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Predicting how aqueous solvent modulates the conformational
transitions and influences the pKa values that regulate the bio-
logical functions of biomolecules remains an unsolved challenge.
To address this problem, we developed FDPB�MF, a rotamer re-
packing method that exhaustively samples side chain conforma-
tional space and rigorously calculates multibody protein–solvent
interactions. FDPB�MF predicts the effects on pKa values of various
solvent exposures, large ionic strength variations, strong energetic
couplings, structural reorganizations and sequence mutations. The
method achieves high accuracy, with root mean square deviations
within 0.3 pH unit of the experimental values measured for turkey
ovomucoid third domain, hen lysozyme, Bacillus circulans xyla-
nase, and human and Escherichia coli thioredoxins. FDPB�MF pro-
vides a faithful, quantitative assessment of electrostatic interac-
tions in biological macromolecules.

conformational flexibility � electrostatics � pKa prediction �
protein modeling

By strongly interacting with charges, the solvent significantly
modulates the electrostatic properties of biomolecular systems.

Although variations in pH and ionic strength are responsible for
physiologically important conformational transitions (1), quantita-
tively assessing their role in modulating electrostatic energies is
particularly challenging (2). Approaches in which solvent is mod-
eled as a continuum polarizable medium while biomolecules are
modeled in explicit molecular detail have become widely used in
recent years (3, 4). However, no current method combines broad
conformational sampling with a rigorous solvation model that can
predict quantitatively and efficiently the effects of solvent on
protein energetics and conformations.

In principle, molecular dynamics and free-energy simulations
monitoring protonation events can model accurately the ener-
getic effects of solvation and conformational relaxation of
biomolecules. However, despite recent progress, these tech-
niques often fail to converge in a reasonable amount of computer
time and therefore do not provide reliable predictions of ther-
modynamic properties (5, 6).

Rotamer repacking methods sample more efficiently and
exhaustively the conformational space of biomolecules. How-
ever, these methods require the energy function be decomposed
into self energies and interaction energies between pairs of
residues (7–10). Consequently, repacking methods cannot model
the effects of conformational relaxations involving more than
two positions at a time. Many important properties of biomo-
lecular surfaces (i.e., their interface with the solvent and the
distribution of bulk ions around them) are not pairwise factor-
able and depend on the simultaneous knowledge of the confor-
mations of all residues. Approximating these effects by relaxing
the protein–solvent interface only at the vicinity of solvent-
exposed charged residues does not improve the prediction of
pKa values in proteins (11). Current rotamer repacking methods
have also difficulties in assessing accurately and reliably the
electrostatic properties of buried charged residues that often
play important roles in catalysis, structural specificity, and
folding (2, 9–11).

To address these problems, we developed FDPB�MF, a rota-
mer repacking method that combines a general and full treat-
ment of side chain conformational f lexibility with the rigorous
computation of multibody protein–solvent interactions. Non-
pairwise factorable solvation energy terms calculated by a finite-
difference Poisson–Boltzmann (FDPB) method were incorpo-
rated into a mean-field (MF) side chain rotamer repacking
algorithm. Side chain conformations that minimize the free
energy of the system were identified with the explicit relaxation
of the protein–solvent interface and of the ion distribution
around the protein. Here, we apply FDPB�MF to the classic
problem of calculating the ionization constants of protein side
chains.

Results
For further details, see supporting information (SI) Text, SI Figs.
4–7, and SI Tables 5–8.

FDPB�MF was developed to provide a solution to the problem
of combining efficiently the exhaustive sampling of protein side
chain conformations with a rigorous treatment of solvation. The
method is based on an ensemble description in which each
conformation is assigned a weight corresponding to its proba-
bility of being occupied in the population. The effective quan-
tities describing the probability-weighted conformational ensem-
bles were derived so that they would equate or well approximate
the corresponding average calculated by enumerating all of the
discrete states of the system. During the development of the
method, three important challenges were encountered that led
to algorithmic developments for accurate calculation of the
solvation energy of a probability-weighted conformational en-
semble [Eq. 1 and SI Fig. 5], calculation of probability-dependent
physical quantities to solve the Poisson-Boltzmann equation (SI
Text Eqs. S2 and S4) and mapping of probability-weighted
dielectric boundaries on a lattice (SI Text Eqs. S6 and S7 and SI
Fig. 6).

Choice of the Solute Dielectric Constant. The choice of a dielectric
constant for the solute (�p) depends on the level of explicit
modeling of its polarizabilities. �p � 2 is commonly assumed to
be an adequate value for the implicit average treatment of
electronic polarizabilities. Because electronic fluctuations and
backbone conformational relaxations are not treated explicitly in
FDPB�MF, the solute was assigned a higher �p of 4, a value
derived from crystalline acetamide, a molecular analogue of the
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protein backbone (12). However, no sets of atomic charges and
radii with �p � 4 have been parameterized to reproduce solvation
energies of peptides or proteins. The closest set of parameters is
the PARSE set, parameterized to reproduce solvation energies
of small molecules with solute polarizabilities corresponding to
�p ranging from 2 to 3 (13). In principle, the calculations should
be performed with the �p of the molecules from which the
PARSE set of charges and radii were derived. Table 1 summa-
rizes the prediction of the pKa values of OMTKY3 by FDPB�MF
performed with �p � 2 or 4. The predictions with �p � 2 were
still acceptable (rmsd � 0.5) but significantly less accurate than
the ones performed with �p � 4, especially for the buried Asp-27
(rms error of 0.9 versus 0.0). The main reasons for the reduced
accuracy could be

1. FDPB�MF’s treatment of polarizability due to conforma-
tional relaxation of the polypeptide chain is limited to the
effects of sampling side chain rotameric degrees of freedom.
The use of �p � 4 may compensate for the lack of treatment
of backbone conformational relaxation and covalent bond
distortions and also for the discrete representation of the
conformational space.

2. Solvation due to electronic polarizability may be higher in
protein cores than in highly solvated small molecules and
would explain why the loss of accuracy mainly affected the
buried Asp-27.

3. With �p � 2, the difference in solvation energies and elec-
trostatic interactions between solvent-exposed and buried
positions are higher than with �p � 4. The ruggedness of the
conformational free energy landscape may therefore be
higher with �p � 2 than with �p � 4. Accordingly, the
self-consistent MF (SCMF) algorithm did not always well
converge at �p � 2 and this may also explain why the
predictions were less accurate. To ensure convergence,
the lambda factor (SI Fig. 4 and ref. 15) which controls the
rotamer probability updates in the SCMF was subsequently
lowered to 0.15 in all of the calculations performed in this
study. In these calculations, the solute and the solvent were
also always assigned a dielectric constant of 4 and 80,
respectively.

Test of the FDPB�MF Algorithm. To validate the physical basis of the
approach, we performed energy calculations and conforma-
tional searches on a model OMTKY3 with three flexible polar
sites that we could enumerate discretely. Effective solvation
energies were found to be within 0.3 kcal/mol of the exact
probability-weighted average energies of the discrete states of
the system (data not shown). The ability of the FDPB�MF
algorithm to find pH-dependent global free energy minima also
was assessed. The FDPB�MF titration curves were compared
with the exact curve obtained by exhaustively sampling all of the
microstates of the system (Fig. 1). The pKa of Asp-27 predicted
by FDPB�MF in the model OMTKY3 lies within 0.3 pH unit of
the value calculated by using the exact scheme. However, the
variations in the probability of the deprotonated species upon

pH predicted by FDPB�MF were much sharper than the one
predicted by enumerating all of the microstates of the system.
Asp-27 protonated and deprotonated species interact strongly
with two different conformations of Tyr-31 (see SI Fig. 7A). This
strong conformational coupling could not be resolved by a
simple mean-field averaging of the conformational ensembles
(zero- and first-order terms of Eq. 1) (16, 17). At pH values close
to the pKa, where these mutually exclusive configurations have
similar free energies, FDPB�MF only selects the configuration
that has the lowest free energy. To accurately compute the
probability of each chemical specie at pH values close to the pKa,
protonated and deprotonated states for this residue pair have to
be enumerated and treated separately (second-order term in Eq.
1). The second-order term in Eq. 1 also proved to be essential
in the accurate prediction of the pKas of the two buried
energetically coupled glutamate residues of Bacillus circulans
xylanase.

Prediction of Solvent-Dependent Protein Ionization Constants. We
then assessed the ability of FDPB�MF to accurately predict
solvent-dependent energetics in proteins. For all FDPB�MF
predictions, conformational f lexibility was modeled for side
chains atoms, whereas backbone atoms were fixed to the coor-
dinates determined by x-ray crystallography. The resulting con-
formational ensemble was relaxed by the SCMF algorithm to
find the distribution of rotamer probabilities that minimizes the
free energy of the system. The pKa values were assigned to the
pH at which the corresponding sites become 50% deprotonated.

Fig. 2 summarizes the pKa calculations performed by
FDPB�MF on 31 acidic residues and compares these values to the
predictions published by other methods. Among these,

Fig. 1. Accuracy of the convergence of the FDPB�MF compared with the
solution obtained by exhaustively sampling all of the discrete states of the
system. The two different predicted titration curves of Asp 27 correspond to
the sum of the probability of the deprotonated rotamers of Asp-27 as a
function of the pH. The ‘‘exact titration’’ curve (black) was obtained by
enumerating all of the discrete states of the system and is equal to the sum at
a given pH of the Boltzmann weights of the discrete states occupied by the
deprotonated rotamers. The FDPB�MF curve (gray) is derived by relaxing a
rotameric probability distribution with the FDPB�MF method. It corresponds
to the probability that minimizes at a given pH the electrostatic free energy of
the protein after optimization by the SCMF algorithm.

Table 1. Effect of the solute dielectric constant on the pKa values calculated for OMTKY3

Sites

Asp-7 Glu-10 Glu-19 Asp-27 Glu-43 C terminus rms error Max error

Experimental* 2.7 � 0.06 4.1 � 0.07 3.2 � 0.02 2.2 � 0.06 4.8 � 0.1 �2.7 � 0.12
FDPB�MF† (�p

‡ � 4) 2.5 3.9 3.0 2.3 4.4 2.7 0.2 0.4
FDPB�MF† (�p

‡ � 2) 2.5 4.5 2.6 3.2 5.1 2.7 0.5 0.9

*Experimentally measured pKa values at 25°C and 10 mM monovalent salt (14).
†FDPB�MF, pKa values calculated with an ionic strength of 10 mM (see Materials and Methods).
‡�p, the protein dielectric constant used for the calculation.
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PROPKA performs best, with a rmsd, maximal error to the
experimental values and correlation coefficient of 0.77 pH unit,
2.5 pH units, and 0.89, respectively. However, the slope of the
best fit to these predictions was significantly lower than 1.0
(0.73), suggesting that the model underlying PROPKA has been
trained to reproduce experimental data rather than accurately
recapitulating first physical principles. FDPB�MF predicts the
pKa values with a rmsd, maximal error to the experimental

values and correlation coefficient of 0.34 pH unit, 0.70 pH unit,
and 0.97, respectively. The slope of the best fit to these predic-
tions was 1.01. We largely focused our study on functionally or
structurally important residues with pKas that are often difficult
to predict accurately (Table 2). PROPKA surpasses other pub-
lished methods with a rmsd and maximal error to the experi-
mental values of 0.89 unit and 2.5 pH units, respectively.
FDPB�MF predicts the pKa values with a rmsd, maximal error
to the experimental values of 0.38 and 0.70 pH unit, respectively.

The ionic strength is an important parameter governing the
stability and function of proteins. Several acidic sites of
OMTKY3 show measured pKa shifts of 0.25–0.77 pH unit upon
variation of the ionic strength from 10 mM to 1 M (19).
FDPB�MF accurately predicted the effects of such large varia-
tion in ionic strength (Table 3). The rmsd and the maximum
error to the experimental values were 0.14 and 0.2 pH unit,
respectively. The sensitivity of pKas to the change in bulk ionic
strength often reflects the nature of the electrostatic interactions
stabilizing a particular ionized site (30, 31). These results suggest
that FDPB�MF predicts quantitatively the complex balance of
electrostatic interactions that stabilize charged residues.

Accurately predicting the energetic effects of mutations is an
important goal in protein modeling. The insensitivity of the pKas of
three acidic residues (Asp-7, Glu-10, Glu-19) to the removal of a
neighboring positively charged residue (Lys 34) was not accurately
predicted by simple FDPB calculations (20). FDPB�MF predicted
smaller pKa perturbations (Table 4), with rmsd and maximal error
from the experimental data of 0.28 and 0.4 pH unit, respectively.

Electrostatic interactions play a crucial role in modulating the
catalytic reactivity of enzymes. We assessed the ability of
FDPB�MF to accurately predict the pKa values of the two buried
energetically coupled glutamate residues that lie at the heart of

Fig. 2. Synopsis of the pKa predictions performed by FDPB�MF and compar-
ison with other methods: PROPKA (18), MCCE (10), and EGAD (9). rsmds and
maximal errors to the experimental values are in pH units. Each line and r2

value corresponds to the best linear regression fit to the data and the corre-
lation coefficient, respectively.

Table 2. Comparison between experimental and calculated pKa values for structurally and functionally important sites

Protein Sites Experiment*
FDPB�MF†

(�p
‡� 4) PROPKA§

MCCE¶

(�p
‡� 4)

EGAD�

(�p
‡� 8)

FDPB**
(�p

‡� 20)
Null

model††

OMTKY3 D7 2.7 3.1 2.8 2.8 3.1 2.9 4.0
I � 10 mM D27 2.2 2.1 2.4 3.3 3.0 3.6 4.0

E19 3.2 3.2 3.1 1.6 3.7 2.6 4.4
I � 1 M D7 3.3 3.7 ND ND ND 3.5 4.0

D27 2.9 3.0 ND ND ND 4.0 4.0
E19 4.0 3.9 ND ND ND 3.0 4.4

HEWL D52 3.7 4.3 3.2 3.0 3.6 3.1 4.0
D87 2.1 2.5 2.4 1.2 2.9 2.7 4.0

E7 2.9 3.3 3.7 2.2 2.6 3.3 4.4
E35 6.2 5.7 5.0 6.2 6.2 4.4 4.4

BCX E78 4.6 4.8 5.1 ND 4.4 2.9 4.4
E172 6.7 6.4 7.3 ND 7.6 5.9 4.4

E172Q E78 5.1 5.0 ND ND 4.5 4.3 4.4
E78Q E172 4.2 3.8 ND ND 6.9 2.8 4.4
TRX D26 7.5 7.0 7.0 ND ND 5.8 4.0
TRH D26 9.9 10.6 7.4 ND ND 7.5 4.0
rmsd 0.38 0.89 0.92 0.98 1.24 2.11
Max error 0.7 2.5 2.6 2.7 2.4 5.9

ND, not determined.
*Experimentally measured pKa values (14, 19, 20–24).
†FDPB�MF, pKa values calculated with FDPB�MF (see Materials and Methods).
‡�p, the protein dielectric constant used for the calculation.
§PROPKA, pKa values calculated with an empirical structure-based pKa prediction method (18).
¶MCCE, pKa values calculated with a pairwise factorable FDPB electrostatic potential and with polar side-chain rotamer conformations relaxed by a Monte Carlo
algorithm (10).

�EGAD, pKa values calculated with a pairwise factorable Generalized-Born electrostatic potential and with side-chain rotamer conformations relaxed by a SCMF
algorithm (9).
**FDPB, pKa values calculated by using an FDPB electrostatic potential of mean force and discrete backbone and side-chain coordinates from the x-ray crystal

structures (25–29).
††Intrinsic model compound pKa values (8).
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the active site of B. circulans xylanase (BCX; Table 2 and SI
Table 8). Simple FDPB calculations with a single dielectric
constant of 8 for the protein failed to predict accurately the pKa
values of both glutamates in the WT protein. By introducing an
explicit treatment of conformational f lexibility, EGAD per-
formed better than FDPB and similar to PROPKA for the WT
protein. However, EGAD failed to predict the large pKa shift
(�2.5 pH units) observed for Glu-172 when Glu-78 was mutated
to Gln (21, 22). By finely sampling the conformational space in
the vicinity of the glutamates and by uncoupling their titration
in the WT protein, FDPB�MF accurately predicted the unusually
high pKa of Glu-172 (pKa of 6.7) and its large pKa shift upon
mutation of Glu-78 to Gln. The rmsd and maximal error to
the experimental values were equal to 0.2 and 0.3 pH unit,
respectively.

The buried, catalytically important Asp-26 in Escherichia coli
and human thioredoxins have among the highest pKa values ever
measured for an aspartate (23). FDPB�MF predicted their pKa
more accurately than other methods, with errors of 0.5 and 0.7
pH unit compared with the experimental values (Table 2 and SI
Table 8).

Prediction of Solvent-Dependent Protein Conformations. Because
protein energetics and conformations are tightly coupled, we
expect quantitative energetic predictions to be corroborated
with high-resolution structural predictions.

Fig. 3 compares the observed and predicted structural reor-
ganizations occurring in the active site of B. circulans xylanase
upon titration of Glu 172. Although the crystals were soaked at
pH 4.0, the observed conformation at ‘‘pH 4.0’’ likely corre-
sponds to that induced by deprotonated Glu 78 and protonated
Glu 172 (21) and can be compared with the structure predicted
at pH 5.5. Except for a small difference at Tyr 69, the observed
and predicted conformational changes induced by protonation of
Glu 172 are in good agreement. The aromatic ring of Tyr 80 flips
by 180° to preferentially stabilize the remaining deprotonated

Glu at position 78. The Asn 35 amide group moves away from
the protonated Glu 172 and the amide of Gln 127 comes slightly
closer to Glu 78. The rmsd between the predicted and observed
distance changes involving protons and heteroatoms in the active
site was 0.2 Å (SI Table 5).

FDPB�MF also predicted substantial pH dependent conforma-
tional shifts (SI Text and SI Fig. 7) that have yet to be tested by
experiments. Most of these conformational changes were corrob-
orated with significantly improved energetic predictions when
compared with traditional FDPB calculations performed on fixed
crystallographic structures (Tables 2–4 and SI Tables 6–8).

Discussion
Protein stability, solubility, recognition, and catalysis depend
critically on electrostatic interactions, and many important con-
formational transitions in proteins are triggered physiologically
by changes in bulk ion composition and in pH. FDPB�MF was
developed to accurately predict this coupling between solvent-
dependent protein energetics and conformations. Here we used
FBPB�MF to predict the pKa values of 31 carboxylates in very
different protein environments and solvent conditions. This
approach yielded predictions of unprecedented accuracy as well
as new capabilities to model the effects of mutations and changes
in ionic strength. The accuracy of the pKa predictions ap-
proached the experimental error in the measured values, adding
considerable utility to the pKa predictions based on structural
data.

For charged residues near the protein surface, the solvent
accessibility and solvation energies are mainly determined by the
conformation of neighboring residues or substrates. By explicitly
modeling the conformational relaxations of all residues and/or
ligands that constitute the protein-solvent interface, the
FDPB�MF method captures the energetics of partially solvent-
exposed acidic residues more accurately than available methods
that rely solely on pairwise-factorable energy functions. Buried
charged residues are less frequent and are often involved in

Table 3. Experimental and calculated ionic strength effects on the pKa values of OMTKY3

Sites

Asp-7 Glu-10 Glu-19 Asp-27 Glu-43 rms error Max error

Experimental* 0.57 � 0.2 0.25 � 0.14 0.77 � 0.05 0.72 � 0.1 0.30 � 0.14
FDPB�MF† (�p � 4) 0.63 0.40 0.74 0.90 0.10 0.14 0.25
FDPB‡ (�p � 20) 0.58 0.54 0.41 0.43 0.14 0.21 0.47

*Differences between the experimentally measured pKa values at 25°C and 1 M monovalent salt (19) and the same values measured at 10 mM monovalent salt.
†FDPB�MF, differences between the pKa values computed with an ionic strength of 1 M bulk and the same values computed with an ionic strength of 10 mM.
‡FDPB, literature pKa shifts calculated by using an FDPB electrostatic potential of mean force (19).

Table 4. Experimental and calculated effects of point mutations on the pKa values of OMTKY3

Mutant

Sites

Asp-7 Glu-10 Glu-19 rms error Max error

Lys34Gln
Experimental* �0.1 � 0.1 0.15 � 0.14 0.1 � 0.1
FDPB�MF† (�p � 4) 0.3 0.4 0.2 0.28 0.4
FDPB‡ (Xray, �p � 20) 0.6 0.4 0.6 0.52 0.7

Lys34Thr
Experimental* 0 � 0.3 0.15 � 0.1 �0.1 � 0.1
FDPB�MF† (�p � 4) 0.3 0.4 0.2 0.28 0.3
FDPB‡ (X-ray, �p � 20) 0.6 0.4 0.6 0.55 0.7

*Differences between the experimentally measured pKa values of the mutant protein and the same values
measured for the WT protein (20).

†FDPB�MF: differences between the pKa values computed for the mutant protein and the same values computed
for the WT protein.

‡FDPB: literature pKa shifts calculated using an FDPB electrostatic potential of mean force (20).
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catalysis or in structural specificity. Anisotropy in polarizability
of protein interiors is higher than at the surfaces, in line with the
inability of FDPB calculations to capture implicitly the structural
relaxation of protein interiors with a single dielectric constant
(21). The energetics of buried residues are therefore sensitive to
the fine conformational reorganization of their packed micro-
environments. FDPB�MF explicitly models these effects and
predicts the energetics of buried charged residues more accu-
rately than current molecular dynamics simulations and rotamer
repacking methods. The accuracy of FBPB�MF arises from the
unique combination of fine sampling of the side chain confor-
mational space, rigorous calculation of multibody protein–
solvent interactions and a general treatment of conformational
relaxation. Unlike current methods based on first principles,
FDPB�MF quantitatively predicts the energetic effects of various
protein environments, sequence mutations and solvent compo-
sitions (Fig. 2, rmsd from experimental values � 0.34 pH unit).
Each calculation reported here took 2–6 days on a single
Pentium 4 2.4 GHz CPU for a single pH.

Understanding the relationships between protein energetics,
conformations and dynamics also presents major challenges in
protein modeling. Proteins exhibit side chain conformational flex-
ibility that is dictated by their structural environment and by the
physical properties of the solvent. FDPB�MF predicts pH-induced,
side chain conformational changes involving either changes in the
dominant rotamers or redistribution of probabilities within a con-
formational ensemble (Fig. 3 and SI Fig. 7). These shifts highlight
the complex nature of the electrostatic interactions involved in
stabilizing charged residues. The explicit modeling of these struc-
tural reorganizations by FDPB�MF is corroborated by improved
energetic predictions when compared with fixed-structure calcula-
tions (Tables 2–4 and SI Tables 6–8). The pH-induced conforma-
tional changes predicted by FDPB�MF in B. circulans xylanase are
in good agreement with those observed in the crystals (Fig. 3). As
the challenges of protein structure prediction continue to move
toward the generation of high-resolution models (33), the accurate
prediction of solvent-dependent conformational changes will grow
in importance.

Materials and Methods
FDPB Calculations. Perturbation theory is an effective approach
for the computation of mean-field properties and correlations

beyond the mean-field. Following the same formalism (i.e., in
the form of a perturbation series), Eq. 1 describes a general
solution to the electrostatic protein–solvent interaction energy
(EFDPB) of a conformational ensemble defined by a rotamer
probability distribution (PI,R).

EFDPB � EDIST � �
I

NI �
R

NR

PI, R�EI, R
100 � EDIST)

��
I

NI �
J�I

NJ �
R

NR �
R�

NR�

PI, RPJ, R��EIR, JR�
100 � (EIR

100 �EJR�
100)) � . . . [1]

In this ensemble description, each rotamer is assigned a weight
corresponding to its probability of being occupied in the popu-
lation of rotamers. In the mean-field approximation, individual
side chain rotamers interact with the probability-weighted av-
erage of all of the rotamers at the neighboring sites. The
corresponding mean-field electrostatic protein–solvent interac-
tion energies are defined by the zero- and first-order terms of Eq.
1. These were computed in two steps by the FDPB module (SI
Fig. 5). First, all side chain rotamers R at all sites I weighted by
their probabilities PI,R were mapped onto a three-dimensional
grid. The Poisson–Boltzmann (PB) equation was solved by
finite-differences for this ‘‘distributed’’ conformational ensem-
ble and a corresponding solvation energy, EDIST, was computed
(zero-order term in Eq. 1). This ‘‘distributed’’ representation of
the system is inaccurate partly because rotamers from the same
site are present and interact with each other. An additional
energy term for each rotamer, E100

IR (first-order term in Eq. 1),
is necessary and was computed by iteratively placing single
discrete rotamers at each site and solving the PB equation for the
solvation energy. Adding the first-order to the zero-order term
of Eq. 1 corrects for the simultaneous presence of rotamers on
the grid and gives an accurate solution to the mean-field
protein–solvent electrostatic interaction energies. The mean-
field treatment was sufficient for most calculations performed in
this study. It failed, however, when side chain conformations
from different sites were strongly coupled. Higher-order terms
in Eq. 1 are then necessary to describe the mutually exclusive
combinations of rotamers.

The mean-field treatment requires the definition of effective
physical quantities that accurately describe the probability-
weighted conformational ensembles. These quantities were de-
rived so that they would equate or well approximate the corre-
sponding average calculated by enumerating all of the discrete
states of the system. If a rotamer R alone occupies a particular
space with a probability PR, it is equivalent to that space being
occupied a fraction PR of the time by the solute and a fraction
(1 � PR) of the time by the solvent. Consequently, if ER, ES, and
EW define the Born solvation energy of a charge covered by
rotamer R, pure solute, or water, respectively, then ER should
equate the probability weighted average of ES and EW as defined
by Eq. 2

ER � PRES � (1 � PR)EW. [2]

Eq. 2 was used to derive the effective physical quantities needed
to solve the PB equation by finite differences for the probability-
weighted conformational ensembles (SI Text).

The FDPB algorithm is based on the QNIFFT program
(Academic version of Delphi provided by K. Sharp, University
of Pennsylvania, Philadelphia, PA). All calculations were carried
out on a 129 cubic grid. Focusing yielded grid resolutions 	 2.4
grid units/Å (34). The linearized form of the PB equation was
solved by the inexact Newton method with a multilevel solver
algorithm to aid convergence (35). The solute was mapped on

Fig. 3. Good agreement between observed and predicted conformational
changes induced by the protonation of Glu 172 in B. circulans xylanase. Figures
were generated by using Pymol (www.delanoscientific.com). As discussed in
ref. 21, the crystal structure solved at an apparent pH of 4.0 is likely to be
consistent with Glu 172 being protonated. Protons on the x-ray structures
were added with the program Reduce (32). At the bottom, distance changes
are provided in angstroms. The first and second numbers represent distances
between protons and heteroatoms and distances between heteroatoms,
respectively.
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the grid with PARSE charge and radii parameters (13). Atomic
charges, dielectric constants, and Debye factors were assigned
according to the probabilities of occupancy of the solute and
water (SI Text). A 1.4-Å water sphere probe radius and a 2.0-Å
Stern ion-exclusion radius were used to generate the solvent-
accessible surface and ion exclusion layer, respectively. Solvation
energies were calculated by subtracting the energy of the grid
computed for the solute placed in solvent from the energy of the
same grid computed without solvent in a medium of uniform
dielectric constant.

Conformational Search. A SCMF method was developed that relaxes
a side chain rotamer probability distribution to minimize the free
energy of a protein conformational ensemble (15). In this method,
non-pairwise factorable protein–solvent electrostatic interactions
were computed repeatedly as rotamer probabilities were updated
(SI Fig. 4). At each iteration of the relaxation, a new rotamer
probability distribution (PM1) was sent to the FDPB module, and
the algorithm computed protein–solvent electrostatic interaction
energies for that particular rotamer probability distribution. These
quantities were combined with precomputed one- and two-body
nonelectrostatic potential energy terms to calculate mean-field
potential energies (Eir).

pKa Predictions. Proteins were described by a conformational en-
semble consisting of a fixed backbone and a library of side chain
rotamers at each flexible position. For all calculations, fixed back-
bone and side chain coordinates were taken from the x-ray struc-
tures 1PPF (25), 1XNB (26), 2TRX (27), 1ERT (28), and 2LZT
(29) for OMTKY3, BCX, TRX, TRH, and HEWL, respectively.
The penultimate rotamer library (36) was used to model side chain
conformational flexibility for all amino acids. Side chain coordi-
nates were built on the backbone structure and energy minimized
by using the CHARMM19 geometric and van der Waals potential
energy terms and a 20° square well dihedral restraint (37). Proton-
ated rotamers for acidic residues were built by placing the proton
trans to the preceding methylene group. The entropic bias for the
protonated state was corrected by adding the quantity RT 


log(Np/Nd) to the mean-field energy of the protonated rotamers (Np
and Nd being the number of protonated and deprotonated rotamers
at a given site, respectively).

The modeling of side chain flexibility was defined in each
system to keep the calculations efficient while adequately sam-
pling conformational space (SI Text). In the minimalist
OMTKY3 system, three neighboring polar residues (Asp-27,
Lys-29, and Tyr-31) were treated simultaneously with several
side chain rotamers weighted by probabilities lying between but
not equal to 0 and 1. All other sites were placed in the discrete
side chain crystallographic coordinates.

In addition to the electrostatic solvation term (UFDPB), the
potential energy function was approximated and decomposed in
pairwise-factorable potential energy terms

U total � Ugeom � ULJ � USAS � Uprotonation � UFDPB, [3]

where Ugeom and ULJ correspond, respectively, to the bonded and
Lennard–Jones energy terms of the CHARMM19 force field
(37). USAS corresponds to the pairwise-factorable approximation
of the nonelectrostatic solvation potential derived from the
product over the solvent surface tension and the solvent-
accessible surface area of the solute (38). Uprotonation consists of
a protonation potential and is derived from a thermodynamic
cycle relating a titratable site in the protein to the equivalent site
in an isolated model compound with an experimentally deter-
mined pKa (12).

Relaxations of the conformational ensembles were performed
by the SCMF algorithm at several pHs varying by steps of 0.25
pH unit. The pKa of a particular site was assigned to the pH at
which the probabilities of the deprotonated and protonated
rotamers become equal.
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