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Biomolecules often undergo large-amplitude motions when they
bind or release other molecules. Unlike macroscopic machines,
these biomolecular machines can partially disassemble (unfold)
and then reassemble (fold) during such transitions. Here we put
forward a minimal structure-based model, the ‘‘multiple-basin
model,’’ that can directly be used for molecular dynamics simula-
tion of even very large biomolecular systems so long as the
endpoints of the conformational change are known. We investi-
gate the model by simulating large-scale motions of four proteins:
glutamine-binding protein, S100A6, dihydrofolate reductase, and
HIV-1 protease. The mechanisms of conformational transition de-
pend on the protein basin topologies and change with tempera-
ture near the folding transition. The conformational transition rate
varies linearly with driving force over a fairly large range. This
linearity appears to be a consequence of partial unfolding during
the conformational transition.

conformational transition � cracking � partial unfolding � funnel

To function, biomolecules often undergo large-amplitude struc-
tural changes upon binding or releasing ligands. These struc-

tural changes organize the workings of biomolecular machines such
as the ribosome, molecular chaperones, and molecular motors.
Structural information on the conformational ensembles before
and after the conformation changes is often available through x-ray
crystallography or NMR. These experiments, however, provide
primarily quasistatic information. They reveal directly less about the
transition dynamics between two end structures. The overall dy-
namics of basin-hopping can be studied by pump-probe experi-
ments or from NMR relaxation. These experiments, however,
usually monitor directly only a few local structure changes in what
is typically a huge system. Thus, we see that global time-dependent
structural information at high resolution is rarely obtained directly
by experiments. Simulations can potentially provide full time-
dependent structural information on biomolecular machines. Yet
conventional atomistic simulations currently only reach times up to
microseconds (1). This time scale falls orders of magnitude short of
the typical physiologically important time scales of milliseconds to
seconds. To overcome this limitation, one approach is to coarse-
grain the molecular representation (2). Reduction in complexity
allows one to simulate much longer times. This so-called ‘‘mini-
malist approach’’ has been quite successful for studying protein
folding (3–8). The purpose of this article is to investigate a minimal
structure-based model, which we call the ‘‘multiple-basin model,’’ to
simulate large-scale conformational changes when structures for
the endpoints of the transition are available. This approach can be
used for simulations of even very large biomolecular complexes.

To motivate the present model, we first note that two qualita-
tively different kinds of protein motions occur depending on the
amplitude of motion. For small deviations from the fiducial native
structure motions are well approximated by quasi-harmonic dy-
namics. Indeed, very simple quasi-harmonic topology-based mod-
els reproduce the size of fluctuations at single-residue resolution as

evidenced by experimental B-factors (9, 10). Structure changes
upon ligand binding usually occur predominantly in directions that
correspond to combinations of a few low-frequency modes (11–16).
Ikeguchi et al. (17) have shown using their linear response theory
that the direction of structural change can be predicted from the
dominant principal components of the structural fluctuations in the
unbound states multiplied vectorially by the force exerted by the
ligand. Conformational transitions, however, must involve rear-
rangement of nonlocal contacts of amino acid pairs (see Fig. 1
Lower). Such notions clearly require going beyond the quasi-
harmonic picture (18–21): The protein breaks some contacts
specific to the initial conformation and forms new contacts that are
specific to the final conformation. This second, large-amplitude
regime of protein dynamics has been termed a ‘‘proteinquake’’ (22)
and may involve ‘‘cracking’’ (18, 21) or local unfolding. As the
protein softens and its fluctuations increase with temperature, a
third regime where the protein may globally unfold begins to play
a further role in function especially for the so-called ‘‘natively
unfolded proteins’’ (23, 24).

We see that a minimal requirement for describing conforma-
tional transitions is to be able to model both the quasi-harmonic
fluctuations around each basin and the transient and partial un-
folding near the transition region. A natural framework to formalize
such a model is provided by energy landscape theory. Energy
landscape theory has established that proteins have evolved to have
funnel-like energy landscapes (25–27). The bottom of the funnel
corresponds to a fiducial native structure having the lowest effective
solvent averaged free energy (as an individual conformation). As
the protein unfolds, the number of structures multiplies while the
effective energy increases. An ideal funnel-like energy landscape
can be realized by the so-called Go� model (6, 7, 28–30), first
introduced for lattice models (where of course there is no harmonic
motion) in which a protein is represented as a chain with attractive
interactions between pairs of residues that interact in the native
structure and repulsive interactions for all other residue pairs.
These models have been very effective for studying folding mech-
anisms. Moreover, the off-lattice version of perfect funnel models
(6, 7) already goes far to meet our present needs because it models
quite well the quasi-harmonic motion in the limit of the weak
fluctuations (31).

In the standard energy landscape for folding proteins, how-
ever, only a single dominant minimum, which corresponds to the
native structure, is assumed. Studying conformational changes of
functional proteins requires more than one basin to be taken into
account. Each basin should correspond to the structure with or
without ligands. The standard structure-based models are not
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directly applicable to this case of multiple basins. Here we
explicitly build up an energy landscape encoding multiple near-
degenerate basins. Given two reference structures supplied by
x-ray crystallography, we first created two independent struc-
ture-based potentials (32), which were then smoothly connected
to make a double-well energy landscape. Very recently, a closely
related approach having the same spirit was put forward by Best
et al. (20). We will survey several systems with the model and
highlight the cracking phenomenon.

Specifically, we simulated conformational transitions for four
proteins, glutamine-binding protein (GBP), S100A6 (which is a
structural analog of calmodulin), dihydrofolate reductase, and
HIV-1 protease. The global character of the conformational mo-
tions, the residue-specific involvement in transition pathways, and
the temperature dependence of rates were then investigated and
related to changes in protein topology. We also show that the linear
dependence of rate on driving force arises as a consequence of local
unfolding near the transition region.

Results
Multiple-Basin Model. We explicitly describe the model for the case
with two major structurally characterized basins, basin 1 and 2 as in
Fig. 1. (For a generalization to n basins see Materials and Methods.)
The model’s energy landscape within each individual basin is a
perfect funnel. We start with two virtual funnels (dashed curves in
Fig. 1). The target energy landscape (solid curve) coincides with
one of the dashed curve near basin 1 and merges with the other
dashed curve near basin 2. Around the transition region, the energy
landscape should be smoothly connected. From a mathematical
viewpoint, the way to connect smoothly two basins is not unique.
Here we choose a smooth connection that is computationally
convenient.

Mathematically we construct first two single-basin potentials as
V(R � R1) and V(R � R2) � �V (dashed lines in Fig. 1), where R
collectively represents the coordinates of the protein structure and
R1 and R2 correspond to the coordinates of the fiducial structures.
For convenience, the input potential V(R � R�) is defined so that the
energy at the bottom of basin � is (nearly) zero (see Materials and
Methods for details). Then �V is introduced to modulate the relative
stability of the two basins to correspond to empirically determined
energetics; a larger �V makes basin 2 less stable than basin 1. We

then introduce a coupling between the two potentials to make a
smoothed double basin potential VMB. We use (merely for con-
struction) an analogy with the quantum mechanics of electron
transfer to define such a smooth potential, VMB, as the eigenvalue
of the characteristic equation:

�V�R�R1� �
� V�R�R2� � �V��c1

c2
� � VMB� c1

c2
� , [1]

where � is a coupling constant and (c1, c2) is the eigenvector. The
condition that a nontrivial solution exists leads to the secular
equation:

�V�R�R1� � VMB �
� V�R �R2� � �V � VMB

� � 0. [2]

We use the lower-energy solution as the multiple-basin potential:

VMB �
V�R �R1� � V�R �R2� � �V

2

� �� V�R �R1� � V�R �R2� � �V
2 � 2

� �2 . [3]

VMB being continuous and differentiable can directly be used for
molecular dynamics (MD) simulations. The corresponding eigen-
vector (c1, c2) indicates whether the system resides in basin 1 or 2;
thus, we also can use � � 1n (c2�c1) as a reaction coordinate for the
transition. This present interpolation is particularly useful because
it allows us to freely tune one of the two fundamental energy scales:
The coupling constant � modifies directly the energy barrier, and
�V modulates the relative stability.

Simulation of Conformational Changes. We first illustrate the results
using GBP. GBP is composed of two domains connected by a hinge
(see Fig. 2a). Without substrates, GBP is found in an open form (red
in Fig. 2). Upon binding to glutamine, the hinge swings to make the
closed form (green). Using the open form for basin 1 and basin 2
as the closed form as fiducial structures, we tuned �V so that the
protein spends equal time in each basin. At this tuning, ligand�
protein concentration coincides with the dissociation constant. The
simulation temperature T was set to 0.8 times the folding transition

Fig. 1. Schematic view of multiple-basin energy landscape of proteins. Two
single funnels used for model construction are depicted by dashed lines.
Conformational change is associated with the rearrangement of some con-
tacts. Contacts specific to the unbound conformation are broken, and new
contacts are formed in bound conformation. Thick solid bonds correspond to
covalent linkages.

Fig. 2. Conformational change of four proteins studied. (a) GBP. (b) S100A6.
(c) HIV-1 protease. (d) DHFR. The red structures are those of unbound states
(occluded in the case of DHFR), and the green structures are those of bound
states (41).
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temperature (see Materials and Methods). One finds that �Veq �
�4.4 kBT. We obtained a reversible transition between two basins
as in Fig. 3b. (Movie 1, which is published as supporting information
on the PNAS web site, shows a transition trajectory.) Here we see
that the protein resides in each basin for reasonably long times. The
transition occurs infrequently, but very rapidly, without any detect-
able intermediate state.

We plot the free-energy profile F(�) in Fig. 3d. The open and
closed conformations � � �1.3 have roughly the equal free energies
separated by a single free-energy barrier of modest height � 7 kBT.
In contrast, the average energy profile 	E(�)
 shown in Fig. 3e
suddenly increases at � � �0.7, and the purely energetic contri-
bution to the barrier becomes �32 kBT. This large increase in
energy is compensated by an entropic contribution �TS � F � 	E

� �25 kBT (Fig. 3e). The sudden increase in conformational
entropy at � � �0.7 is the hallmark of cracking (18). Importantly,
the ability to crack drastically lowers the free-energy barrier. We
also simulated the conformational change with �V � 0 kBT, where
the open conformation is more stable (Fig. 3 a and d), and with
�V � �8.9 kBT, where the closed conformation is more stable (Fig.
3 c and d).

Dominant Pathways of the Transition. How are contacts specific to
the initial basin broken, and how are the new contacts specific to the
final basin formed? To quantitatively answer this question, we used
three types of Q scores (i.e., the fraction of formed contacts). The
contacts of the two reference structures 1 and 2 are classified into
three types: (i) those that are unique to structure 1, (ii) those that
are unique to structure 2, and (iii) those contacts that are common
to both structures 1 and 2. For each, we define the fraction of those
contacts actually formed for any given structure, namely, Q(struct
1) for the type 1 contact set, Q(struct 2) for the type 2, and
Q(common) for the type 3. A contact is defined as ‘‘formed’’ when
its pair distance falls within a distance 1.15 times that of the
reference structure.

The free-energy surface for GBP is drawn on the Q(closed)–
Q(open) plane in Fig. 4a. A representative trajectory superimposed
on this surface illustrates the typical transition dynamics. There are
two free-energy minima corresponding to the closed (top left basin)

and open (right basin) states. These two minima are connected by
a straight valley, indicating that breaking of contacts specific to the
initial basin and formation of contacts specific to the final basin
occur simultaneously. The simultaneity of the transitions is char-
acteristic of the GBP topology change.

The corresponding free-energy surface for S100A6 is shown in
Fig. 4b. S100A6 is the calcium binding domain, a structural analog
of a domain of calmodulin (structures depicted in Fig. 2b). The
conformational change from the apo (unbound) to holo (bound)
states involves an 86° reorientation of helix III leading to a relatively
large-scale shear motion. In contrast to the GBP case, the free-
energy surface for S100A6 suggests that, upon changing from apo
to holo, the contacts specific to apo first are broken, and then
contacts specific to holo are formed. The transition is sequential.

The different characteristics of the two free-energy surfaces
reflecting distinct mechanisms of conformational change may in
part be attributed to the difference in the type of motion; a
hinge-type motion for GBP and a shear-type motion for S100A6. In

Fig. 3. Trajectories and free-energy profiles of conformational changes of GBP plotted for the reaction coordinate �. (a) A trajectory with �V � 0 kBT.
(b) A trajectory with �V � �4.4 kBT. (c) A trajectory with �V � �8.9 kBT. (d) The free-energy profiles for three different values of �V. The dotted curve
corresponds to �V � �8.9 kBT, the solid curve corresponds to �V � �4.4 kBT, and the dashed curve corresponds to �V � 0 kBT. (e) Energetic 	E
 (dashed
line) and entropic TS (solid line) contributions to the free-energy profile (dotted line) for the case of �V � �4.4 kBT.

Fig. 4. Free-energy surfaces of conformational change of two proteins. (a)
Conformational change of GBP. The y and x axes are the fraction of formed
native contacts that are specific to the closed and open conformations,
respectively. (b) Conformational change of S100A6. The y and x axes are a
fraction of formed native contacts that are specific to the holo and apo
conformations, respectively. A representative trajectory is superimposed.
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the interdomain hinge motion of GBP the residues that lose
contacts upon conformational change are different from those that
gain new contacts. Thus, disrupting some contacts and forming new
contacts can proceed concomitantly (see Figs. 7 and 8, which are
published as supporting information on the PNAS web site). In
contrast, the shear motion in S100A6 requires the same residues to
exchange contact partners and thus has to be inherently sequential.

For dihydrofolate reductase (DHFR) and HIV-1 protease, in
which the conformational changes are rather smaller than these
systems, no remarkable features are apparent in the free-energy
surface in Q (data not shown).

Temperature Dependence of the Rate. At low temperature, proteins
do not have enough thermal energy to break contacts, and transi-
tions will be very slow. When the temperature reaches nearly the
folding temperature TF, the conformational change becomes cou-
pled with transient but global unfolding.

We compare the free-energy surfaces of GBP at T � 0.8 TF (Fig.
5a) with that at T � 0.88 TF (Fig. 5b) (here TF is that of the open
form). Using Q(closed)–Q(open) and Q(common), the former
functions as the conformational reaction coordinate, and the latter
monitors local and global unfolding of the core. There was no
qualitative change of the surface between two temperatures, but the
population shifts to the open form at the elevated temperature.

In contrast, the same analysis for S100A6 reveals a change of
mechanism. At 0.80 TF the protein proceeds directly from one basin
to the other (Fig. 5c), but when the temperature is increased to 0.88
TF an additional free-energy minimum emerges (Fig. 5d). Confor-
mations in the minimum are somewhat extended because of loose
packing between helices. At this higher temperature there are two
possible paths: one direct, and the other via an extended interme-
diate conformation.

The Transition Rate Coefficient vs. the Driving Force: Tafel Plot. How
does the transition rate depend on the driving force of the confor-
mation change, i.e., �V ? This driving force depends on the ligand
concentration if binding�unbinding is sufficiently fast. Although the
transition rate may be estimated from the barrier in free-energy
profile (like Fig. 3d), this estimate of the rate may depend on the

specific choice of the reaction coordinate (� in Fig. 3d) reflecting
recrossing effects (33). By using this estimate the dependence of the
transition rate on the driving force can be determined. In the
electron-transfer processes, a quadratic dependence of the barrier
on stability is predicted (34). This finding has been experimentally
proven to be fairly accurate (35). For the conformational changes
of proteins, Miyashita et al. (18) also argued that a fully elastic
model would also give such a curved dependence. On the other
hand, they suggested that local unfolding, or cracking, will lead to
a linear dependence over a large range of the driving force. We now
examine this notion using multibasin model MD simulations.

The conformational transition rate coefficient kchange was esti-
mated as the inverse of the first passage time as in ref. 36. The
transition is considered complete when � first reaches the value at
the minimum of the final basin. For very large driving forces, the
conformational transition becomes barrier-less and limited only by
diffusion, as expected. In this regime the rate becomes saturated.
Here we limit ourselves to thermodynamic conditions having
significant barriers: The trajectories reside in the initial basin at least
100 MD steps (on average) before making the first transition.

For the four proteins studied, we calculated both the rates going
from open to closed and in the other direction over as large a range
of the driving force without reaching the barrier-less regime.
The resulting Tafel plots (Fig. 6) are surprisingly linear (with the
exception of the binding reaction for S100A6, which is curved). The
linear dependence is the consequence of the local unfolding as
described by Miyashita et al. (18, 21).

Discussion
Building on the elastic picture of Miyashita and collaborators, the
multiple-basin models somewhat similar to the present one have
recently been proposed. Maragakis and Karplus (19) put forward a
plastic network model in which individual basins are approximated
by the Tirion harmonic model and are then smoothly connected by
the secular equation formulation, as we do in Eq. 3. Being locally
purely harmonic local unfolding is not taken into account in this
model. This plastic network model should work best for small-
amplitude conformational changes. The model developed by Best
et al. (20) is close in spirit to the present multibasin Hamiltonian
because it also connects single-basin potentials in a smooth func-
tion. Their interpolation was achieved by the analogy to Boltzmann
averaging instead of the secular equation formula. Their model
should give similar results to ours when there are two basins. When
there are more than two basins, the present model allows the

Fig. 5. Temperature dependence of conformational change dynamics of
GBP and S100A6. The y axis is a fraction of formed native contacts that are
common to two reference structures. The x axis is the difference between the
fraction of native contacts specific to holo conformations and native contacts
specific to apo conformations. (a) GBP T � 0.8 TF(open). (b) GBP T � 0.88
TF(open). (c) S100A6 T � 0.8 TF(apo). (d) S100A6 T � 0.88 TF(apo). Here TF(apo)
is the folding transition temperature of the single Go� model funneled to the
apo state. A representative trajectory is superimposed.

Fig. 6. The transition rate constant as a function of the driving force of the
conformational transition (Tafel plot). For each of four proteins, both transi-
tions from unbound to bound (dashed lines) and those from bound to un-
bound (solid lines), were investigated. The vertical axis is the logarithm of the
transition rate coefficient, and the horizontal axis is the driving force. The
driving force is ��V, where the sign is chosen so that the increase in the driving
force corresponds to stabilize the final state. GBP is in red, S100A6 is in green,
DHFR is in black, and HIV-1 protease is in blue.
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possibility to modulate the barrier heights of each basin-hopping
motion individually and thus is somewhat flexible.

Directly modeling the multiple-basin energy landscapes is at an
early stage. There is considerable room for creativity and improve-
ment at this low-resolution scale. An ingredient that is missing in the
present model as well as in the others (18–21) is precisely how to
correctly account for the interaction with ligands. In the current
model the effects of ligand are implicit in the value of �V, which
modulates the overall stability. But such a term does not account for
the local nature of the interactions with the ligand. For example,
S100A6 binds to calcium ions at the EF-hand loops, and the
interactions with calcium ions make the EF-hand loop more rigid.
This locality may play an important role in allostery. Further work
in this direction is necessary.

The present multiple-basin model can directly be used for MD
simulation of very large biomolecular systems, such as molecular
motors. Recently, the molecular mechanisms of the rotary motor
F1-ATPase were studied by using the switching Go� model (37).
In that work, the change in the nucleotide state was modeled as
a ‘‘vertical excitation,’’ resulting in switching between single-
basin models. The multiple-basin model proposed here provides
a natural framework for realizing thermally activated confor-
mational motions coupling ligand binding and release.

Materials and Methods
Proteins Studied. We studied four proteins: GBP, S100A6, DHFR,
and HIV-1 protease. For each, two Protein Data Bank (PDB)
structures were used to construct the multiple-basin model. GBP is
composed of two domains. Without substrates, GBP is found in an
open form (PDB ID code 1GGG; red in Fig. 2a), and upon
glutamine binding the hinge between domains swings, forming the
closed structure (PDB ID code 1WDN; green). S100A6 is a
structural analog of calmodulin. Its conformational change, a shear
motion (38), occurs between the apo state (PDB ID code 1K9P; red
in Fig. 2b) and the calcium-bound holo state (PDB ID code 1K9K;
green). DHFR changes its active-site loops via a shear motion (38)
between the occluded state (PDB ID code 1RX6; red in Fig. 2c) and
the closed state (PDB ID code 1RX2; green). HIV-1 protease has
a �-hairpin loop (the flap) that adopts an open conformation (PDB
ID code 3HVP; red in Fig. 2d) without an inhibitor but acquires a
closed conformation (PDB ID code 4HVP; green) with an inhib-
itor. The conformational change is relatively small and is of the
hinge type (38).

Multiple-Basin Model: Mathematical Expressions. The multiple-
basin model VMB is defined in Eq. 1 in terms of the single-basin
model potentials V(R � R�) where R� stands for the reference
structure, the structure at the bottom of the basin �. For the
single-basin model, we used Clementi et al.’s version of the
off-lattice Go� model (6, 7). In this model, each amino acid is
represented as a bead located at the C� position, two consecutive
amino acids are connected by harmonic springs, and local and
nonlocal interactions are designed to bias the surface toward the
reference structure R�. (In case of folding, the reference struc-
ture is the native.)

The local interactions in the original version of Clementi et al.
(6, 7) are:

Vlocal�R �R�� � �
bonds

Kb�bi � b
�,i

�2 � �
angles

K��� i � ��i�
2

� �
dihedral

�K	
�1��1 � cos�	 i � 	�i�

� K	
�3��1 � cos 3�	 i � 	�i�� , [4]

where bi is the bond length between ith and (i � 1)th C� atoms,
�i is the ith bond angle between ith and (i � 1)th bonds, and 	i

is the dihedral angle around the (i � 1)th bond. Parameters with
the subscript � indicate the values of the corresponding variables
at the reference structure R�. Constants K are independent of
residue number i, Kb � 100.0, K� � 20.0, K	

(1) � 1.0, and K	
(3) �

0.5. When a protein’s landscape possesses two basins, 1 and 2, we
define the local strain energies as the local interaction energies
at R1 for the single-basin model defined with the reference
structure R2. For example, the local strain energy for �i is K�

(�1i � �2i)2, which monitors the degree of structural change in
this portion. Often, a large-amplitude conformational change
between states 1 and 2 induces a strong strain in limited and
specific portions of the protein, such as the hinge region.
Physically, the strain is relieved by breaking fragile local inter-
actions involving this portion. Taking this into consideration, we
have reduced the coefficient K� of this portion when the strain
energy is larger than the cutoff value 
� � 1.0. Explicitly, K� in
Eq. 4 is replaced with the site-specific constant K�i, which is
defined as K�i � min[K�, 
��(�1i � �2i)2]. In the same way, for the
potential on 	, we have reduced the values of K	i

(1) � 2K	i
(3) when

the strain energy in the ith dihedral angle exceeds the cutoff
value 
� � 0.5.

The nonlocal interactions in the single-basin model have specific
attractive and repulsive interactions for the amino acid pairs that
make contacts in the fiducial structure and generic repulsive
interactions for the rest of the pairs. Here, an ij pair is considered
to be in ‘‘contact’’ when at least one nonhydrogen atom of the ith
amino acid is within 6.5 Å of any nonhydrogen atom of the jth amino
acid. For the multiple-basin model, the sets of fiducial contact pairs
of the reference structures are not equivalent. We need to classify
the amino acid pairs into three types: (i) those pairs that make
contact in all reference structures, (ii) pairs that make contact in
some of, but not all of the reference structures, and (iii) pairs that
do not make contact in any reference structures.

For the type 1 and 2 pairs, we modify the functional form for the
following reasons. In general, the repulsive part of the pair inter-
action is quite sharp, and thus the pair energy increases very rapidly
when they come closer than the critical distance. For example, in the
two-basin case, for type 1 and 2 pairs the critical distances of two
reference structures are not the same. This difference induces a
large energy gap between the two single-basin potential values,
leading to a transition barrier from one basin to another that is
unphysically large. To avoid this, we changed the energy function so
that the repulsive interactions are identical for the two basins; of the
two critical distances, the smaller one is used. Conversely, the
attractive part, if any, depends on the basin.

Mathematically, we can express this change in the energy for type
1 and 2 pairs as follows. We divide the nonlocal interactions into
Vnative–attr and Vrepul. The former is the attraction interaction
between the native contact pairs and is given by:

Vnative–attr�R �R��

� 
1 �
i�j�3

native-contact

min� 1,5� r�,ij

r ij
� 12

� 6� r�,ij

r ij
� 10

� 1	 . [5]

Here 
1 � 0.18 was used. We note that, for convenience, we shifted
the zero energy at the bottom of the curve instead of the energy at
infinite distance, as in the original Clementi et al. version (6, 7). For
the type 3 pairs, we can just use the same functional form as the
original one because the repulsive force has a generic form. The
repulsive part for all types can be written as:
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Vrepul�R �R�� � 
1 �
i�j�3

Type1&2

max� 0, 5� r0ij
min

r ij
� 12

� 6� r0ij
min

r ij
� 10	

� 
2 �
i�j�3

Type 3� C
rij
� 12

, [6]

where

r0ij
min � min

���1,2,...�
�r�,ij� , [7]

which is the smallest characteristic distance, 
2 � 0.18, and
C � 4.0 Å.

Combining these terms, the total potential of the single-basin
model that constitutes the input to the multiple-basin model is
V(R � R�) � Vlocal � Vnative–attr � Vrepul. We note that, with this
definition, the single-basin potential is always positive and its
value at the bottom of the basin V(R� � R�) vanishes.

Although the multiple-basin model was explicitly described for
the two-basin case in this article, its generalization to the n-basin
case is straightforward. The multiple-basin model potential energy
VMB is defined as the solution of the n � n secular equation:

D 
 �
V�R�R1� � VMB �12

�12 V�R �R2� � �V2 � VMB···
�23···

�1n �2n

. . . �1n

. . . �2n· · ·
···

�n�1,n

V �R �Rn� � �Vn � VMB

� � 0. [8]

Practically, unless more than three V(R � R�) are near degenerate,
we can solve 2 � 2 equations with two smallest V values. In case of
the degeneracy, calculating the force on each residue needs a
slightly involved procedure. From �D��ri � 0, we can calculate the
force Fi acting on ith residue as:

Fi � �
��1

n

d̃��Fi
�v�� �

��1

n

d̃��, [9]

where d̃� is the minor determinant and Fi
(�) � ��V(R � R�)��ri.

Simulation Protocol. In this work, MD simulation was carried out by
using the constant-temperature Newtonian dynamics. The velocity
Verlet algorithm (39) was used for time propagation, and the
temperature was controlled by the simple Berendesen thermostat
(40). The mass for all amino acids was set to be the same.

The simulation temperatures were determined by using a crude
estimate of the folding transition temperature TF for each reference
structure of studied proteins. For S100A6 and DHFR, TF was
calculated by the protocol of ref. 36. After this, we assumed that TF
scales with the number of contacts per residue. Thus, using the data
on S100A6 and DHFR, we estimated the TF values of other
proteins. Default simulation temperatures of conformational
change were set as 0.8 TF

(min), where TF
(min) is the smaller of the two

TF values associated with two reference structures. (If TF � 80°C,
0.8 TF becomes 9°C) Preliminary tests indicated that at higher
temperatures proteins would globally unfold, whereas at lower
temperatures the conformational transitions were too slow to
sample in reasonable simulation times.

It was necessary to fix the values of the two parameters intro-
duced for the multiple-basin model, the coupling term � and the
relative stability �V. The former controls the energy barrier be-
tween two states; the larger is �, and the smaller is the barrier. �V
modulates the relative stability of two states. Both parameters can
be determined by using experimental input. For convenience, we
adjusted these parameters so that reversible transitions between
two conformations were realized for each of the proteins studied.
Starting with a fairly small value, � is gradually increased until the
transitions take place within acceptable computation times. Sec-
ond, �V was tuned so that transitions from each conformation take
place with equal frequency. The resulting value is �Veq. The
parameters so obtained are as follows (in units of kBT): � � 59 and
�Veq � �4.4 for GBP, � � 66 and �Veq � 11 for S100A6, � � 6
and �Veq � �2 for DHFR, and � � 20 and �Veq � 2 for HIV-1
protease.
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