
Identification of human-induced changes
in atmospheric moisture content
B. D. Santera,b, C. Mearsc, F. J. Wentzc, K. E. Taylora, P. J. Glecklera, T. M. L. Wigleyd, T. P. Barnette, J. S. Boylea,
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Data from the satellite-based Special Sensor Microwave Imager
(SSM/I) show that the total atmospheric moisture content over
oceans has increased by 0.41 kg/m2 per decade since 1988. Results
from current climate models indicate that water vapor increases of
this magnitude cannot be explained by climate noise alone. In a
formal detection and attribution analysis using the pooled results
from 22 different climate models, the simulated ‘‘fingerprint’’
pattern of anthropogenically caused changes in water vapor is
identifiable with high statistical confidence in the SSM/I data.
Experiments in which forcing factors are varied individually sug-
gest that this fingerprint ‘‘match’’ is primarily due to human-
caused increases in greenhouse gases and not to solar forcing or
recovery from the eruption of Mount Pinatubo. Our findings
provide preliminary evidence of an emerging anthropogenic signal
in the moisture content of earth’s atmosphere.

climate change � climate modeling � detection and attribution �
water vapor

‘‘Fingerprint’’ studies, which seek to identify the causes of recent
climate change, involve rigorous statistical comparisons of mod-

eled and observed climate change patterns (1). Such work has been
influential in shaping the ‘‘discernible human influence’’ conclu-
sions of national and international scientific assessments (2–4).
Most fingerprint studies have focused on temperature changes at
the earth’s surface (5, 6), in the free atmosphere (7, 8), or in the
oceans (9), or have considered variables whose behavior is directly
related to changes in atmospheric temperature (10).

Despite a growing body of empirical evidence documenting
increases in moisture-related variables (11, 12), and climate model
evidence of a number of robust hydrological responses to global
warming (13, 14), there have been no formal fingerprint studies
involving changes in the total amount of atmospheric water vapor,
W. Other aspects of moisture changes have received attention in
recent fingerprint work, with identification of an anthropogenic
signal in observed records of continental river runoff (15), zonal
mean rainfall (16), and surface specific humidity (17).

Warming induced by human-caused changes in well mixed
greenhouse gases (GHGs) should increase W (11, 12). Under the
assumption that relative humidity remains approximately constant,
for which there is considerable empirical support (13, 18, 19), the
increase in W is estimated to be �6.0–7.5% per degree Celsius
warming of the lower troposphere (13, 18). The observed increase
in W over the global ocean, as inferred since late 1987 from
microwave radiometry measurements made with the satellite-borne
Special Sensor Microwave Imager (SSM/I), is broadly consistent
with theory (12, 18, 20).

Observational and Model Data
The SSM/I atmospheric moisture retrievals are based on measure-
ments of microwave emissions from the 22-GHz water vapor

absorption line. The distinctive shape of this line provides robust
retrievals that are less problematic than other types of satellite
measurement. For example, the signal-to-noise ratio (S/N) for
detecting moistening in the lower troposphere by a measurement of
water vapor is several times larger than for measurements of air
temperature obtained directly from the Microwave Sounding Unit
(18). Because SSM/I moisture retrievals are unavailable over the
highly emissive land surface (18), our focus is on the total column
water vapor over oceans, Wo, for a near-global domain.

Here, we attempt to identify in the relatively short SSM/I
record the spatial pattern of human-caused changes in Wo.
Before performing formal pattern comparisons, we analyze
trends in �Wo�, the spatial average of Wo (the brackets denote a
spatial mean).k We examine whether model estimates of internal
climate ‘‘noise,’’ obtained from control integrations with no
forcing changes, can explain the observed �Wo� increase over
1988–2006. We also consider whether the observed high-
frequency variability of �Wo� is reliably captured in 20th century
(20CEN) simulations with historical changes in external forcings.

We use control and 20CEN results from 22 climate models.
Model results are from the World Climate Research Program’s
Coupled Model Intercomparison Project (CMIP-3) archive of
simulations. The external forcings imposed in the 20CEN ex-
periments differed between modeling groups. The most com-
prehensive experiments included changes in both natural exter-
nal forcings (solar irradiance and volcanic dust loadings in the
atmosphere) and a wide variety of anthropogenic influences
(such as well mixed GHGs, ozone, sulfate and black carbon
aerosols, and land surface properties). Details of the models,
20CEN experiments, and control integrations are given in
supporting information (SI) Text.
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Observational and Modeled Water Vapor Time Series
The model 20CEN runs yield overall increases in �Wo� in response
to the imposed external forcings (Fig. 1). We discuss runs that
include anthropogenic forcing only (ANTHRO) and runs with
combined forcing by both human influences and natural external
factors (ALL).l The inclusion of volcanic effects in the ALL runs
leads to slightly smaller �Wo� increases over the 20th centurym and
causes pronounced decreases in �Wo� for several years after major
eruptions (21). Such decreases are consistent with volcanically
induced cooling of sea surface temperatures (SSTs) and with the
strong coupling of interannual fluctuations in tropical SSTs and
water vapor (18, 22–24).

In the SSM/I data, �Wo� increases over the period 1988–2006 by
0.41 kg/m2 per decade, with a 95% confidence interval of �0.21
kg/m2 per decade (20). This trend is significantly different from zero
(12). As in the ALL models, �Wo� decreases for several years after
the eruption of Mount Pinatubo in June 1991 (Fig. 1). The observed
post-Pinatubo decrease is partly masked by the effect of a small El
Niño event in 1992 and is therefore smaller than in the ALL model
average.

Comparison of Observed and Unforced Water Vapor Trends
The ‘‘masking’’ described above illustrates a fundamental problem:
observed climate changes represent a complex mixture of internally
generated noise and responses to external forcing, and unambigu-
ous separation of the two is difficult. Even if such separation were
feasible, the short (19-year) SSM/I record provides only one sample
of multidecadal noise. In contrast, climate models can provide
multiple estimates of ‘‘pure’’ internally generated variability. The 22
model control runs analyzed here comprise a total of 8,848 years of
data, and they yield 459 independent samples of the unforced
variability of �Wo� on time scales of 19 years. This is the information
we use to determine whether the SSM/I �Wo� trend over 1988–2006
could be due to noise alone.

To address this question, we calculate �Wo� from each model
control run, fit linear trends to 19-year nonoverlapping segments of

lEnsembles of the 20CEN simulations were performed with 15 of the 22 models analyzed
here (see SI Text). Each ensemble contains multiple realizations of the same experiment,
differing only in their initial conditions but with identical changes in external forcings. This
approach yields many different realizations of the climate ‘‘signal’’ (the response to the
imposed forcing changes) plus climate noise. Averaging over multiple realizations reduces
noise and facilitates signal estimation. Here, we calculate averages over ALL and ANTHRO
20CEN runs. In each case, x� is the arithmetic mean of the individual model results, i.e., x� �

1/N �j�1
N x� j, where N is the total number of ALL or ANTHRO models (12 and 10,

respectively) and x� j is the ensemble mean signal (or individual realization) of the jth model.
This averaging method avoids undue emphasis on results from a single model with a large
number of realizations.

mThe total changes in �Wo� over 1900–1999 are 1.37 kg/m2 and 1.52 kg/m2 for the ALL and
ANTHRO models, respectively. These represent increases of 4.8% and 5.2% relative to the
ALL and ANTHRO model climatological annual mean values of �Wo� over 1900–1909.
Changes are defined as b � n, where b is the slope parameter of the linear trend (in
kilograms per square meter per month) fitted by the standard least-squares method over
a specified period of n months. Note that �Wo� is sometimes expressed in millimeters (12).
The conversion factor between kilograms per square meter and millimeters is 1.
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Fig. 1. Anomaly time series of monthly mean �Wo�, the spatial average of
total atmospheric moisture over near-global (50°N–50°S) oceans (A) and an
estimate of the stratospheric aerosol optical depth (SAOD) (21) (B). Observa-
tions of �Wo� are from the SSM/I data set (20). Simulated �Wo� data are from 49
realizations of 20th century climate change that included combined anthro-
pogenic and natural external forcing (ALL), performed with 12 different
models. Model results were averaged over realizations and models (see foot-
note l). Both model and observational data were smoothed by using a filter
with a half-power point at �2 years (see SI Text). The yellow and gray
envelopes are the 1� and 2� confidence intervals (respectively) for the mul-
timodel average, calculated at each time t with a sample size n � 12. Most of
the 20CEN experiments end in December 1999, and the multimodel average
is displayed until that month only. All model anomalies were defined relative
to climatological monthly means over 1900–1909. The choice of reference
period has no impact on subsequent trend analyses or variability estimates.
SSM/I anomalies were forced to have the same mean as the ALL average over
the period of overlap between the simulated and observed time series (1988–
1999). Note that the amplitude of �Wo� variability is not directly comparable
in the observations and ALL model average because the latter was damped by
averaging over different realizations and models. Vertical lines denote the
times of maximum SAOD after major volcanic eruptions.
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Fig. 2. Comparison of observed �Wo� trends with model simulations of
unforced (A) and externally forced (B) trends. The sampling distribution of
unforced 19-year trends was calculated as described in the text. Residual
control run drift was not subtracted before estimation of the trend sampling
distribution, thus inflating the standard error of the distribution and making
it more difficult to reject the null hypothesis that internal variability alone
could explain the observed trend. Forced �Wo� trends over 1988–1999 were
estimated from 71 realizations of the 20CEN experiment performed with 22
models (see SI Tables 2 and 3). The SSM/I trend over 1988–1999 is larger than
the mean of the model distribution of forced trends, in part because of the
effects of the large observed El Niño event in 1997/1998 (Fig. 1A), which is
close to the end of the trend period used in B.
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the �Wo� time series, and then pool results from the 22 models to
form a multimodel distribution of unforced trends (Fig. 2A). If these
noise estimates are reliable, internal variability is highly unlikely to
be the sole cause of the observed increase in �Wo� over the SSM/I
period: �1% (3 of 459) of the unforced trends in �Wo� exceed the
observed trend over 1988–2006. When model experiments include
estimates of anthropogenic and natural external forcings, the ob-
served �Wo� trend of 0.46 kg/m2 per decade over 1988–1999 (the
period of overlap between the SSM/I record and the majority of
the model 20CEN experiments) is not significantly different from
the mean trend of 0.34 kg/m2 per decade in the model 20CEN
results (Fig. 2B).

Model Performance in Simulating Variability
The credibility of these results depends on the reliability of
model noise estimates, particularly on multidecadal time scales.
This is difficult to assess given the short observational record
length and the large uncertainties inherent in partitioning that
record into signal and noise components. The SSM/I data are of
adequate length, however, to evaluate model performance in
simulating the observed month-to-month and year-to-year �Wo�
variability.

On both monthly and interannual time scales, the average
temporal standard deviations of �Wo� for the ALL and ANTHRO
models are actually slightly larger than the observed values (Fig. 3
A and B). Furthermore, we find no indication that the models
systematically underestimate either the variability of SSTs in the
Niño 3.4 region (25) or the strength of the coupling between SST
and �Wo� fluctuations (Fig. 3C).n These results enhance our con-

fidence in the ability of models to capture some of the basic physics
necessary for reliable simulation of the multidecadal noise relevant
to our detection study.

Fingerprint Identification
Most formal detection and attribution (D&A) work has been
performed in a ‘‘single-model’’ framework, where one or at most
two models are used to estimate both the climate response to an
imposed forcing change (the fingerprint) and the background noise
of internal variability (5–10). The multimodel CMIP-3 archive
offers unique opportunities and challenges for D&A research. A
key opportunity is that the archive contains information from
models with different resolution, physics, parameterizations, and
forcings, enabling analysts to assess the robustness of D&A results.
A key challenge is how best to exploit this wealth of information.
Implementation of a single-model approach with 22 individual
models and many different processing options (10) would generate
a very large matrix of results.

A more elegant approach (26), which we follow here, is to
estimate the fingerprint and noise by pooling information from
multiple models. We use a standard optimal detection method (1)
that has been applied successfully in studies of other climate
variables (5, 10). All such methods seek to optimize the fingerprint

nNote that Fig. 3 shows weak evidence of a relationship between the mean state and
temporal variability of �Wo� (Fig. 3A) and stronger evidence that higher-amplitude vari-
ability of Niño 3.4 SSTs leads to greater coherence between SST and �Wo� fluctuations (Fig.
3C). The observed values of these quantities are reasonably well captured by the ALL and
ANTHRO model averages. The model averages are also close to the observed climatolog-
ical mean �Wo� and to the SSM/I water vapor trend over 1988 to 1999 (Fig. 3 A and B).
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Fig. 3. Comparison of basic statistical properties of simulated and observed means, variability, and trends for atmospheric moisture over near-global oceans.
Scatterplots show the relationships between the temporal standard deviation of unfiltered �Wo� anomalies and climatological annual mean �Wo� (A), the
temporal standard deviation of 2-year filtered �Wo� anomalies (see SI Text) and linear trends in �Wo� over 1988–1999 (B), and the standard deviation of SST
anomalies in the Niño 3.4 region (12) and the temporal correlation between anomalies of �Wo� and �To� (where �To� is the spatially averaged SST anomaly over
50°N–50°S) (C). Model results are individual 20CEN realizations and are partitioned into ALL and ANTHRO models (circles and triangles, respectively). Observations
are from SSM/I for �Wo� and from version 2 of the Extended Reconstructed SST (ERSST) data set of the National Oceanic and Atmospheric Administration (NOAA)
for �To� (25). All calculations involve monthly mean, spatially averaged anomaly data for the period January 1988 through December 1999, with anomalies
expressed relative to climatological monthly means over this period. Standard deviations and correlations were estimated from linearly detrended data. The
dashed horizontal and vertical lines in A–C are at the locations of the SSM/I values (SSM/I and ERSST in C) and facilitate visual comparison of the modeled and
observed results. The error bars on the observed �Wo� trend in B are the 2� trend confidence intervals, adjusted for temporal autocorrelation effects (see SI Text).
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relative to the noise and to enhance detectability of the fingerprint
in observations (1). Optimization is often performed by using
information on both the spatial and temporal behavior of signal and
noise (6, 9, 15–17, 26). Here, given the short length of the SSM/I
record, there is little low-frequency structure to estimate, and we
apply spatial optimization only. We also consider whether the
model fingerprints are identifiable without any optimization.

We employ two sets of moisture fingerprints, estimated sepa-
rately from the ALL and ANTHRO 20CEN runs (see SI Text). The
fingerprints are the leading empirical orthogonal functions (EOFs)
of the atmospheric moisture changes over 1900–1999 in the ALL
and ANTHRO multimodel averages. Use of Wo data for the entire
20th century (rather than simply for the period of overlap with
SSM/I) provides a less noisy estimate of the true Wo response to

slowly varying external forcings. It also provides a response that is
more similar across models (see SI Fig. 6).

The ALL and ANTHRO fingerprint patterns are very similar,
and primarily reflect the large mean changes in Wo over the 20th
century (Fig. 4 A and B). In both fingerprints, Wo increases over the
entire domain and varies smoothly along bands of latitude, with the
largest increases close to the equator and the smallest increases
toward the extratropics. The single realization of observed Wo
changes over the short SSM/I period is noisier than the model
fingerprints, but it also shows coherent increases in Wo over most
of the world’s oceans, with the largest increases occurring in the
western equatorial Pacific (Fig. 4E).

The leading noise modes have similar structure in the ALL and
ANTHRO model control runs (Fig. 4 C and D) and primarily
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capture the effects of El Niño/Southern Oscillation (ENSO) vari-
ability on atmospheric moisture over the Pacific. The noise patterns
resemble the leading EOF estimated from the SSM/I data (12). The
observed pattern of Wo changes corresponds more closely to the
model fingerprints than to the dominant noise modes.o

Even without optimization, and despite the short observational
record length, the ALL and ANTHRO fingerprint patterns are
consistently identifiable in the SSM/I data. Detection of a signal that
is statistically significant at the 5% level occurs by 2002, after only
15 years of monitoring atmospheric moisture with SSM/I, and is
insensitive to different analysis choices (Table 1). Optimization
enhances the detectability of the fingerprint, yielding detection by
1999. The optimized fingerprints have their largest loadings off-
equator (see SI Fig. 7), where the raw fingerprints have relatively
high loadings (Fig. 4 A and B) but the noise is relatively low (Fig.
4 C and D).

A specific example of how we estimate detection time is given in
Fig. 4F and in SI Fig. 8. This example shows that calculating trends
over longer time intervals generally increases the S/N used to define
detection time. The growth in S/N arises primarily from the
progressive decrease in the standard error of the noise trends with
longer trend length L.

To test whether positive identification of the model-predicted
fingerprints is driven by the mean increase in Wo (rather than by
pattern correspondence at smaller spatial scales), we subtracted
spatially averaged changes in Wo from all data sets and repeated the
entire detection analysis (see SI Text). Subtraction of spatial means
leads to greater similarity between the fingerprints and the domi-
nant noise modes and results in failure to identify the nonoptimized
fingerprint in the observations (Table 1). Optimization of the
‘‘mean-removed’’ fingerprint rotates it away from high-ENSO noise
directions and transforms this null result to detection by no later
than 2000. Temporal filtering of all data sets to damp ENSO
variability has a similar effect, and it yields detection of the

mean-removed fingerprint even without optimization (see SI Fig.
9).p

Single-Forcing Experiments
Although the Wo fingerprints are highly similar in the ALL and
ANTHRO experiments (Fig. 4 A and B), and both fingerprints are
identifiable in the SSM/I data, these results alone do not allow us
to make reliable inferences about the relative contributions of
anthropogenic and natural external forcing to the observed Wo

increase over 1988–2006. There are at least two reasons for this.
First, the partitioning of the CMIP-3 20CEN results into ALL and
ANTHRO groups does not cleanly isolate the effects of natural

oThe centered (spatial means removed) pattern correlations between the observed Wo

changes in Fig. 4E and the ALL and ANTHRO model fingerprints in Fig. 4 A and B are 0.50
and 0.52, respectively. The corresponding values for the correlation between the observed
Wo changes and the leading ALL and ANTHRO model noise modes in Fig. 4 C and D are 0.19
and 0.28. The noise modes were estimated by calculating EOFs from two pooled data sets
(see SI Text) consisting of concatenated control run Wo data from the ALL and ANTHRO
models (26). Because the signs of the EOFs are arbitrary, only absolute values of the pattern
correlation are given.

pOne further sensitivity test involved repeating our entire fingerprint analysis with patterns
of percentage changes in Wo. Anomalies in each individual data set (observations, 20CEN
runs, and control integrations) were defined relative to the overall climatological annual
mean of the data set and then converted to percentage changes. This procedure reduces
the possible impact of model moisture biases on the estimated signals and noise. Finger-
print patterns are more uniform, because per degree Celsius increase, the percentage
change in Wo is much closer to being a constant than is the actual change in Wo, which
increases rapidly with increasing temperature. When spatial means are included, the use
of percentage changes yields positive and consistent detection of an anthropogenic
fingerprint, with detection times similar to those shown in Table 1 for actual changes in
Wo. Because the ‘‘percentage change’’ fingerprint is spatially more uniform than the
fingerprints shown in Fig. 4 A and B, it is less meaningful to explore the detectability of a
mean-removed fingerprint.
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Fig. 5. Precipitable water changes in model single-forcing runs. Shown are
column-integrated changes in monthly mean �Wo� in experiments performed
with the Parallel Climate Model (PCM) (28) (A) and the MIROC3.2(medres)
model (29) (B). For each model, there are a total of six experiments. In the first
five, climate forcings were varied individually according to estimates of their
historical changes over the 20th century. The five forcings considered were
changes in well mixed GHGs, anthropogenic aerosol effects, tropospheric and
stratospheric ozone, solar irradiance, and volcanic aerosols. These forcings
were varied simultaneously in the sixth experiment (ALL). In PCM, the anthro-
pogenic aerosol forcing involves only the direct (scattering) effects of sulfate
aerosols. The MIROC anthropogenic aerosol experiment considers forcing by
both the direct and indirect effects of sulfate and carbonaceous aerosols (29)
(see SI Table 2). All changes in �Wo� were defined relative to climatological
monthly means over 1900–1909. Results are ensemble averages and were
decadally filtered (K � 145 months) to damp high-frequency noise (see SI
Text). The ensemble size was 10 for the MIROC ALL integration and 4 for the
PCM ALL experiment and for each PCM and MIROC single-forcing run (except
the PCM volcanic forcing case, for which only two realizations were available).

Table 1. Detection times for model-predicted atmospheric
moisture fingerprints in observational data

Noise

Fingerprint

Raw Optimized

F�ALL F�ANTHRO F�*ALL(t) F�*ANTHRO(t)

Mean retained
C�ALL(t) 2002 2002 1999 1999
C�ANTHRO(t) 2002 2002 1999 1999

Mean removed
C�ALL(t) ND ND 2000 2000
C�ANTHRO(t) ND ND 1999 1999

Detection times were calculated as described in SI Text. Results are given for
both raw and optimized fingerprints and for analyses with the spatial mean
included and removed. Detection times are shown for all four possible com-
binations of the fingerprints F�ALL and F�ANTHRO (and their optimized counter-
parts) and the noise data sets C�ALL(t) and C�ANTHRO(t). All optimized results are
for a truncation dimension m � 15. Results are relatively insensitive to the
choice of ALL or ANTHRO data for fingerprint or noise estimation. ND indi-
cates that the fingerprint was not detectable before the end of the SSM/I
record in 2006.
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external forcings; there are also important differences in some of
the anthropogenic forcings that were applied in the two groups (see
SI Table 2). Second, it is likely that the large-scale spatial structure
of the water vapor feedback will be similar for any spatially coherent
surface warming signal. This implies that there may be degeneracy
(24, 26) between the Wo response patterns caused by solar irradi-
ance changes, GHG increases, and the slow recovery from the
cooling induced by massive volcanic eruptions. The latter is of
particular concern here because the ‘‘rebound’’ of Wo from the 1991
Pinatubo eruption occurs near the beginning of the SSM/I record.

As noted above, purely statistical approaches do not permit
unambiguous separation of the short SSM/I Wo record into volca-
nic, solar, anthropogenic, and unforced components (27). Here, we
use results from single-forcing experiments performed with the
Parallel Climate Model (PCM) (28) and the MIROC3.2(medres)
model (29) to quantify the contributions of various factors to the
simulated changes in atmospheric moisture (Fig. 5). Our focus is on
the period of overlap between the SSM/I data and the PCM and
MIROC experiments (1988–1999 and 1988–2000, respectively). In
both models, the �Wo� trends in the ‘‘volcano only’’ experiment are
slightly negative,q and in absolute terms they are approximately a
factor of 5 smaller than the moisture change caused by GHG
increases (SI Fig. 10). Solar-induced changes in �Wo� are four to
eight times smaller than the GHG component of �Wo� increase. In
PCM and MIROC, therefore, forcing by natural external factors
alone cannot explain the large post-1988 increase in �Wo�.

Conclusions
In summary, model fingerprints of the response of atmospheric
moisture to external forcings are identifiable in observations with

high statistical confidence, despite the short length of the SSM/I
record. Single-forcing experiments performed with two different
models (28, 29) suggest that the large increase in �Wo� is primarily
due to human-caused increases in GHGs (Fig. 5) and not to solar
forcing or the recovery from the Pinatubo eruption. Our analysis of
model control run data illustrates that internally generated vari-
ability is also a highly unlikely explanation for the observed �Wo�
changes.

The credibility of these conclusions depends on the reliability of
model-based noise estimates. On monthly and interannual time
scales, where SSM/I data are of sufficient length to make such
reliability assessments, the models used here do not systematically
underestimate the amplitude of variability in �Wo� or the strength
of the correlation between SSTs and �Wo�. In fact, the simulated
variability of �Wo� is, on average, slightly larger than observed, both
with and without interannual filtering.

These findings, together with related work on continental-scale
river runoff (15), zonal mean rainfall (16), and surface specific
humidity (17), suggest that there is an emerging anthropogenic
signal in both the moisture content of earth’s atmosphere and in the
cycling of moisture between atmosphere, land, and ocean. Detec-
tion and attribution studies have now moved beyond ‘‘temperature-
only’’ analyses and show physical consistency between observed and
simulated temperature, moisture, and circulation changes. This
internal consistency underscores the reality of human effects on
climate.
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