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Parkinson’s disease (PD) progresses relentlessly and affects five
million people worldwide. Laboratory tests for PD are critically
needed for developing treatments designed to slow or prevent
progression of the disease. We performed a transcriptome-wide
scan in 105 individuals to interrogate the molecular processes
perturbed in cellular blood of patients with early-stage PD. The
molecular multigene marker here identified is associated with risk
of PD in 66 samples of the training set comprising healthy and
disease controls [third tertile cross-validated odds ratio of 5.7 (P for
trend 0.005)]. It is further validated in 39 independent test samples
[third tertile odds ratio of 5.1 (P for trend 0.04)]. Insights into
disease-linked processes detectable in peripheral blood are offered
by 22 unique genes differentially expressed in patients with PD
versus healthy individuals. These include the cochaperone ST13,
which stabilizes heat-shock protein 70, a modifier of �-synuclein
misfolding and toxicity. ST13 messenger RNA copies are lower in
patients with PD (mean � SE 0.59 � 0.05) than in controls (0.96 �

0.09) (P � 0.002) in two independent populations. Thus, gene
expression signals measured in blood can facilitate the develop-
ment of biomarkers for PD.

risk markers � biomarkers � heat shock protein 70-interacting protein
(ST13) � microarray

Many fundamental decisions in medical practice are based
on laboratory risk markers (1). For example, cholesterol

levels, although not diagnostic, are a standard biomarker that
correlate with risk for coronary heart disease and trigger inter-
ventions to prevent heart attacks (2).

Parkinson’s disease (PD) is a slowly progressive disease.
Tremor and slow movements develop only after �70% of
vulnerable dopaminergic neurons in the substantia nigra have
already died (3). No laboratory test that correlates with PD risk
is available. This curtails our ability to test disease-modifying
drugs and other neuroprotective strategies (4). Genes mutated
in rare monogenic variants of PD (5) are transcribed in blood
cells (6, 7). In PARK9, a donor splice site mutation in the
predominantly neuronal gene ATP13A2, leads to skipping of
exon 13 during RNA processing (8). The aberrant mRNA
isoform can be detected in whole blood (8). Furthermore, studies
in platelets (9) or lymphocytes (10–13) of patients with sporadic
PD have detected subtle abnormalities in dopamine biosynthesis/
signaling and mitochondrial function, two hallmarks of PD. The
etiology of these changes remains unexplained and might reflect
disease mechanisms, allele-specific gene expression, or reactive
responses (14, 15).

Instead of testing one gene at a time, microarrays can inter-
rogate in parallel expression levels of thousands of genes in
tissues from patients with PD. This allows to rapidly scan for
candidate genes and candidate biomarkers (15). In the substantia
nigra of individuals affected by PD and in PD models, we (16,
17) and others (18, 19) found profound expression changes of
genes involved in cellular quality control and energy metabolism.

For a biomarker to be clinically useful, noninvasive detection in
peripheral blood is desirable. The power of this approach for
identifying disease-associated candidates in a neurodegenerative
disease is precedented by an expression screen of lymphoblasts
of patients with Alzheimer’s disease (AD), in which we detected
abnormally low signals of the neuronal sorting receptor LR11/
SorLa (20). Subsequent analyses of LR11/SorLa’s mechanistic
role in AD demonstrated that LR11/sorLA modulates APP
trafficking and its processing to amyloid-� (21, 22).

Here, first, a risk marker for PD was built based on a
systematic scan of genome-wide expression changes in blood of
individuals with early PD. Second, this screen identified genes
differentially transcribed in PD patients versus normal controls.

Results
Identification of a Molecular Signature of PD in Blood. To identify a
transcriptional profile associated with PD we probed RNA
extracted from whole blood of 50 PD patients predominantly at
early disease stages (mean Hoehn and Yahr stage 2.3, range 1–4)
[supporting information (SI) Table 2] and 55 age-matched
controls with 22,283 oligonucleotide probe sets on microarrays.
The disease controls included patients with AD that may be
misclassified as PD (23), as well as with progressive supranuclear
palsy, multiple system atrophy, and corticobasal degeneration,
which closely mimic the clinical features of PD (23) but differ in
etiology, prognosis, and treatment response. We carefully as-
sayed for shifts in differential blood counts that could bias gene
expression changes and found no significant difference between
PD and controls (SI Table 2).

A subset of the patient samples was randomly chosen to build
the risk marker (SI Methods). This ‘‘training set’’ included �60%
of the subjects (66/105), including 31 PD patients, 17 healthy
subjects, and 18 disease controls with AD or progressive su-
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pranuclear palsy. We used a powerful four-step supervised
prediction method, similar to those used previously (24), to build
a molecular marker for PD. The genes were rank-ordered
according to the absolute value of their correlation coefficient
with PD. The optimal number of genes for the marker was then
determined by sequentially adding genes from the top of this
rank-ordered list and evaluating its power for correct prediction
accuracy based on the rank sum statistic (see SI Methods). The
maximum rank sum was reached with an optimal number of eight
marker genes (SI Fig. 3). These marker genes were significantly
correlated with PD (SI Fig. 4). We then calculated the average
expression value of the eight marker genes within the PD
samples and the non-PD samples, forming a PD template and a
non-PD template. For each sample a PD risk score was calcu-

lated, which was defined as the correlation with the PD templates
minus the correlation with the non-PD template.

High Marker Scores Indicate PD. Twenty of 22 individuals with high
risk scores had PD. These were ranked in the top third of the
rank-ordered list (third tertile, Fig. 1a). Twenty-one of 22
individuals with low risk scores ranked in the bottom third of the
list (first tertile) were controls. The odds for PD in individuals
in the third tertile (high score) and the second tertile (interme-
diate scores) were compared with the odds for PD in individuals
in the first tertile (low scores). The nominal odds ratio for PD of
subjects in the third tertile was 210 [95% confidence interval
(C.I.) 18–2,500] and in the second tertile was 18 (95% C.I.
2.0–150) with a P for trend of �0.0001. For novel risk markers

Fig. 1. Molecular marker associated with PD risk. (a) Expression data matrix of eight marker genes of 66 blood samples from PD and control subjects. Each row
represents a blood sample, and each column represents a gene. As shown in the color bar, overexpression is displayed in red, and underexpression is displayed
in green. Blood samples are ordered by their risk score (shown on the left), which is defined as the correlation with the average profile of the PD group minus
the correlation with the average profile of the controls. Twenty of 22 individuals with high risk scores ranked in the top third of the list have PD (third tertile).
Twenty-one of 22 individuals with low risk scores ranked in the bottom third of the list are controls (first tertile). Solid lines designate tertiles of risk score values.
The clinical diagnosis for each individual is shown on the right. (b) Validation of the risk marker on independent test samples confirms that high scores are
significantly associated with increased PD risk (P for trend � 0.04). The expression data matrix is as in a, except that b uses 39 independent samples. (c) The ROC
curve in the test set (blue curve) is highly consistent with the ROC curve for the leave-one-out cross-validated (LOOCV) marker in the training set (gray) confirming
the risk prediction observed for different cutoffs. The nominal ROC curve in the training set represents an upper limit (red). (d) Dopamine replacement medication
does not bias the risk score. There is no difference in risk scores of PD patients on dopamine medication versus unmedicated de novo patients (mean � SE 0.06 �
0.04 and 0.11 � 0.1, respectively; P � 0.96). The average risk score for the overall PD group is 0.07 � 0.03 (data not shown). Average risk scores are low (negative)
in healthy controls (�0.24 � 0.04) and neurodegenerative disease controls [AD, �0.25 � 0.05; progressive supranuclear palsy, �0.19 � 0.06; multiple system
atrophy (MSA), �0.34 � 0.17; corticobasal degeneration (CBD), �0.26; essential tremor (ET), �0.15]. Individual scores range from �0.43 to 0.6 for PD patients,
�0.62 to 0.12 for healthy controls, and �0.59 to 0.37 for neurodegenerative disease controls. ND, neurodegenerative disease control; H, healthy control. Error
bars indicate standard errors.
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the ‘‘normal value’’ that best discriminates high-risk from low-
risk individuals is unknown. We therefore determined the
receiver-operating-characteristics curve (ROC curve) of our
marker and found high sensitivity and specificity at various
cutoffs (Fig. 1c, red line). These estimates are based on the same
series of patients that the marker was derived from and therefore
represent an upper limit.

Confirmation by Leave-One-Out Cross-Validation. To statistically
validate the predictive value of the risk score on future samples
a performance leave-one-out cross-validation procedure was
performed in which the left-out sample was not involved in
selecting the marker genes (SI Methods). The cross-validated
odds ratios for PD were 5.7 (95% C.I. 1.6–21) and 2.2 (95% C.I.
0.6–7.8) for persons with scores in the third and second tertile,
respectively. This confirmed that high scores correlate with PD
risk (P for trend � 0.005) (Table 1).

Validation in an Independent Test Set. The most rigorous test for the
significance and predictive value of a risk marker is validation on
independent test samples. We applied the microarray-based risk
score to a test set of 39 samples, including 19 PD patients, five
healthy individuals, and 15 disease controls with movement or
memory disorders (Fig. 1b). There was a significant difference
of scores in patients with PD versus healthy and disease controls
(P � 0.047 by Wilcoxon test). High scores were significantly
associated with increased PD risk (P for trend � 0.04). Individ-
uals with scores in the third tertile (high score) had an odds ratio
for PD of 5.1 (95% C.I. 1–27) (Table 1), and individuals with a
score in the second tertile (intermediate score) had an odds ratio
of 1.9 (95% C.I. 0.4–9.6). The ROC curve in the validation set
(Fig. 1c, blue line) was highly consistent with the ROC curve for
the cross-validated marker in the training set, thus confirming
the risk prediction observed for different cutoffs. The average
Hoehn and Yahr stage (2.1 � 0.7) and disease duration (4.7 �
3.6 years) in the validation set were lower (indicating an earlier
disease state) than in the training set (2.4 � 0.7 and 7.1 � 4.9,
respectively), but this did not reach statistical significance.

Overall, the risk marker predicted PD beyond the prediction
afforded by the traditional risk factors of age and sex (P � 0.0001
by Wald �2 test) and was not biased by dopamine replacement
therapy (Fig. 1d and SI Text).

Functionally the eight marker genes (VDR, HIP2, CLTB,
FPRL2, CA12, CEACAM4, ACRV1, and UTX) do not appear to
represent a single biologic pathway or process, although all are
known to be expressed in the human brain (25, 26). The products
of two of the eight genes, namely vitamin D receptor gene (VDR)
and huntingtin interacting protein 2 (HIP2), are of particular
interest to PD pathobiology (26–29). A polymorphism in the
VDR gene is overrepresented in PD patients in Korea (29), and
in rats the ligand vitamin D ameliorates 6-hydroxydopamine-
induced toxicity (27). HIP2 encodes a neuronal ubiquitin-
conjugating enzyme involved in the ubiquitinylation of hunting-
tin, mutated in the neurodegenerative disorder Huntington
disease (26). Correspondingly, the ubiquitin–proteasome system
is linked to monogenic forms of PD (5). CLTB is implicated in
dopamine transporter endocytosis (28). The remaining five

genes have no known role in PD pathogenesis and include
FPRL2, related to the G protein-coupled receptor 1 family,
CA12, or carbonic anhydrase XII; CEACAM4, a cell adhesion
molecule; ACRV1, initially described in acrosomal vesicles; and
UTX, an X-linked gene of unknown function.

Heat-Shock Protein 70-Interacting Protein ST13 and Biologic Insights
into PD-Related Changes in Blood Cells. The molecular marker was
designed to detect clinically useful gene expression changes that
specifically correlate with PD. Discovery of genes dysregulated
in PD compared with healthy controls, however, regardless of
their expression changes in other neurodegenerative diseases,
might provide detailed biologic insights into the molecular
pathology underlying PD-related changes in blood cells. Signif-
icance analysis of microarrays (30) identified 22 unique genes
that were most differentially expressed in 31 PD patients (in-
cluding five de novo PD patients) compared with healthy controls
at a false discovery rate (FDR) of 0.03 (Fig. 2).

One of the 22 genes most underexpressed in PD was the
heat-shock protein 70-interacting protein ST13 in the ubiquitin–
proteasome pathway. ST13 is a cofactor of heat-shock protein 70
(HSP70) and stabilizes its chaperone activity (31). This may be
particularly relevant to PD pathobiology. HSP70 modulates
SNCA folding (32) and suppresses SNCA toxicity in cells (32),
yeast (33), and flies (34). To confirm the reduction in mRNA
levels for ST13 measured by microarray (0.67- and 0.73-fold), we
performed quantitative real-time PCR assays based on precise
fluorogenic 5� nuclease chemistry in a large subset of 39 PD
patients and 12 age-, sex-, and blood count-matched healthy
controls. We used the housekeeping gene glyceraldehyde-3-
phosphate dehydrogenase to control for input RNA and the
comparative threshold cycle (CT) method (35) for analysis (Fig.
2b). In PD patients, ST13 amplified at higher �CTs than in
controls, indicating a lower abundance of ST13 mRNA in PD
(fold change � 0.78, P � 0.025 by t test).

Then we enrolled a new and independent population of 17
patients with PD and 17 age- and sex-matched healthy controls
from the Partners Parkinson and Movement Disorders Center
clinic population, extracted RNA from 7.5 ml of venous blood,
and quantified the relative amount of ST13 mRNA copies
compared with 18S ribosomal RNA copies by a standard curve
method (35). The log-transformed mean ratio of ST13 mRNA
copies to 18S ribosomal RNA copies was significantly lower in
blood from patients with PD (mean � SE 0.59 � 0.05) than in
the control group (0.96 � 0.09) (fold change � 0.6, P � 0.002 by
t test) (Fig. 2c). Thus, measurement of ST13 mRNA may offer
a robust, noninvasive means of identifying PD-related changes in
blood.

Apoptosis-related genes such as BCL11B were also underex-
pressed in PD blood cells. The changes in mRNA levels of
BCL11B were further confirmed by real-time PCR in a large
subset of 33 individuals with PD and 12 age-, sex-, and blood
count-matched healthy volunteers (P � 0.005) (Fig. 2d). Mito-
chondrial dysfunction in PD can be detected in the substantia
nigra, as well as in peripheral tissues. It was remarkable to us that
the nuclear encoded mitochondrial gene LRPPRC was among
the genes underexpressed in PD. A mutation in this gene causes

Table 1. Odds ratio for PD according to tertile of risk score (95% C.I.)

Variable n

Risk score tertile

P for trend1 2 3

Training set* 31 (PD) and 35 (controls) 1.0 2.2 (0.6–7.8) 5.7 (1.6–7.8) 0.005
Test set 19 (PD) and 20 (controls) 1.0 1.9 (0.4–9.6) 5.1 (1–27) 0.04

In each analysis the first tertile served as the reference group.
*Cross-validated odds ratios are shown.
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French-Canadian-type Leigh syndrome, an early-onset progres-
sive mitochondrial neurodegenerative disorder caused by defects
in oxidative phosphorylation (36). It remains to be seen whether
partial reduction in LRPPRC expression can contribute to
mitochondrial dysfunction.

Additional biological processes represented by the 22 PD-
associated genes were DNA and RNA turnover, cell cycle, carbo-
hydrate metabolism, protein metabolism, signaling, phosphoryla-
tion, and protein transport (Fig. 2a and SI Fig. 5). By comparison,
up to 28% of the genes most differentially transcribed in the 23
disease controls with AD (FDR � 0.04) were involved in inflam-
matory processes that were not perturbed in PD.

As expected in this comparison limited to healthy controls, all
eight probe sets comprising the molecular multigene marker
were ranked among the highly differentially expressed genes (top
305 genes by significance analysis of microarrays with FDR �
0.2; top 228 genes by t test with P � 0.005) of all 22,283 genes
assayed (data not shown).

Discussion
No laboratory blood test for PD is available. Diagnosis and
outcome measures rest on the physician’s physical examination
and clinical history. Identification of the earliest stages of PD is
most unreliable (37), and detection of individuals at risk for
developing PD is currently impossible. Dopamine neurons in the
substantia nigra degenerate undetected for years before clinical
symptoms develop (3). After 70% of vulnerable dopaminergic
neurons have been lost, tremor and slow movements develop (3)
and eventually PD can be diagnosed based on clinical criteria.
This opens a window of opportunity for interventions designed
to prevent PD or to delay the onset of the clinical disease. If a
reliable risk predictor of PD can be developed, this will allow
clinical trials of drugs designed to prevent PD or to delay the
clinical disease onset.

Here we show that combining gene expression scans in cellular
blood and linked clinical data can rapidly characterize candidate
laboratory biomarkers of PD risk. Risk markers for complex

Fig. 2. Heat-shock protein 70-interacting protein ST13 and biologic insights into PD-related changes in blood cells. Underexpression of ST13 in PD is confirmed
by three distinct assays in two independent populations (a–c). (a) Twenty-four probe sets, including two probing for ST13, are significantly underexpressed in
cellular blood of 31 PD patients (including five de novo PD patients) compared with healthy controls (FDR � 0.03). Untreated de novo patients are identified
by a pink bar, and patients treated with dopamine replacement are identified by a black bar. Expression matrices are as in Fig. 1 except that genes here are shown
on the vertical axis. The majority of PD patients are at early stages of the disease process as indicated by the Hoehn and Yahr (H&Y) scale. Dendrograms illustrate
genes with similar expression patterns by cluster analysis. (b) Underexpression of ST13 in PD is first validated by real-time PCR in a large subset of 39 PD patients
and 12 age-, sex-, and blood-count-matched healthy controls by using the comparative CT method. �CT values are displayed. In PD patients, ST13 amplifies at
higher �CTs than in controls, indicating a lower abundance of ST13 mRNA in PD (fold change � 0.78, P � 0.025 by t test). GAPD mRNA levels are used to control
for input RNA. (c) The log-transformed mean ratio of ST13 mRNA copies to 18S ribosomal RNA copies is lower in patients with PD (mean � SE 0.59 � 0.05) than
in the control group (0.96 � 0.09) (fold change � 0.6, P � 0.002 by t test) in a second, independent population by a standard curve method. The box plot shows
the median (bold line) and the 75th and 25th percentile values (top and bottom of the box) for log-transformed ratios of ST13 mRNA copies to 18S rRNA copies
in blood samples of 17 patients with PD and 17 age- and sex-matched healthy control subjects. The top and bottom of the whiskers show the maximum and
minimum values. (d) Underexpression of the apoptosis-related gene BCL11B was also confirmed by the comparative CT method (P � 0.005).
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diseases such as PD are not simply present or absent (1). Rather,
they have a wide range of values that overlap in persons with a
disease and in those without it (1). The risk typically increases
progressively with increasing levels (1). By contrast, diagnostic
tests are binary classifiers designed to diagnose the presence or
absence of a disease state with highest specificity and sensitivity.
PD is a complex, etiologically, genetically, pathologically, and
clinically heterogeneous neurodegenerative disease (5, 15, 38).
Further adding complexity to the disease classification, consid-
erable overlap is seen on autopsy between patients clinically
diagnosed with PD and those clinically diagnosed with other
neurodegenerative diseases, particularly AD (23). Thus, we
developed a simple continuous score to identify individuals with
higher or lower risk of PD that can account for the complex
biology of the disease. This was derived from a supervised
classification method similar to those used previously (24).

The molecular marker identified was strongly associated with
PD in this cross-sectional study of 105 subjects. Individuals with
the highest marker scores had a �5-fold increased risk of PD.
The molecular marker was rigorously confirmed by leave-one-
out cross-validation and in an independent validation set of 39
healthy as well as disease controls. Individuals with atypical
parkinsonism that are frequently misdiagnosed as PD by the
nonspecialist (23) had low scores. Notably, dopamine replace-
ment therapy did not bias the risk scores.

This study was carefully designed to reduce the dual threats to
molecular-marker discovery of bias and chance in accordance
with published recommendations (39, 40). All PD patients met
diagnostic criteria of the United Kingdom Parkinson’s Disease
Society Brain Bank. Controls were recruited predominantly
from nonaffected spouses of the PD cases, thus adjusting for
environmental biases. Blood specimens of cases and controls
were collected, processed, and assayed in parallel. This contrasts
with studies relying on banked convenience samples. Demo-
graphic and hematologic variables did not influence the molec-
ular marker. Importantly, both the molecular marker assayed by
eight oligonucleotide probe sets and ST13 mRNA copy numbers
assayed by quantitative real-time PCR were confirmed in inde-
pendent validation studies (39, 40).

The implication of the leads here discovered for the clinical
practice of medicine need to be interpreted with caution. The
reliability and precision of microarray platforms in the context
of personalized medicine was recently confirmed by a consor-
tium led by the Food and Drug Administration (41). Novel
biomarkers, however, must be further validated in analogy to
new drugs in prospective, well controlled clinical studies of
diverse patients across multiple institutions, with well established
standards for all steps in the process (40). Furthermore, the list
of genes identified as disease signature can vary depending on
the composition of the training set (42). Distinct but equally
relevant disease control populations and distinct clinical appli-
cations of the candidate molecular markers may require adap-
tations in the selection of discriminating probes.

In PD patients several genes differentially expressed were
involved in the pathobiologically and therapeutically relevant
processes of the ubiquitin–proteasome pathway, mitochondrial
function, and apoptosis (5). Transcript levels of the HSP70-
interacting gene ST13 were low in PD and may serve as an
indicator of HSP70 function. HSP70 suppresses SNCA toxicity in
cellular (32), yeast (33), and fly models of PD (34). It is thought
to exert its salutary effect by modulating SNCA folding (32).
ST13 stabilizes the ADP state of HSP70, which has a high affinity
for substrate protein (31, 43). Through its own chaperone
activity, ST13 may contribute to the interaction of HSP70 with
various target proteins (43). In the substantia nigra of patients
with PD, expression of different HSP70 members is highly
perturbed (17, 44). Furthermore, CHIP, a HSP70 cofactor
structurally related to ST13, influences SNCA degradation de-

cisions between lysosomal and proteasomal pathways (45). This
may suggest that gene expression profiling of blood from patients
with PD captures molecular surrogates of the disease process,
but more work is needed.

Materials and Methods
Clinical Study. We enrolled 50 consecutive PD patients who were
diagnosed by neurology-board-certified movement disorders
specialists and that met modified United Kingdom Parkinson’s
Disease Society Brain Bank (23) clinical diagnostic criteria and
55 age-matched healthy and neurodegenerative disease controls
(SI Table 2) from the Partners Parkinson and Movement
Disorders Center and the Memory Disorders Unit at Massa-
chusetts General Hospital. To keep the number of individuals
with a false positive clinical diagnosis of PD at a minimum, the
United Kingdom Parkinson’s Disease Society Brain Bank cri-
teria were modified to require the presence of three (instead of
only two) cardinal features (bradykinesia, and two of rigidity, rest
tremor, or postural instability), none of 16 exclusion criteria, and
at least three of eight supportive features (23).

Healthy controls had no personal or family history of neuro-
degenerative diseases. Ninety percent of the healthy controls
were spouses. Because the prevalence of PD is �1% at age �65,
we applied a previously validated PD screening questionnaire
(46) to further reduce the chance of enrolling controls with
undiagnosed PD. Exclusion criteria for all study subjects were
age �21 years, hematologic malignancies or coagulopathies,
known severe anemia (hematocrit � 30), and known pregnancy.
The study protocol was approved by the Institutional Review
Board of Brigham and Women’s Hospital.

RNA Isolation and Quality Control. Venous blood was collected in
PAXgene (Qiagen, Valencia, CA) tubes and immediately incu-
bated at room temperature for 24 h. RNA was then extracted
after the PAXgene procedure including DNase treatment. RNA
quality was determined by spectrophotometry and by using the
RNA 6000 NanoChip kit on an Agilent 2100 Bioanalyzer (Agi-
lent Technologies, Santa Clara, CA). RNA passing quality
control criteria were used for further analysis.

Microarray Procedures. A modified CodeLink Bioarray protocol
was used (47). Briefly, 4 �g of total RNA was used for cDNA
synthesis, cleaned by a QIAquick purification kit (Qiagen), and
in vitro transcribed by T7 MEGAscript reagents (Ambion,
Austin, TX) using biotin-11-UTP (PerkinElmer/Wellesley,
MA). Biotin-labeled cRNA was purified by RNeasy Mini kit
(Qiagen) and hybridized at 45°C for 16–18 h to Human Genome
U133A arrays (Affymetrix, Santa Clara, CA). The arrays were
washed, stained, and scanned on an HP Gene Array scanner
(Affymetrix). Visual inspection was performed to identify arrays
with production defects.

Real-Time PCR. Briefly, for genes of interest, TaqMan Assay-on-
demand and custom assay primers and probes (Applied Biosys-
tems, Foster City, CA) were designed by using the manufactur-
er’s ‘‘rules’’ including crossing exon junctions (primer/probe
information is available upon request). Amplification products
were analyzed for specificity by agarose gel electrophoresis. The
comparative CT method and the relative standard curve method
were used for analysis (35). GAPD and 18S ribosomal RNA
controlled for RNA loading. Equal amplification efficiencies
were confirmed for target and reference genes as appropriate.
Total RNA (3 �g) was reverse-transcribed into cDNA by using
TaqMan Reverse Transcription reagents and random hexamers.
Real-time PCR using an ABI Prism 7000 (Applied Biosystems)
and TaqMan kits was performed according to the manufactur-
ers’ protocols. Samples were loaded in duplicate or triplicate,
and no-template and plate-to-plate controls were run on every
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reaction plate. In the independent validation study, ST13 mRNA
copy numbers were normalized with the use of 18S rRNA copy
numbers (the number of ST13 mRNA copies in 90 ng of RNA
divided by the number of 18S rRNA copies in 90 pg of RNA 	
10). The ratios of ST13 mRNA copies to 18S rRNA copies were
log-transformed to reduce the skew.

Microarray Data Processing. This was previously described (15, 16).
Briefly, raw CEL files were processed with the MAS5 algorithm
performing global scaling with ‘‘target intensity’’ of 100 for all
probe sets. Only high-quality arrays with GAPD 3�-to-5� prime
ratios �3 and present calls �4,000 were included in the analysis
to further reduce noise due to partial RNA degradation or
hybridization outliers. Because technical variation is high for
genes with low average expression intensities only genes with
intensities of �100 in at least one sample were considered for
further analysis.

Supervised Prediction Method. The PD risk score is based on ref.
24. Genes in the training set are ranked by their absolute Pearson
correlation with the binary class labels, and the top (predicting)
genes are used in the marker. A template for each class is formed
from the mean values of the discriminating genes. The risk score
of a test case is defined as its Pearson correlation with the PD
template minus its Pearson correlation with the non-PD tem-
plate. The number of discriminating genes is picked by maxi-
mizing the rank sum of the PD scores in a leave-one-out
cross-validation step.

Single Gene Significance Analysis. Stringent significance thresholds
were set to control for false positive results due to biological and
technical noise, and to correct for multiple testing. Requiring
fold changes of at least 1.25 eliminated small changes in expres-
sion. To estimate the FDR, permutation analysis [significance
analysis of microarrays (30)] was applied and results were
visualized as described (15, 16).

Statistical Analysis. We performed multivariate analysis of covari-
ance of relevant biological dependent variables. The third and
second tertile odds ratio was the ratio of the odds in favor of PD
for a subject with a risk score in the third or second tertile of
score values, to the odds in favor of PD for a patient with a score
in the first (lowest) tertile. The Cochran–Armitage linear trend
test for proportions was applied to determine the P for trend.
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