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Although mature dendritic cells (DCs) are potent initiators of
adaptive immune response, immature steady-state DCs contribute
to immune tolerance. In this study, we show that ex vivo splenic
DCs are capable of inducing conversion of naive CD4* T cells to
adaptive Foxp3+CD4™* regulatory T cells (aTreg) in the presence of
TGF-B. In particular, when compared with splenic CD8«a~ DCs, the
CD8a™* DC subset were superior in inducing higher frequencies of
conversion. This was not attributable to the difference in basal
level of costimulation, because deficiency of CD40 or CD80/86
signaling did not diminish the differential induction of Foxp3.
Conversion was regulated by DC maturation status. Further in-
sights into the molecular mechanisms of conversion were gained
by analyzing the contribution of several costimulatory and coin-
hibitory receptors. Costimulatory signals through GITR suppressed
conversion, whereas coinhibitory signaling via programmed death
1ligand (PD-L1) but not PD-L2 was required for conversion. Ex vivo
PD-L1~/~ DCs failed to support Foxp3 induction in the presence of
TGF-B. In vivo blocking PD-L1 signaling abolished conversion in a
tumor-induced aTreg conversion model. Collectively, this study
highlights the cellular and molecular parameters that might be
exploited to control the de novo generation of aTregs and periph-
eral tolerance.

dendritic cells | immune suppression | costimulation

aturally occurring CD4*CD25*Foxp3™* regulatory T cells

(nTregs) represent 5-10% of peripheral CD4 T cells, and
are critical regulators of immune tolerance (1). The transcription
factor Foxp3 is a specific lineage marker for nTregs and is both
necessary and sufficient for Treg function (2).

It is established that naive CD4*CD25 Foxp3~ T cells can
convert into Foxp3™ regulatory T cells (aTregs). In vitro con-
version occurs in the presence of TGF-B (3), typically under
conditions of low costimulation (4, 5). This process requires
cytotoxic T lymphocyte antigen (CTLA)-4-mediated negative
costimulation (6). The aTregs resemble nTregs both phenotyp-
ically and functionally (7-9). In vivo, the extrathymic induction
of Foxp3™ aTregs from naive CD4* T cells occurs upon subim-
munogenic antigen stimulation (10-13). Consistent with in vitro
studies, TGF-p signaling and B7 costimulation are required for
peripheral conversion (13, 14).

The Foxp3GFP reporter mice allow the isolation of naive
CD4*Foxp3GFP T cells at high purities (2). By breeding onto
a T cell antigen receptor (TCR) Tg background, one can
quantify the differentiation of antigen-specific effector T cells
to Foxp3GFP* aTregs and monitor the steady-state conver-
sion in response to soluble antigen, antigen derived under
inflammatory conditions, or pathological conditions, tumor-
derived antigens, etc. Indeed, previous studies have suggested
that tumors could induce CD25*Foxp3™* aTregs from naive
CD4 T cells in the absence of thymus (15, 16). The cellular and
molecular basis for tumor-induced conversion, however, is not
well understood.

Because resting DCs are constantly presenting tissue or
tumor antigens under subimmunogenic conditions, it is im-
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perative to understand their potential roles in the peripheral
tolerance as well as tumor-induced tolerance. One of the key
questions is whether and how DCs regulate the de novo
induction of Foxp3* aTregs. To this end, we examined the
capacity of ex vivo splenic DC subsets to induce Foxp3
expression in the presence of TGF-B. Our results show that
among the splenic DC subsets, the CD8a* DCs exhibit a
superior capacity to drive conversion. Multiple costimulatory
and coinhibitory molecules have been identified to nonredun-
dantly regulate this process. In particular, programmed death
1ligand (PD-L1) expression on DCs is required for conversion
not only in vitro but also in a tumor-induced in vivo conversion
model. Collectively, this study has illuminated the cellular and
molecular parameters that regulate the de novo generation of
Foxp3+ aTregs, which might be exploited to prevent tumor-
induced immune tolerance.

Results

Ex Vivo Splenic CD8a* DCs Are Superior to CD8«a~ DCs for the
Induction of Antigen-Specific Foxp3+ Adaptive Tregs. Although it
has recently been reported that splenic DCs as a whole popu-
lation can differentiate Foxp3™* aTregs in the presence of TGF-
and that the induced aTregs could suppress autoimmune rejec-
tion or antitumor immunity (17, 18), the efficacy of different DC
subsets in this process has not been evaluated.

To determine the influence of splenic DC subsets on aTreg
differentiation, purified DC subsets, namely the CD8a* or
CD8a~ CD11chieh DCs, were tested for their capacity to induce
Foxp3 expression in naive CD4* T cells in vitro. OTII TCR
transgenic mice were bred onto the Foxp3GFP knockin mice
(2). Naive OTII CD4*Foxp3GFP~ T cells were electronically
sorted to >95% homogeneity and used in vitro and in vivo to
quantify the conditions that control their conversion to
Foxp3GFP™ cells.

After in vitro culture for 5 days with either the CD8a™ or
CD8a~ CD11chigh splenic DCs in the presence of antigenic
ovalbumin (OVA) peptide and TGF-g, the induction of Foxp3
in OTII CD4" T cells was measured by GFP expression by
using flow cytometry (Fig. 14). When compared to CD8a~
DCs, CD8a* DCs were superior inducers of Foxp3 expression
in the presence of TGF-B (Fig. 1b). This more efficient
induction was also seen when the whole OVA protein was
provided as antigen (data not shown). The induction of Foxp3
expression by both DC subsets requires TGF-B. To compare
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Fig. 1.  Exvivo splenic CD8a" DCs induce Foxp3 expression more efficiently

than CD8a~ DCs in the presence of TGF-B. Freshly isolated splenic DC subsets
(CD8a* CD11chigh and CD8a~ CD11chigh) were cocultured with naive OTII CD4*
T cells (CD25~Foxp3GFP™) in the presence of OVA3;3-339 peptide (500 ng/ml)
and increasing amounts of TGF-B1. Foxp3GFP expression was analyzed on day
5 by flow cytometry. The total cell number was counted, and the number of
Foxp3™ cells was calculated and plotted. (A) Representative FACS plots show-
ing Foxp3GFP induction among OTII CD4™ T cells. (B-C) The percentage and
absolute number of Foxp3GFP* cells per well after 5 day culture. (D) CD8a~
DCs were mixed with CD8a™ DCs at the indicated ratios to stimulate OTII CD4
T cellsin the presence of TGF-3 (2 ng/ml). The total number of DCs per well was
kept constant. Foxp3GFP expression was analyzed as above. All conditions
were performed in duplicate wells and reported as means = SEM. Shown are
representative results of three independent experiments.

the ability for each DC subset to induce clonal expansion, the
number of OTII cells was quantified at the end of the assay.
Although CD8a™ DCs induced modestly better proliferation
of total CD4" T cells (unpublished data), the number of
induced Foxp3™" cells was still greater with the CD8a" DC
culture (Fig. 1C). Because only 20-25% splenic DCs are
CD8a™, we evaluated the impact of CD8«~ DCs on conversion
when mixed with CD8a™ DCs at different ratios (Fig. 1D). At
a given TGF-B concentration (2 ng/ml), conversion induced by
CD8a™ DCs was 16.45% (*1.65), whereas by CD8a~ DCs was
4.25% (£0.13). The presence of CD8a~ DCs, even as low as
12.5% (7:1 ratio of CD8a"/CD8a~ DCs), reduced conversion
significantly to 10.7% (=£0.10). Increasing the amount of
CD8a~ DCs continued to reduce conversion. Therefore,
CD8a~ DCs actively interfered with conversion, and their
effect was dominant when present at physiological percentages
(=~1:4 ratio of CD8a*/CD8a™ DCs).

To assess the kinetics of Foxp3 induction with cell cycle
progression, we labeled OTII CD4* T cells from the nonreporter
background with 5(6)-carboxyfluorescein diacetate, succinimi-
dyl-ester (CFSE) and tracked their proliferation and Foxp3
expression over time (Fig. 24). More efficient Foxp3 induction
by CD8a™ DCs than by CD8«a~ DCs was seen as early as 48 h
(14% vs. 3.17% before cell division, 2.97% vs. 1.55% during first
division). At later time points (48 h-96 h), both DC subsets were
able to drive cell division at similar rates, as shown by the similar
CFSE peak profile (Fig. 2 B and C), but the CD8a* DCs
continued to induce a higher frequency of Foxp3* T cells than
CD8a~ DCs (Fig. 2D). The converted Foxp3™ cells divided at
similar rate as Foxp3~ cells, as judged by their overlapping CFSE
dilution profiles (Fig. 2 B and C). Thus, splenic DCs, especially
the CD8a™ DCs, cannot only efficiently drive the conversion of
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Fig. 2. Kinetics of Foxp3 induction and proliferation of DC-induced Foxp3*
cells. Naive OTIl CD4 T cells from nonreporter background were sorted as
VB5highCD25-, labeled with 5 uM CFSE, and cultured with splenic DC subsets
in the presence of OVA3;3-339 peptide (500 ng/ml), IL-2 (50 units/ml), and TGF-B
(2 ng/ml). Foxp3 expression was analyzed at 48 h (A), 72 h (B), and 96 h (C). The
CFSE dilution profiles for Foxp3* (blue) and Foxp3~ (red) cells were overlaid.
The percentage of Foxp3* cells at each time point was plotted (D). Shown are
representative results of two independent experiments.

naive CD4* T cells to Foxp3* aTregs but also induce their
efficient expansion.

To confirm and compare the suppressive function of induced
Foxp3* CD4* T cells from DC subsets coculture, we performed
in vitro suppression assays by using induced Foxp3* OTII cells
that were sorted based on Foxp3GFP expression. We routinely
obtained =95% Foxp3* purity after sorting. CFSE-labeled,
congenically mismatched naive OTII CD4 T cells were used as
responder T cells and were stimulated with splenic antigen-
presenting cell (APCs) and antigenic peptide (supporting infor-
mation (SI) Fig. S1). At higher suppressor:effector ratios, the
proliferative response of naive OTII T cells were equivalently
suppressed by induced Foxp3* OTII cells from both CD8«™* and
CD8a~ DC coculture. This suppression diminished at lower
number of Foxp3™* cells.

Studies using an APC-free in vitro system have suggested
that strong costimulation provided by extensive CD28 signal-
ing inhibits Foxp3 induction (5). Similarly, when ex vivo splenic
DCs were activated with an agonistic anti-CD40 antibody or
the TLR4 ligand LPS, Foxp3 induction was diminished [i.e.,
from 11.10% (*1.00) to 6.95% (*0.74) and 4.15% (=0.35),
respectively, with the CD8a* DC culture] (Fig. 34). Interest-
ingly, a synergistic effect can be seen between anti-CD40 and
LPS, both of which were thought to independently induce DC
maturation and up-regulate costimulatory molecules. On the
other hand, the neutralizing antibody against CD40 ligand
(CD154) enhanced Foxp3 expression significantly, indicating
that certain degree of DC maturation occurred, presumably
through the interaction with CD154 expressed on activated T
cells.

To further determine how DC maturation and costimulation
during in vitro culture could regulate the induction of Foxp3
expression in T cells, we examined DC subsets from CD40~/~
mice and CD80/86~/~ mice (Fig. 3 B and C). Consistent with
the inhibitory role of costimulation on conversion, both
CD40~/~ and CD80/86 '~ DCs induced greater frequencies of
Foxp3™ T cells than WT DCs. However, the CD8a* and
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Fig. 3. Conversion is regulated by DC maturation status. (A) Conversion
cultures with naive OTII CD4 T cells (CD25 Foxp3GFP~) and splenic DC subsets
were set up as before in the presence of TGF-B (2 ng/ml) and IL-2 (50 units/ml).
Antibodies («CD40 or aCD154, 5 ng/ml) or LPS (5 ng/ml) were added as
indicated. (B and C) DC subsets were purified from CD40~/~ mice (B) or
CD80/86 '~ mice (C) and used in the conversion assay. The percentage of
Foxp3™ cells was analyzed on day 5 and plotted. All conditions were per-
formed in duplicate wells and reported as means + SEM. Shown are repre-
sentative results of three independent experiments.

CD8a~ DC subsets maintained their differential capacity to
induce conversion.

Multiple Coinhibitory Pathways Regulate DC-Mediated Foxp3 Induc-
tion in Naive CD4* T Cells in Vitro. To gain additional insights into
the molecular regulation of DC-mediated aTreg differentiation,
we evaluated the roles of multiple costimulatory and coinhibi-
tory molecules. These include B7/CD28 superfamily members
CTLA-4 and programmed cell death (PD)-1, as well as the
TNF/TNFR superfamily member glucocorticoid-induced TNF
receptor (GITR).

The functional involvement of these costimulatory mole-
cules was studied by using blocking antibodies to ligands or
agonistic antibodies to receptors. Both PD-L1 and PD-L2 are
ligands for PD-1 (19, 20). When unfractionated splenic DCs
were used as APCs, blocking antibodies against both CTLA-4
and PD-L1 inhibited Foxp3 induction (from 1.46 * 0.11% to
0.37 £ 0.14% and 0.34 = 0.01%, respectively), whereas
aPD-L2 antibody was without effect (1.27 + 0.26%) (Fig. 44).
The agonistic GITR antibody also abolished conversion
(0.21 = 0.01%). Similar results were obtained when purified
CD8a* and CD8a~ DC subsets were used (Fig. 4B). These
data confirmed previous studies regarding the role of B7/
CTLA-4 axis in conversion (6, 14) but also indicated the
involvement of additional molecules, namely PD-L1-mediated
coinhibitory signals and GITR-mediated costimulatory signals
in Foxp3 induction. Antibodies against other TNF/TNFR
family receptor ligands (i.e., 4-1BB and CD30) were also
tested. but were without any effect (unpublished data).

PD-L1 is broadly expressed on many cell types (19), as well
as on both CD8a* and CD8a~ DC subsets (ref. 21 and data
not shown). Unlike the PD-17/~ mice, the PD-L1~/~ mice did
not develop overt spontaneous autoimmune diseases, except a
phenotype of compromised fetal-maternal tolerance (22, 23).
In addition, no intrinsic defect in DC maturation or function
has been found in the absence of PD-L1 (24). We also analyzed
DC maturation/activation status from the knockout mice but
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Fig. 4. Multiple costimulatory and coinhibitory pathways regulate conver-

sion in vitro. (A) Unfractionated splenic DCs were cultured with naive OTII CD4
T cells (CD25-Foxp3GFP™) in the presence of TGF-B (2 ng/ml). Antibodies (5
ng/ml) against PD-L1, PD-L2, CTLA-4, GITR, or control rat Ig were added in the
beginning of the culture. (B) Conversion cultures were set up as in A but with
the use of purified CD8a* and CD8a~ DC subsets. (C) PD-L1 expression on DCs
is required for the induction of Foxp3. WT or PD-L1~/~ splenic DC subsets were
used as APCs in conversion cultures. The percentages of Foxp3™ cells were
analyzed on day 5 and plotted. All conditions were performed in duplicate
wells and reported as means = SEM. Shown are representative results of three
to five independent experiments.

did not find significant changes in the expression of CD80,
CD86, class Il MHC, or CD40 when compared to age-matched
WT mice (data not shown). To confirm that PD-L1 expression
on DCs but not on activated CD4 T cells is required for
conversion, we isolated PD-L1~/~ DCs and examined their
ability to induce conversion in vitro. Consistent with the results
from antibody treatment, PD-L1~/~ DC subsets were severely
impaired in their ability to induce conversion in the presence
of TGF-B (Fig. 4C). These data suggest that PD-L1-mediated
coinhibitory signals are critical for the induction of Foxp3™
aTregs.

PD-L1 Signaling Is Required for Tumor-Induced Conversion in the
Periphery. Given the pronounced involvement of PD-L1 in
aTreg conversion in vitro, its role in vivo was addressed. We
have established a tumor system to examine the molecular and
cellular mechanisms of tumor-induced conversion. We used a
B16 melanoma tumor line that over-expresses chicken OVA as
a surrogate tumor antigen. Naive Foxp3~ OTII CD4 T cells
were isolated from the Foxp3GFP reporter mice and adop-
tively transferred into lightly irradiated, tumor-bearing mice.
Phenotypes of these cells in the tumor draining and contralat-
eral nondraining lymph node (dLN and ndLN), spleen, and
within the tumor infiltrating population (TILs) were analyzed
over time. When analyzed ~3 weeks after tumor challenge,
transferred OTII CD4 cells were detected mostly in the tumor
dLN, among which ~5-10% (8.09 * 1.36%, n = 12) converted
into Foxp3* cells (Fig. 5 4 and B). Similar percentage of
conversion was also detected in the spleen (6.93 + 0.96%, n =
12). Interestingly, significantly higher percentages of conver-
sion (68.65 = 5.59%, n = 11) were found within the TILs. This
indicated that the tumor microenvironment provided a favor-
able milieu that enhanced conversion. Very few OTII cells
(typically <0.001% of gated total CD4 T cells) were detected
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Fig. 5.

Tumor-induced conversion depends upon PD-L1 signaling. B1I60VA tumor cells (200,000) were inoculated on the right flank of irradiated mice. Naive

OTII CD4* T cells (1 X 10%) were adoptively transferred next day. Mice were analyzed when tumors reached =100 mm2. Cells from tumor dLN, spleen, and tumor
site were analyzed for Foxp3GFP expression among transferred OTII cells. Representative FACS plots for detecting OTII CD4* T cells from tumor dLN and tumor
tissues were illustrated in A. Percentages of conversion were summarized in B. The data were combined from four experiments. The average conversion efficiency
(mean = SEM) in tumor dLN was 8.09 + 1.36% (n = 12); in spleen, 6.93 = 0.96% (n = 12); and within tumor tissues, 68.65 * 5.59% (n = 11). (C) Conversion of
OTIICD4* T cellsin tumor dLN was inhibited by «CD40/LPS (0.64 = 0.10%, n = 6) and aPD-L1 treatment (0.53 = 0.15%, n = 9) but not by «PD-L2 treatment (6.37 +
1.13%, n = 6). The conversion in the control tumor B16 group was 0.11 = 0.03% (n = 4); in the no-treatment group, 4.90 + 0.75% (n = 9); and in the control
rat Ig-treated group, 4.55 =+ 0.81% (n = 6). (D) The conversion in the spleen and TILs was blocked by aPD-L1 treatment. The conversion in the spleen (n = 5) was
4.74 ~ 1.27% (notreat) and 0.23 + 0.11% («aPD-L1-treated); and in TILs (n = 6), 66.67 = 7.96% (notreat) and 1.12 = 0.98% («aPD-L1 treated). (E) Conversion in
the PD-L1~/~ mice was significantly reduced. The conversion in the tumor dLN was 5.123 + 0.78% (WT, n = 10) and 0.2585 =+ 0.083% (KO, n = 10); in the spleen,
6.01 = 0.59% (WT, n = 10) and 0.74 = 0.29% (KO, n = 10); and at the tumor site, 71.83 = 7.551% (WT, n = 6) and 9.414 = 6.905% (KO, n = 5). Unpaired Student’s

t tests was performed to obtain a P value. ***, P < 0.001.

in the tumor ndLN (unpublished data). Conversion required
the expression of OVA antigen, because control tumors that
did not express OVA failed to induce conversion (Fig. 5C).

CD8a* and CD8a~ DC subsets were also isolated from
tumor-bearing mice and tested in the in vitro conversion assay
(data not shown). Similar level of conversion was shown when
comparing naive and tumor DC cultures. Thus tumor develop-
ment did not abolish the differential ability of DC subsets to
induce Foxp3.

Surface phenotypes of converted cells were examined (Fig.
S2). Converted Foxp3* cells had a bimodal expression pattern of
CD25 and CD62L and expressed higher level of GITR than their
Foxp3~ counterparts. Relatively more converted aTregs within
tumor tissues were CD25Meh and CD62L'Y, indicating a more
effector cell phenotype than naive phenotype at the tissue sites.

Next, we sought to determine the molecular mechanisms in
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tumor-induced conversion. First, we treated tumor-bearing mice
with «CD40/LPS, which induced robust DC maturation. Con-
version at tumor dLN was abolished (0.64 = 0.10%, n = 6) (Fig.
5C). These data are in agreement with the in vitro results that DC
maturation abolishes their ability to support conversion; the data
are also consistent with the previous report in which conversion
induced by antigen targeting via DEC205 antibody is inhibited
by aCD40 treatment (13). The combined treatment of «CD40
and TLR agonist has been shown previously to induce potent
antitumor immune response in a B16 melanoma lung metastasis
model (25). Under the s.c. B16 model, however, such treatment
only marginally slowed down but did not prevent tumor growth
(data not shown).

The role of PD-L1 in tumor-mediated conversion was also
evaluated. By using the neutralizing antibody to block PD-1
signaling in tumor-bearing mice, we found that aPD-L1 sig-

Wang et al.
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nificantly delayed tumor growth, which is consistent with
previous studies showing the inhibitory role of PD-L1 in tumor
immunity (26-28) (Fig. S3). This inhibitory effect could also
be reversed by adoptive transfer of in vitro generated OTII
aTregs. To exclude the effect of tumor size on conversion, we
chose the antibody dose that allowed tumor to grow to the
comparable size as untreated control group and analyzed
conversion when tumors reached =100 mm?. Conversion was
blocked in the tumor dLN upon aPD-L1 (0.53 £ 0.15%, n =
9) but not aPD-L2 (6.37 = 1.13%, n = 6) treatment (Fig. 5C).
Similar reduction was seen in the spleen and TILs (Fig. 5D).
Consistent with the antibody blocking data, conversion was
significantly inhibited in PD-L1~/~ mice (Fig. 5E).

In conclusion, we have examined the cellular and molecular
mechanisms that regulate the de novo induction of Foxp3*
aTregs from naive CD4* T cells. We discovered the superior
ability of splenic CD8a™ DCs to differentiate Foxp3* aTregs.
DC-induced conversion requires TGF-B and the PD-L1 sig-
naling pathway and is regulated by DC maturation status.

Discussion

Although mature DCs are potent antigen presenting cells that
initiate primary immune responses, steady-state lymphoid
tissue DCs contribute to the peripheral tolerance (29). Re-
cently, it has been reported that splenic DCs are capable of
differentiating Foxp3* aTregs from Foxp3~ precursors, along
with TGF-p signaling (18). However, the contribution of DC
subsets, namely the CD8a* and CD8a~ DCs, has not been
determined. Resting splenic CD8a* DCs tolerize self-reactive
CDS8 T cells via continuous cross-presentation in the absence
of inflammation (30, 31). On the other hand, antigen targeting
to this DC subset by using DEC205 antibody resulted in the
antigen-specific CD4 T cell tolerance, manifested as deletion
and anergy, as well as induction of Foxp3* aTregs (13, 32, 33).
Because antigen targeting did not address whether CD8a™
DCs are not only sufficient but also necessary for the induction
of Foxp3* aTregs, we analyzed both CD8a* and CD8a~ DC
subsets ex vivo for their capacity to induce Foxp3 expression.
Our study has demonstrated that CD8a* DCs are superior to
the CD8a~ DCs for inducing Foxp3 in the presence of TGF-g,
whereas CD8a~ DCs not only are poor inducers for Foxp3 but
dominantly inhibit conversion when present together with the
CD8a™ DCs.

Further analysis on the molecular determinants for DC-
induced conversion revealed the critical role of PD-L1 signal-
ing. Because it has been shown that the major coinhibitory
CTLA-4/B7 axis is required for conversion (6, 14), it is
surprising to see another coinhibitory pathway playing a
nonredundant role. Our result, however, is consistent with the
role of its receptor PD-1 in peripheral tolerance (34). It has
been established that PD-L1 signaling negatively regulate T
cell response (35) plays essential roles in peripheral tolerance
(22,24, 40) and tumor-mediated immune suppression (26). We
have now extended the mechanisms of how PD-L1 contributes
to peripheral tolerance. By using the in vitro culture system, we
provide evidence that signaling through PD-L1 expressed on
DCs is required for the induction of Foxp3* aTregs. Further-
more, by using a tumor-induced in vivo conversion system, we
confirmed the requirement of PD-L1 on conversion of adop-
tively transferred naive CD4 T cells. Because PD-L1 is ex-
pressed by many cell types in addition to DCs, further studies
are needed to determine whether DCs are the critical antigen
presenting cells that are required for tumor-induced conver-
sion and whether non-DC expressing PD-L1 also contributes
to this process.

In addition to PD-1, PD-L1 also binds B7-1 (36). The specific
contribution of both receptors in PD-L1-mediated conversion
remains to be determined. Although overlapping roles for
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PD-L1 and PD-L2 in limiting CD4 T cell activation have been
indicated (24), we did not find the involvement of PD-L2 in
conversion process.

DC maturation leads to IL-6 secretion, which inhibits TGF-
B-induced Foxp3 expression (37). In addition, Th1/2 cytokines
IL-4 and IFN-vy inhibit conversion (38). We, thus, examined the
potential involvement of these cytokines in DC-mediated Foxp3
induction. Similar to the WT DCs, IL-6~/~ CD8a* DCs are
superior inducers for Foxp3 than IL-67/~ CD8a~ DCs (Fig.
S44). On the other hand, neutralizing antibodies of IL-4 and
IFNr enhanced conversion of both DC subsets, either from WT
or PD-L17/~ background (Fig. S4B). Thus, IL-6 and Th1/2
cytokines do not appear to be the effector molecules that
account for the differential induction of Foxp3 by DC subsets.

Previous studies by using a lymphoma model (15) and a
colon cancer model (16) have implicated natural and/or adap-
tive Tregs in tumor-mediated immune suppression. Our results
now have clearly implicated the role of PD-L1 in the differ-
entiation of aTregs. New strategies, thus, are emerging to allow
the selective manipulation of aTreg development in vivo. As
such, this study should provide useful insights for understand-
ing tumor-mediated immune evasion and provide strategies to
enhance anti-tumor immunity.

Materials and Methods

Mice. WT or CD40~/~, CD80/86~/~, and IL-6~/~ C57BL/6 mice were purchased
from The Jackson Laboratory. Foxp3GFP reporter mice were previously de-
scribed (2) and were provided by Alexander Rudensky (University of Wash-
ington School of Medicine, Seattle, WA). Foxp3GFP mice were bred onto OTII
CD4-Tg mice specific for chicken OVA peptide 323-339. PD-L1~/~ mice were as
described (22). All animals were maintained in a pathogen-free facility at
Dartmouth Medical School and were used between 6-8 weeks of age.

Abs and Reagents. Antibodies «CD40 (FGK-45), «CD154 (MR1), aCD28 (PV-1),
and aCTLA-4 (UC10-4F10-11) were purchased from Bioexpress. aPD-L1 (MIH6)
mAb was generously provided by Miyuki Azuma (Tokyo Medical and Dental
University, Tokyo, Japan) (39). aPD-L2 (TY25) antibody was generously pro-
vided by Mohamed H. Sayegh (Harvard Medical School). LPS (Sigma), recom-
binant human TGF-1 (R&D Systems), and human IL-2 (Peprotech) were used
at indicated concentrations.

Flow Cytometry. Flow cytometric analysis was performed on FACScan by using
CellQuest software (BD Bioscience). Data analysis was performed by using
FlowJo software (Treestar).

Cell Preparation. Total CD4 T cells were isolated from OT-Il TCR-Tg transgenic
mice bred onto the Foxp3GFP reporter background, following instructions in the
CDAT cell isolation kit (Miltenyi). Naive OTII CD4" T cells were obtained by FACS
sorting gated on VB5MahCD25-FoxP3~ (BD FACSAria). Purity typically exceeded
95%. In some cases, naive OT-Il CD4 T cells were sorted from nonreporter back-
ground by gating on Vg5"9hCD25-CD62LMigh, labeled with 5 WM CFSE (Molecular
Probes) for 10 min at 37°C, washed twice before being used in vitro. Spleen DCs
were purified from digested spleens [50 uwg/ml DNase | (Sigma) and 250 pg/ml
Liberase (Roche) at 37° for 30 min] by negative enrichment with CD19 microbeads
(Miltenyi) and anti-biotin microbeads bound with biotin-conjugated TCR anti-
body. CD8a* and CD8«a~ CD11chigh conventional DC subsets were obtained by
FACS sorting based on CD8« expression.

In Vitro Conversion Assay. A total of 50,000 naive OT-ll CD4 T cells were
cultured in 96-well plates with 30,000 purified splenic DCs. Replicate cultures
were in RPMI medium 1640 supplemented with 10% FBS, 10 mM Hepes, 50 uM
2-mercaptoethanol, penicillin/streptomycin/L-glutamine, 50 units/ml human
IL-2 (PeproTech), 250 ng/ml synthetic OVA3,3-339 peptide (Anaspec), and the
indicated concentration of human recombinant TGF-B1 (R&D Systems). Anti-
bodies against CTLA-4, PD-L1, PD-L2, GITR, CD40, and CD154 were added at 5
ng/ml when indicated. Cultures were analyzed on day 5 or according to a time
course.

Tumor-Induced Conversion. On day 0, mice were irradiated with 280 rad
before tumor inoculation and cell transfer. B16 or B160VA tumor cells
(200,000) were resuspended in HBSS and inoculated s.c. on the right flank.
Sorted congenically marked naive OTII CD4 T cells (1 X 108) were adoptively
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transferred intravenously on the same day. Tumor growth was monitored
every 3-4 days. Mice were killed when tumors reached 100-150 mm2. To
examine conversion, single-cell suspensions from tumor dLN (the inguinal
LN on the right flank), contralateral ndLN (the inguinal LN from left flank),
and spleen were obtained by mechanical dissociation and surface stained
for congenic marker and CDA4. Live cell dye 7AAD (eBioscience) was used to
exclude dead cells that gave autofluorescence. To examine the tumor
infiltrating cells, single-cell suspensions of tumors were fractionated on a
40/80% Percoll gradient (420 X g for 20 min). Infiltrating lymphocytes were
collected from the gradient interface and analyzed by flow cytometry. To
block conversion, intraperitoneal injection of «CD40 (100 pg) and LPS (50
wng) 1 day after tumor inoculation, or 100 ng antibodies («PD-L1 or «PD-L2
or control 1g) every other day was administered until tumors reached =100
mm?2.
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significant (*, P = 0.05; **, P < 0.01; ***, P < 0.001).

SI. Fig. S1 shows the suppressive function of DC-induced Foxp3* OTIl aTregs.
Fig. S2 depicts surface expression of CD25, CD62L, and GITR on converted
Foxp3™ OTII CD4* T cells in B160VA tumor-bearing mice. Fig. S3 shows the
inhibitory effect of PD-L1 antibody on tumor growth. Fig. S4 shows the roles
of IL6 and Th1/2 cytokines in conversion.
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