for
evidence of nonneutral selection. Although there is an excess of
nonsynonymous polymorphisms that are fixed between species
compared with ones that segregate within species, this excess is
not significant [supporting information (SI) Table 1; P � 0.26],
so the underlying cause of the observed substitution pattern
remains unresolved.

To examine whether the differential distribution of polymor-
phic sites has persisted over a greater evolutionary distance, a
phylogenetic shadowing (34) approach was taken. Using
eShadow (35), both divergence threshold (DT) and hidden
Markov model islands (HMMI) methods were used to identify
conserved regions in four PHYB protein sequences from the
Brassicales and 16 further eudicot sequences available in Gen-
Bank. Within the Brassicales, the HMMI algorithm predicted
conservation in regions spanning most of the P2/PAS, GAF, and
PHY domains (Fig. 2), with one interesting exception, an �50-aa
region in the center of the GAF domain. This less conserved
region corresponds to the portion of the GAF domain in
bacterial phytochrome that contributes to the light-sensing knot
structure (36). Compared with the HHMI method, the DT
approach identified a slightly smaller conserved region from the
C-terminal third of the P2/PAS domain to approximately the first
50 aa of the PHY domain, again excluding the light-sensing knot
region in the GAF domain. Using eudicot sequences, similar
patterns of conservation were seen with both the DT and HMMI
models (SI Fig. 6). In these more divergent sequences, conser-
vation is limited to the GAF domain excluding the light-sensing
knot and the N-terminal end of the PHY domain. In summary,
the patterns over longer time scales are predictive for the
variation seen within A. thaliana, suggesting that the PHY and
GAF domains are the most slowly-evolving domains during
evolution. That the GAF contribution to the phytochrome knot
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is not conserved suggests that primary sequence may not be a
particularly important determinant for this structural feature.

We next asked whether any of the observed sequence variation
could impact PHYB activity. Association or linkage disequilib-
rium (LD) mapping uses historical recombination events in
natural populations to associate polymorphisms with phenotypic
variation (37). We used this technique to address whether any of
the amino acid polymorphisms between A. thaliana accessions
Ler and Cvi are associated with natural variation in light
response. A panel of 140 accessions that had been phenotyped
for seedling light responses (20) was genotyped for the five
nonsingleton polymorphisms that distinguish Ler and Cvi. A
whole-genome survey of LD in A. thaliana has shown that
haplotype blocks are typically gene-sized (38). Consistent with
this finding, there is strong LD across the PHYB gene (Fig. 3).
Polymorphisms 1, 3, and 12 were specifically found to be
associated with differences in hypocotyl elongation in red light
(P � 0.01, P � 0.005, and P � 0.05, respectively; Fig. 4). Red light
is precisely the condition where variation in PHYB would be
most easily detected, suggesting that these associations are
meaningful.

Because of the potentially confounding effects of population
structure (39), the PHYB association can only be suggestive of
being causal for differential light response across accessions.
Therefore, we decided to compare the function of PHYB-Ler and
PHYB-Cvi experimentally. We first asked whether differences in
PHYB activity (if any) would be more likely due to coding or
regulatory changes. Three findings suggested that regulatory
differences might not be important. First, protein blots did not
show any obvious differences in PHYB levels among accessions
(data not shown). Second, an analysis of published microarray
data (40) revealed that PHYB mRNA levels are similar across

accessions, with no significant difference between Ler and Cvi
(P � 0.8), and that there was no correlation between PHYB
mRNA levels and hypocotyl elongation (Fig. 5 A and B). Third,
an eQTL study that used microarrays to examine expression
differences in Ler, Cvi, and a derived mapping population found
no evidence for differential PHYB expression (41). Therefore,
we concluded that if PHYB was a source of variation in light
sensitivity, then amino acid changes, rather than regulatory
polymorphisms, between PHYB-Ler and PHYB-Cvi were most
likely the cause.

To examine possible differences in protein activity, we linked
PHYB cDNAs from both Ler and Cvi to the constitutive Cauli-
f lower Mosaic Virus 35S promoter (35S), uncoupling PHYB
function from any possible promoter differences. We trans-
formed the null mutant phyB-9, which has greatly reduced light
sensitivity and tall hypocotyls. Based on the allelic effects of the
LIGHT2 QTL (25) and our association mapping results,
35S::PHYB-Ler was expected to produce a more active PHYB
than 35S::PHYB-Cvi. Indeed, hypocotyls of phyB-9
35S::PHYB-Ler plants were significantly shorter than those of
phyB-9 35S::PHYB-Cvi (P � 0.008 for T1 generation, and P �
0.0008 for T2 generation plants; Fig. 5C), indicating that PHYB-
Cvi confers less light responsiveness than PHYB-Ler in a phyb-9
(Col) background. It is possible that this difference is due to
genetic interactions between the Col background and the dif-
ferent PHYB alleles. However, because PHYB-Cvi is associated
with reduced light response across accessions and no loci were
found to be epistatic with LIGHT2 in Ler X CviQTL analysis, it
is more likely that the reduced response of PHYB-Cvi is inherent
to the protein. In summary, PHYB polymorphisms are likely
responsible for the significant associations across accessions and
at least partially responsible for the LIGHT2 QTL.

We used regression analysis to determine which of the three
polymorphisms identified as significant in association mapping
are most likely to be responsible for differences in PHYB
activity. We regressed the polymorphisms both individually and
in combination against the light responses. This process identi-
fied polymorphism 3 as the strongest candidate for the causative
change. Specifically, models that included polymorphism 3 in
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combination with either 1 or 12 fit the data significantly better
than models with polymorphism 1 or 12 alone. However, the
combination of polymorphisms 3 plus 1 or 3 plus 12 did not

provide any improvement over polymorphism 3 as the only
explanatory variable (SI Table 2). Polymorphism 3 falls within a
moderately conserved region of Brassicaceae PHYB. Compar-
ison of the A. thaliana PHYB and PHYA sequences with the
bacterial phytochrome DrBphP sequence indicated that this
polymorphism lies within the P2/PAS domain of the photosen-
sory core (36). By superimposing secondary structural elements
of bacterial phytochrome on Arabidopsis PHYB sequence, we
found that polymorphism 3 was predicted to be on the surface
in a span of three �-helices, away from the chromophore binding
pocket. This surface is speculated to be involved in protein–
protein interactions (36), suggesting a possible mode-of-action
for polymorphism 3.

Determining the genes responsible for natural variation and
identifying the underlying QTL remains an important challenge
(42). We have shown that amino acid polymorphisms in the
major photoreceptor for red light contribute to variation in
photomorphogenesis across A. thaliana accessions. There is a
long-standing debate whether developmental variation is pri-
marily due to changes in gene expression or in protein activity.
Our findings with PHYB, together with those for PHYA, PHYC,
and CRY2 (20–22), weigh in on the side of protein changes.
Second, it has been proposed that in some pathways variants are
more likely to be found downstream, rather than upstream,
because of relatively relaxed constraints on downstream genes
(18, 19) or selective sweeps acting on upstream genes (43). Here,
we report that there is functional variation at the top of the
PHYB pathway, complementing previous studies of other light-
response pathways that also pointed to the photoreceptors
themselves being responsible for variation in light sensing (20–
22,44). Similarly, another study has shown evidence for selection
upstream in a floral development pathway (43).

Changes in PHYA and CRY2 are limited to individual acces-
sions (20, 21), making it difficult to know whether they confer
adaptive advantages or are simply only mildly deleterious mu-
tations that have not yet been purged from nature. In contrast,
alternative variants that cause differential light sensitivity are
more common in the case of PHYC (22) and PHYB (this work),
suggesting more strongly that they may be important in adap-
tation. If any of these changes are indeed adaptive, it could
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indicate that overall light sensitivity rather than a particular
downstream process is more prone to selection. It will therefore
be interesting to study the molecular evolution of the different
light-sensing pathways as comprehensive whole-genome varia-
tion data become available.

Materials and Methods
DNA Sequencing and Assembly. Detailed sequencing methods are described in
SI Text. All polymorphisms were confirmed in multiple sequencing reads.
PHYB sequence for Arabidopsis lyrata subspecies lyrata was assembled from
whole genome shotgun reads, using the Staden package (45). Sequences have
been deposited in GenBank (29) as accession nos. EU352775–EU352793.

Phylogenetic Analysis. PHYB sequences were obtained either from the above
sequencing or from GenBank (SI Table 3) and were aligned with ClustalX (46,
47). PHYLIP (48) was used to bootstrap the dataset 100 times, determine
maximum likelihood and neighbor joining trees, and find majority rule con-
sensus trees. PAUP* software, Version 4.0b10 (49), was used to determine
whether there were different rates of nucleotide substitution in the P2/PAS,
GAF, and PHY domains relative to the rest of the protein within A. thaliana by
comparing different substitution models, as described in SI Text.

Phylogenetic Shadowing. Sequences obtained from GenBank (SI Table 3) were
used as input for eShadow (http://eshadow.dcode.org). HMMI analysis of
Brassicales used the following probabilities: eS � 0.85, eF � 0.80, and T � 0.2.
Brassicales DT analysis used a maximum percent variation of 5% and a mini-
mum length of 80 aa. For eudicot sequences, HMMI analysis used probabilities
of eS � 0.75, eF � 0.60, and T � 0.1, whereas DT analysis used a maximum
percent variation of 20% and a minimal length of 80 aa.

Association Mapping. Simple sequence length polymorphism, cleavable am-
plified polymorphic sequence (CAPS) and derived CAPS assays were designed
and used to genotype �100 A. thaliana accessions for the five nonsingleton
nonsynonymous polymorphisms between Ler and Cvi (SI Tables 4 and 5). A
permutation-based approach was used to determine association with pheno-

typic differences. First, a t statistic for correlation between genotype and
phenotype was calculated for each polymorphism. To establish the signifi-
cance of these associations, 10,000 permuted datasets were analyzed, and, for
each permutation, the highest t statistic across all polymorphisms was re-
corded. An association was deemed significant if its t statistic was larger than
the appropriate quantile t statistic from the permuted dataset.

LD Analysis. Ninety-two SNPs were identified from a MAFFT multiple sequence
alignment of 33 genomic PHYB sequences (SI Tables 3 and 6). One was
removed from the analysis because of incomplete data. The LDheatmap
package (50) in the R statistical environment (51) was used to determine and
plot pairwise linkage disequilibrium, using allelic correlation (r2).

Transgenic Analysis. The null phyB-9 allele was transformed with PHYB-Cvi and
PHYB-Ler as described in SI Text. Two independent transformations were
performed with a total of 483 PHYB-Cvi and 662 PHYB-Ler T1 transformants
assayed in nine independent experiments. Significance was determined by
using a linear mixed-effects model with PHYB construct as a fixed effect and
transformation plus experiment (within transformation) as random effects. To
confirm these results, kanamycin resistant T2 progeny from 40 PHYB-Cvi and
44 PHYB-Ler T1 plants were analyzed in two independent experiments. Ex-
periment was not a significant factor, so the mixed-effects model contained
PHYB construct (fixed effect), plate (random effect), and T1 parent (random
effect).

Microarray Analysis. Microarray data (40) were imported into R (51) and
Bioconductor (52) and normalized by RMA (53). Because we were only que-
rying a single gene, a simple t test was used to determine whether there was
evidence for differential PHYB expression between Ler and Cvi (n � 2 and 3
replicates, respectively).
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