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Copy-number variants (CNVs) are an abundant form of genetic
variation in humans. However, approaches for determining exact
CNV breakpoint sequences (physical deletion or duplication bound-
aries) across individuals, crucial for associating genotype to phe-
notype, have been lacking so far, and the vast majority of CNVs
have been reported with approximate genomic coordinates only.
Here, we report an approach, called BreakPtr, for fine-mapping
CNVs (available from http://breakptr.gersteinlab.org). We statisti-
cally integrate both sequence characteristics and data from high-
resolution comparative genome hybridization experiments in a
discrete-valued, bivariate hidden Markov model. Incorporation of
nucleotide-sequence information allows us to take into account
the fact that recently duplicated sequences (e.g., segmental dupli-
cations) often coincide with breakpoints. In anticipation of an
upcoming increase in CNV data, we developed an iterative, ‘‘ac-
tive’’ approach to initially scoring with a preliminary model, per-
forming targeted validations, retraining the model, and then
rescoring, and a flexible parameterization system that intuitively
collapses from a full model of 2,503 parameters to a core one of
only 10. Using our approach, we accurately mapped >400 break-
points on chromosome 22 and a region of chromosome 11, refining
the boundaries of many previously approximately mapped CNVs.
Four predicted breakpoints flanked known disease-associated de-
letions. We validated an additional four predicted CNV breakpoints
by sequencing. Overall, our results suggest a predictive resolution
of �300bp. This level of resolution enables more precise correla-
tions between CNVs and across individuals than previously possi-
ble, allowing the study of CNV population frequencies. Further, it
enabled us to demonstrate a clear Mendelian pattern of inheri-
tance for one of the CNVs.

copy number polymorphism � human genome variation �
structural variants

I t was recently established that copy-number variants (CNVs),
kilobase- to megabase-sized deletions and duplications, are

abundant in healthy individuals (1–3) and cause a level of
genomic variation similar to that resulting from SNPs (4). CNVs
may play a major role in phenotypic variation (1–4). They
frequently overlap with genes (1–4) and were shown to be
associated with AIDS-susceptibility (5) and immunologically
mediated renal disease (6). However, compared with SNPs,
knowledge on CNVs is relatively limited: although �3,000
copy-number variable regions are currently described in the
Database of Genomic Variants (2, 4), almost all corresponding
breakpoint sequences are unknown (7). [At the time of analysis,
only for three CNVs (i.e., deletions) were breakpoint coordi-
nates available (8), all of which were based on an analysis of a
single individual involving large-scale DNA sequencing (3).]
Thus, it is usually unclear whether commonly observed deletions/
duplications at a particular locus are due to a single frequently
occurring CNV (recurring instances of a CNV with matching

breakpoints) or are due to several CNVs with distinct break-
points that overlap partially [the former, i.e., CNVs with shared
breakpoints that occur in �1% of the population are here
referred to as copy number polymorphisms (7) or CNPs]. This
lack of knowledge, a major obstacle for genotype-phenotype
association studies, is largely due to limits of technologies used
for CNV detection. Widely applied platforms for CNV identi-
fication across individuals are thought to achieve effective
resolutions in the tens to hundreds of kilobases [defining effec-
tive (or predictive) resolution as the median distance in base
pairs between predicted and actual breakpoints], resolutions
suitable for detecting the presence of many CNVs (1, 2, 4, 9) but
insufficient for precise breakpoint mapping. Thus, genes can be
assigned to CNVs only in a general and sometimes provisional
manner. Recently, three studies exploited data generated in the
course of extensive SNP genotyping efforts (10, 11): clusters of
apparent genotyping errors/inconsistencies were detected (12,
13), and haploid source material was hybridized against a
microarray platform designed for SNP genotyping (14), enabling
identification of many frequently occurring (mostly) smaller
deletions (median �10 kb), several of which overlap with
previously reported CNVs (1–3). However, duplications were
generally not considered, and no breakpoint sequences were
reported. Finally, Tuzun et al. (3) used a strategy involving
fosmid-paired-end sequencing to fine-map breakpoints in a
single individual (with estimated resolutions of 40 kb for dele-
tions and 8–40 kb for duplications). This led to many relevant
results, e.g., insertions including sequences not represented in
the human reference genome (3), and eventually DNA sequenc-
ing is likely to become the method of choice for detecting the
boundaries of CNVs, in a similar fashion as a comparison of
human genome assemblies has recently yielded numerous can-
didate CNV breakpoint sequences (15). Nevertheless, microar-
ray-based approaches are more economical and can be readily
applied at large scale, enabling the mapping of CNV breakpoints
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across many individuals and to associate these with phenotypic
information. Although the vast majority of CNV boundary
coordinates are unknown, their discovery and genome-wide
mapping will be valuable for genetics and genomics.

Recently, high-resolution comparative genome hybridization
(HighRes-CGH) has been developed (16, 17), a technology that
can detect signatures of CNVs at large-scale. Its underlying
principle, array comparative genome hybridization [(array)CGH
(18)], involves cohybridization of differentially f luorescent-
labeled genomic DNA from both an individual and a reference
to a microarray and can be applied cost-efficiently across many
samples. HighRes-CGH achieves an unprecedented resolution
owing to recent advances in high-density tiling microarrays
(19–21), allowing for an immense number of distinct oligonu-
cleotide probes per chip. For instance, when using HighRes-
CGH with a chromosome 22-wide 85-bp tiling path step size
(denoting its theoretical resolution; i.e., the median distance
between genomic regions specifically targeted by probes) in
conjunction with PCR, we recently managed to identify the
breakpoints of a 1.4-Mb disease-associated deletion that had
previously been characterized only at standard cytogenetic res-
olution (16).

However, HighRes-CGH data are hard to interpret in an ad
hoc fashion, and, as yet, no systematic computational approach
has been developed for mapping human CNVs at the level of
base pairs. Above all, the considerable enhancement in theoret-
ical resolution of HighRes-CGH comes with additional costs: the
noise level obtained from microarray readouts is high because of
the short hybridizing probes and the complexity of genomic
DNA, causing cross-hybridization. Novel computational ap-
proaches are thus required to benefit from the technology’s
theoretical resolution. In particular, tiling microarrays open new
avenues; their high-resolution data enable us to make use of
correlations between array signals and the actual nucleotide
sequence. Here, we present an approach for CNV breakpoint
identification that integrates signals from HighRes-CGH arrays
and nucleotide sequence statistically, facilitating the accurate
detection of CNV breakpoints. A thorough analysis of 10
individuals demonstrates its predictive power: �400 breakpoints
were mapped and, in eight instances, predicted coordinates are
confirmed through DNA sequencing.

Results
An Approach for Systematic CNV Breakpoint Discovery. Toward
resolving the current situation in which most CNV breakpoints
are unknown, we sought to develop an approach for systematic
breakpoint fine-mapping. In particular, accumulating evidence
suggested a prevalence of CNV breakpoints near/within recently
formed segmental duplications (SDs) in the genome (1, 2, 9, 22),
which represent potential mediators of CNV formation through
nonallelic homologous recombination. Thus, we reasoned that
this correlation may, in turn, be used to improve breakpoint
prediction. Indeed, when comparing HighRes-CGH data and
genomic sequence features, we noted a visible correlation be-
tween CNV boundaries and SDs (Fig. 1).

We thus decided to specifically develop an application that
allows incorporating aspects of nucleotide sequence. Namely, we
developed Break-Pointer (BreakPtr), a hidden Markov model
(HMM)-based formalism combining data informative for break-
point prediction (Fig. 2). Its module Finder predicts CNV
breakpoints from HighRes-CGH data and nucleotide sequence,
which, by default, are integrated statistically by using a discrete-
valued bivariate HMM (dbHMM). The model assigns chromo-
somal regions to seven distinct states (23), corresponding to
‘‘unaffected genomic regions,’’ ‘‘deletions,’’ and ‘‘duplications’’
as well as four ‘‘transition states’’ (the latter four states directly
consider the nucleotide sequence signatures of breakpoints; Fig.
3). In particular, the dbHMM emits discrete symbols for each

genomic coordinate targeted by a microarray probe, with each
symbol corresponding to a single bin of the dbHMM’s emission
distribution (see Fig. 3 and Materials and Methods for more
details). CNV breakpoints are assigned to state boundaries.
Furthermore, the Annotator module of BreakPtr, implemented
after Finder (Fig. 2 A), identifies actual copy number ratios (i.e.,
‘‘dosage’’) for each CNV. Finally, the Flagger module uses
sequence analysis to identify potentially false-positive predic-
tions that may have resulted from cross-hybridization.

Only a very limited amount of data on CNV breakpoints is
currently available; however, a sharp increase in such data is
anticipated in the near future. Consequently, we developed
BreakPtr in a data-quantity-sensitive fashion. In particular, the
approach uses a flexible parameterization enabling breakpoint
mapping with variable amounts of training data and gold stan-
dards. (We defined training data as HighRes-CGH data con-
taining at least one approximately mapped CNV. Gold stan-
dards, according to our definition, are publicly available genomic
DNA samples with exactly mapped breakpoints. Two of the
latter, i.e., samples with known disease-associated deletions,
were available to us at the time of analysis.) Alternative param-
eterizations of BreakPtr are implemented based on the cubic
dependency of available data points and the number of histo-
gram bins (which relates to the number of parameters in the
model; Fig. 3) according to Scott (24). This allows the full
parameterization, i.e., the seven-state dbHMM requiring �2,500
parameters, to gradually collapse to alternative models with
fewer parameters in an intuitive fashion [i.e., through reducing
numbers of bins and states of the model; see supporting infor-
mation (SI) Text and SI Fig. 4]. At the extreme end of this
collapse is the ‘‘core’’ parameterization, a univariate three-state
HMM not considering nucleotide sequence information and
requiring 10 parameters.

Integrating experimental validations into the overall analysis
of array data with BreakPtr should allow us to leverage a small
amount of additional knowledge to incrementally improve the
set of gold standards and refine our breakpoint predictions. We
thus implemented a concept related to semisupervised machine-
learning, allowing iterative optimization of BreakPtr parameters
through incremental incorporation of validations (Fig. 2B and
Materials and Methods). In brief, (i) initial parameter estimation

Fig. 1. Association of breakpoints and SDs. Genomic locations of SDs are
indicated by BlastZ (32) self-chain matches to the human reference sequence
(black vertical bars). SDs coinciding with deletion/duplication breakpoints are
highlighted by a red dashed line. The association of breakpoints and SDs
[consistent with earlier observations (1, 2, 9, 16, 22)] indicates that nucleotide
sequence signatures can facilitate breakpoint mapping.
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was performed by using a set of known or approximately mapped
deletions and duplications; (ii) an expectation maximization
(EM)-based algorithm (25) was used for parameter optimiza-
tion; (iii) CNVs and their breakpoints were predicted; (iv)
breakpoints were validated by DNA sequencing; (v) this process
was iterated, which allowed refinement of parameters and
predicted CNVs.

Fine-Mapping CNV Breakpoints. After developing BreakPtr, we
tested the approach in detail, focusing on human chromosome
22 and the �-globin locus (16) (a 100-kb region on chromo-
some 11). In total, 10 samples were analyzed, including eight
subjects with known genetic disorders (16) and two ‘‘healthy’’
individuals (see SI Table 2). Because of the small set of
available gold standards, BreakPtr was initially applied by using
the core parameterization. Parameter estimation was per-
formed by using a set of experiments targeting approximately
mapped chromosomal aberrations that involve the 22q11
chromosomal band (see SI Table 3). Parameters of the state
corresponding to unaffected genomic DNA were estimated
based on an experimental control (Materials and Methods). In
total, 232 putative CNVs were identified by BreakPtr (i.e., 464
breakpoints, f lanking 121 duplications and 111 deletions, with
median size 15 kb and mean 85 kb; see SI Table 4), many of

which may be widespread in humans. In particular, 67 (29%)
overlap with the genomic coordinates of previously reported
CNVs listed in the Database of Genomic Variants (2). By
taking into account estimated mapping resolutions of previous
studies, we tentatively assigned refined CNV breakpoint co-
ordinates to 36 of the 108 genomic locations to which break-
points had previously been approximately mapped. (Note that
breakpoint-mapping resolutions of previously carried out sur-
veys, i.e., the expected uncertainties of mapping, were, in
several instances, unknown to us and thus estimated by using
criteria given in SI Text). Altogether, predicted CNVs inter-
sected with 210 different genes. Because our survey included
patients with known chromosomal disorders, not all of these
genes may intersect CNVs in healthy individuals. Nevertheless,
91 genes did not overlap with the respective critical regions of
the previously diagnosed chromosomal disorders (16) and are
thus candidates for genes commonly varying in copy number.

Using BreakPtr (core model), we further reanalyzed the
association between CNV breakpoints and SDs (SI Text). In-
deed, for �2/3 of the predicted CNVs on chromosome 22, at
least one breakpoint intersected with a SD. This represents a
�4-fold enrichment over random (i.e., compared with ‘‘shuf-
f led’’ CNVs with randomized genomic locations), consistent
with previous estimates at lower resolution (9).
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Fig. 2. Overview of BreakPtr and its parameter optimization procedure. (A) Data from HighRes-CGH experiments are statistically integrated with
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from validated breakpoints.
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Benchmarking of Predictions. Agreement with previously mapped break-
points. To evaluate our breakpoint predictions critically, we first
focused on breakpoints that were previously precisely mapped in
the regions analyzed here. Indeed, we identified all four previ-
ously sequenced breakpoints (16, 26) in the individuals available
to us at nucleotide level (Table 1): both of the physical bound-
aries of a 619-bp heterozygous deletion causing �-thalassemia
(26) and the breakpoints of a 1.4-Mb heterozygous deletion
associated previously with 22q11-deletion syndrome (16). Fur-
thermore, the heterozygosity (16, 26) of both deletions was
correctly identified by BreakPtr.
CNVs in normal individuals. We next assessed whether BreakPtr can
be used also for identifying the breakpoints of CNVs in healthy

individuals. Initially, we designed primers to sequence the
breakpoints of an 18-kb heterozygous deletion predicted to
disable the first coding exon of the IGLC1 gene (Ig-� constant
region 1; RefSeq: BC012159). The deletion, which may be
involved in normal variation of the immune system, overlaps a
genomic region of previously reported copy-number variation
(2). Second, we attempted to identify the breakpoints of a
BreakPtr-predicted �1-kb homozygous deletion located in a
region for which, to our knowledge, no CNVs have as yet been
reported. The latter deletion intersects with a conserved non-
coding element upstream of the HMG2L1 gene (which encodes
high-mobility group protein 2-like 1; RefSeq: HMG2L1), and
may thus cause variation at the level of gene-regulation. Subse-
quent to PCR analysis, we sequenced all four breakpoints,
leading to the discovery of 18,231 bp and 975 bp deletions (Table
1; and SI Figs. 5 and 6). Furthermore, the observed PCR bands
supported the predicted copy number ratios. By comparing
genomic coordinates of predicted and validated breakpoints, we
determined an effective resolution of BreakPtr of �330 bp
(taking into account both the four earlier mapped and the four
previously uncharacterized breakpoints).
Comparison of core and full parameterization. We further compared
BreakPtr’s core parameterization to the full model. In particular,
when using the small set of the only four earlier mapped
(disease-associated) breakpoints for estimating the parameters
for dbHMM transition states (i.e., Transitions B and B� in Fig.
3A), the full model yielded an improved effective resolution
(�280 bp). Before significance can be established, more break-
point sequences need to be solved. Nevertheless, when using the
full model, the fraction of predicted CNVs overlapping with
previously reported CNVs already showed a slight increase
(from 29% to 31%), and we expect that with the availability of
larger sets of gold standards the full parameterization should
cause robust improvements over alternative models.
Use of BreakPtr to refine previously mapped breakpoints. We believe
that the considerable overlap of our predictions with previously
reported CNVs indicates that BreakPtr will help in refining many
approximately mapped breakpoints. To exemplify this, we ana-
lyzed GM15510, a sample derived from a healthy subject pre-
viously studied by Tuzun et al. (3) by using fosmid paired-end
sequencing: four of six CNVs (67%) previously identified (3) in
the chromosomal regions studied here intersected with CNVs
predicted by BreakPtr (core parameterization). For these, high-
resolution breakpoint assignments are available from SI Table 4.
Note that all cases missed by BreakPtr represent insertions
detected by fosmid paired-end sequencing (3) and, thus, are not
necessarily CNVs, by definition, because they may at least partly
contain sequences not present in the human reference genome
or products of balanced translocations not affecting gene dosage,
which are not detectable by HighRes-CGH. We expect BreakPtr
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Table 1. Experimental validation of predicted breakpoints

Subject ID(s) Coordinates of breakpoints (hg17):
Dosage (agrees with

prediction)
Present in healthy

individuals Validation

05–029 Chromosome 11 5203062 and 5203681 Heterozygous
deletion; 1:2 (yes)

No [deletion involved
in disease (16)]

PCR, DNA sequencing (16)

04–018 Chromosome 22 17977963* and 19359814* Heterozygous
deletion; 1:2 (yes)

No [deletion involved
in disease (16)]

PCR, DNA sequencing (16)

04–018 Chromosome 22 21548126 and 21566356 Heterozygous
deletion; 1:2 (yes)

Yes† PCR, DNA sequencing

93–171F,
04–018

Chromosome 22 33969719 and 33970693 Homozygous
deletion; 0:2 (yes)

Yes‡ PCR, DNA sequencing

*Deletion is flanked by a 19-bp tandem repeat (16); coordinates are thus given with a �9-bp margin.
†Intersects with previously approximately mapped CNVs (3, 9,13).
‡Deletion with estimated population frequency �20%, not intersecting with previously reported CNVs.
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to be suited for refining the coordinates of many previously
reported CNVs.

Breakpoint Fine-Mapping Suggests Abundance of CNPs and Mendelian
Transmission. The fine-mapping of CNV breakpoints should
enable in-depth analysis of CNV frequency and inheritance
across individuals; specifically, correspondences between par-
tially overlapping CNVs cannot be reliably assessed in the
absence of precisely mapped breakpoints. For instance, several
CNVs reported in our study appear to be common: 11% of the
232 predicted CNVs were observed in at least two unrelated
individuals (when applying a margin of �330 bp for breakpoint
identification) and, thus, most likely represent CNPs, i.e., com-
mon CNVs. (Because of the relatively small number of individ-
uals analyzed here, the actual fraction of CNPs will presumably
be considerably higher; see SI Table 5.) To further exemplify
this, we carried out a pilot study examining by PCR the distri-
bution of the previously uncharacterized 975-bp CNV across 19
HapMap individuals (including relatives and unrelated subjects).
PCR results suggest Mendelian transmission of the deletion [in
agreement with recent observations concerning CNV inheri-
tance (4, 8)] and common occurrence in different populations.
Altogether, the CNV was detected in �20% of the surveyed
chromosomes of HapMap individuals, consistent with our pro-
visional estimate based on BreakPtr predictions in the 10 indi-
viduals analyzed by HighRes-CGH (SI Fig. 7 and SI Table 4).
This indicates that the predictive resolution of BreakPtr alone
enables analyzing CNV frequency and inheritance.

Discussion
We have presented BreakPtr, an approach enabling systematic
fine-mapping of CNV breakpoints across individuals. Several
algorithms for predicting CNVs from array-CGH and related
data [e.g., such as that based on considerably lower-resolution
bacterial artificial chromosome-based arrays (2, 9), representa-
tional oligonucleotide microarray analysis (1), or SNP genotyp-
ing arrays (4)] have already been described (see, e.g., refs. 27 and
28). This includes, for instance, hypothesis-driven approaches
such as HMM-based algorithms [see, e.g., refs. 27 and 29 or the
CNAT algorithm available from Affymetrix (Santa Clara, CA)
for scoring SNP genotyping arrays] or data-driven approaches
like the circular binary segmentation algorithm (28) (for a recent
comparison of algorithms, see e.g., ref. 30 and references
therein). These approaches were developed and so far applied
only for detecting more gross changes in copy number, and not
for fine-mapping CNV breakpoints by using HighRes-CGH data
(for which they may as yet not be practical; see SI Text). Our
HMM-based approach has enabled us to exploit DNA sequence
information for CNV prediction in a data quantity-sensitive
fashion. We expect that in the data-rich near future, this
approach may represent a robust improvement over methods
that do not consider the association between microarray data
and sequence. We further envision that yet additional data types
may be incorporated into HMM-based algorithms provided that
an association with breakpoints exists. For instance, given the
current drop in DNA sequencing costs, CGH analysis and
sequencing may soon be integrated computationally, e.g., by
combining DNA read counts with array signals.

Finally, to evaluate the prospect of performing breakpoint
validations on a large-scale, we studied the design requirements
of HighRes-CGH experiments. For instance, when removing
half of the probes of the chromosome 22 microarray analyzed
here, effective resolutions at 0.5–1 kb were observed (data not
shown), resolutions well suited for breakpoint validation. Given
the ever-increasing feature density of microarray slides, surveys
such as the one described here will soon be performed on a
genome-wide scale. For instance, Nimblegen (Madison, WI) has
recently begun producing arrays with 2.1 million probes: if by

using those arrays with a 170-bp tiling path step size, only nine
microarrays per individual may enable genome-wide breakpoint
mapping (thereby, BreakPtr analysis is unlikely to be limiting; see
SI Text). Eventually, large-scale fine-mapping and sequencing of
breakpoints will shed new light on CNV origin, inheritance,
population frequency, and associations of CNVs with pheno-
types.

Materials and Methods
Microarray Experiments and Data Retrieval. Microarrays covering
chromosome 22 with �385,000 different probes at an 85-bp tiling
path step size were designed as described (16). Labeled genomic
DNA of human subject and reference samples (the latter sample,
i.e., the control, comprising a pool of genomic DNA from seven
healthy male individuals, from Promega, Madison, WI) were
cohybridized to the arrays (16, 17). Fluorescence intensities were
obtained for each spot (16) (‘‘probe’’). Fluorescence intensity
normalization was performed by using the Qspline algorithm
(31). We further included and reanalyzed HighRes-CGH data
from a previous study (16).

CNV Breakpoint Prediction by Using the Full Parameterization. High-
Res-CGH data were scored by using BreakPtr (source codes
available from http://breakptr.gersteinlab.org). Its full model
encompasses a seven-state dbHMM operating with two emission
channels: i.e., it uses normalized fluorescent intensity log2-ratios
and a value quantifying the redundancy of the underlying DNA
sequence derived from BlastZ (32) alignments [which can be
used for identifying SDs (32, 33)]. Normalized BlastZ-scores
(32) from genome-wide human-vs.-human (i.e., BlastZ-self
chain) alignments depleted of lineage-specific common (inter-
spersed) repeats were retrieved from the University of Califor-
nia (Santa Clara, CA) Genome Browser (http://genome.
ucsc.edu; default parameters according to the Self-Chain Track,
i.e., minimum BlastZ raw score � 10,000; normalized BlastZ-
score � raw score/no. of bases aligned). We used cumulative
scores that were obtained by summing up normalized BlastZ-
scores for each BlastZ-hit intersecting with the genomic coor-
dinate of a probe. This measure correlates with the redundancy
of the nucleotide sequence, in particular SDs, and we thus
considered it for incorporation into the dbHMM. BreakPtr’s
transition states reflect the propensity of breakpoints to coincide
with SDs. Breakpoints are predicted also if not coinciding with
SDs, because the model architecture allows transition states to
be omitted. The dbHMM emits discrete symbols for each
genomic coordinate targeted by a probe, with each symbol
corresponding to a bin of the emission distribution associated
with particular microarray values and nucleotide sequence com-
position (Fig. 3). Bins were constructed in the following way:
cumulative scores were divided among N1 � 5 bins, with bin sizes
selected by using the condition to place approximately equal
numbers of data points into each bin. Normalized fluorescence
intensity log2 ratios were assigned to N2 � 100 bins according to
the following procedure: values between �1 and 1 were assigned
to N2 � 2 bins covering equally sized fluorescence intensity
log2-ratio intervals. Further, log2 ratios � �1, and log2 ratios �1,
were assigned to additional bins. Predictions were robust to bin
size selection. Most probable state assignments were found by
using the Viterbi algorithm (23). BreakPtr assigns breakpoints to
locations of transition to (or from) ‘‘deletion’’ and ‘‘duplication’’
states. In this particular study, given the small amount of
available gold standards, emission distributions of the full model
were refined by Gaussian smoothing (after parameter estima-
tion) by using parameters that resemble the distribution of
emission values of the normal state (i.e., unaffected genomic
DNA). This step is unnecessary if the criteria based on Scott (24)
are fulfilled (see below).
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Alternative Parameterizations. Alternative parameterizations
(core and intermediate models) are implemented according to
Scott (24), depending on the amount of available data (see SI
Text and SI Fig. 4). For instance, the core model uses a univariate
continuous three-state HMM with Gaussian emission and 10
parameters. Focusing on HighRes-CGH data, it is not trained on
DNA sequence signatures. Alternative models use the same
structure of modules (Finder/Annotator/Flagger; Fig. 2) as the full
model.

Training/Optimization of BreakPtr. BreakPtr was iteratively opti-
mized by using training data and gold standards. For instance,
the core model was trained as follows: (i) parameter estimation
was based on a labeled training set, i.e., parameters for CNV-
states were estimated from approximately mapped breakpoints
(see SI Table 3). For the normal state, a control microarray
experiment [same DNA applied to both channels (16)] was used.
Transition probabilities pb were estimated for each transition
between states by dividing the number of previously known
aberrations (based on approximately mapped deletions/
duplications) in the concatenated training set by the number of
probes. Then, transition probabilities pw within states were set:

pw � 1��
i

pb. [1]

(ii) Parameter optimization was carried out by using a larger
unlabeled training set (in practice, the entire set of arrays is
used). (iii) Breakpoints were predicted, and (iv) validated. These
four steps were iterated, by using refined breakpoints for each
round. Steps i and ii can be viewed as a special case of
semisupervised learning (34), because unlabeled data are used
to improve a model based on labeled data. Steps iii and iv are
closely related to active sampling/learning, because a subset of
unlabeled data is selected and validated, and results are subse-

quently incorporated in the rescoring process. BreakPtr’s alter-
native parameterizations are optimized similarly to the core
model: Transition states were trained based on data points
corresponding to an interval �1,000 bp from a mapped break-
point. Transition-state emission distributions were assumed to
be identical for both (the telomeric and centromeric) boundaries
of CNVs. BreakPtr allows transition probabilities to be refined by
using EM or to be adjusted manually. The latter, e.g., allows the
stringency of CNV detection to be adjusted gradually if a CNV
reported by using a complementary technology was initially
missed.

Dosage Estimation. Copy number ratios were identified by using
a six-state HMM (Annotator). Parameters were estimated from
biological samples (if corresponding samples were missing, pa-
rameters were manually specified; see SI Table 3 and SI Fig. 8).

Identification of False-Positive Signals Resulting from Cross-
Hybridization. Cross-hybridization of probes may, to a certain
extent, affect HighRes-CGH experiments; putative cross-
hybridization is identified by using a sequence alignment-based
approach (this module, Flagger, is described in detail in SI Text).

Validation of Breakpoints. Genomic regions surrounding predicted
breakpoints were amplified by conventional PCR or vectorette
PCR and sequenced (16).
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