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Functional MRI (fMRI) can be applied to study the functional
connectivity of the human brain. It has been suggested that
fluctuations in the blood oxygenation level-dependent (BOLD)
signal during rest reflect the neuronal baseline activity of the brain,
representing the state of the human brain in the absence of
goal-directed neuronal action and external input, and that these
slow fluctuations correspond to functionally relevant resting-state
networks. Several studies on resting fMRI have been conducted,
reporting an apparent similarity between the identified patterns.
The spatial consistency of these resting patterns, however, has not
yet been evaluated and quantified. In this study, we apply a data
analysis approach called tensor probabilistic independent compo-
nent analysis to resting-state fMRI data to find coherencies that are
consistent across subjects and sessions. We characterize and quan-
tify the consistency of these effects by using a bootstrapping
approach, and we estimate the BOLD amplitude modulation as
well as the voxel-wise cross-subject variation. The analysis found
10 patterns with potential functional relevance, consisting of
regions known to be involved in motor function, visual processing,
executive functioning, auditory processing, memory, and the so-
called default-mode network, each with BOLD signal changes up to
3%. In general, areas with a high mean percentage BOLD signal are
consistent and show the least variation around the mean. These
findings show that the baseline activity of the brain is consistent
across subjects exhibiting significant temporal dynamics, with
percentage BOLD signal change comparable with the signal
changes found in task-related experiments.

functional connectivity � functional MRI � resting fluctuations

Typical functional MRI (fMRI) research focuses on the
change in blood oxygenation level-dependent (BOLD) signal

caused by the neural response to an externally controlled stim-
ulus�task. The fMRI signal during ‘‘on’’ periods is contrasted
with recordings during a baseline or control condition, resulting
in the relative signal change because of the specific process being
studied. Recently, increased attention has been directed at
investigating the features of the baseline state of the brain. Of
particular interest are low-frequency fluctuations (�0.01–0.1
Hz) observed in the BOLD signal, which have been found to
display spatial structure comparable to task-related activation
(1–3). There is an ongoing discussion as to whether these
fluctuations in the BOLD signal predominantly reflect changes
of the underlying brain physiology independent of neuronal
function (4–6), or instead reflect the neuronal baseline activity
of the brain when goal-directed neuronal action and external
input are absent (7, 8). The view that coherencies in resting
fluctuations represent functional resting-state networks linked
to underlying neuronal modulations is consistent with the ap-
pearance of these coherencies within cortical gray matter areas
of known functional relevance. For example, one of the first
studies of resting fluctuations identified the motor network (9).
More recent studies have identified associated fluctuations in
brain regions involved in visual, motor, language, and auditory
processing (10–17). Brain regions that show greater BOLD

signal during rest than during any one of a broad range of
experimental tasks have also received attention. The default-
mode network has been hypothesized to be active during rest and
suspended�deactivated when specific goal-directed behavior is
needed, as demonstrated in a task-related positron-emission
tomography study (18). Connectivity has been reported between
regions in the brain that form the default-mode network during
resting states as well as inverse correlations among prefrontal
regions (which show increased activity during a cognitive task)
and the posterior cingulate cortex (an area within the default-
mode network) (16, 17). However, although the observation that
these resting fluctuations are located in gray matter is consistent
with the notion of their representing neuronal modulations, a
recent study shows a correlation between changes in respiration
and BOLD signal also located in gray matter areas (6).

In this article, we focus on the following questions: (i) How
many coherent spatiotemporal patterns can we distinguish? (ii)
How strong are these fluctuations? and (iii) How consistent are
these fluctuations across subjects and sessions? To infer these
signal coherencies, most studies apply a region-of-interest cross-
correlation analysis approach (9–13), where the spatial charac-
teristics of these resting fluctuations are estimated by using
correlation analysis against a reference time course derived from
secondary recordings (19) or the resting data itself (seed-voxel-
based correlation analysis) (9). More recently, some studies
employed a model-free analysis by using independent compo-
nent analysis (ICA) (14, 15, 20) instead of time-course regres-
sion. Such decompositions are of particular importance because
they allow for a simultaneous separation into individual maps.
These decompositions can simultaneously extract a variety of
different coherent resting networks and separate such effects
from other signal modulations such as those induced by head
motion or physiological confounds, such as the cardiac pulsation
or the respiratory cycle (13, 15).

ICA-based studies have identified components that resemble
several functionally relevant cortical networks such as visual and
auditory cortical areas as well as the default-mode network.
Different studies have identified qualitatively similar areas of
functional coherence across subjects, but the extent to which
these fluctuations are consistent within a population has not
previously been quantified. To characterize this level of consis-
tency between and within subjects, it is necessary to employ
techniques designed for the analysis of multisession�multisubject
fMRI data. A promising method for the investigation of coher-
ent signals at a group level is the recently described tensor
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probabilistic ICA (PICA) (21). This analysis simultaneously
decomposes group fMRI data into modes describing variations
across space, time, and subjects. It has been demonstrated that
the tensor-PICA approach can provide useful representations of
group fMRI data in task-related fMRI experiments and that it
also seems capable of analyzing resting-state studies (21). In this
study, we apply tensor-PICA to resting-state fMRI data with the
aim of identifying resting coherencies that are consistent across
subjects and sessions. To quantify the consistency of such
patterns, we used bootstrapping. Based on 20 resting data sets,
we generated 100 surrogate multisubject data sets from which we
estimated these fluctuations. Using these separate estimates, we
quantified common networks in terms of their expected per-
centage BOLD signal change, which provides a measure of the
dynamics of these fluctuations. In addition, we calculated the
amount of typical percentage variation around the expected
percentage BOLD signal change at each voxel’s location, which
encodes the uncertainty of estimating any given voxel as part of
an associated coherent network.

Results
In the initial analyses, two data sets (10 subjects scanned at rest,
and the same set of subjects scanned on a separate occasion)
were analyzed separately. These analyses resulted in 10 compo-
nents per data set, showing variations in the frequency, spatial,
and subject domains. Spatial maps of the coherent resting
fluctuations of both analyses are shown in Fig. 1. The 10
components showed low-frequency variations in time (mean
peak frequency: 0.015 Hz; range 0.005–0.030 Hz) and can be
described as follows. Fig. 1 A and A� shows a pattern that consists
predominantly of the peristriate area, and lateral and superior
occipital gyrus [Brodmann area (BA) 19], which are areas
recognized as part of the visual cortex. Fig. 1 B and B� shows a
cluster consisting of the prefrontal (BA 11), anterior cingulate
(BA 32), posterior cingulate (BA 23�31), the inferior temporal
gyrus (BA 20�37), and the superior parietal region (BA 7),
known as the default-mode network as described by Raichle et
al. (18) and Greicius et al. (17). Hippocampal involvement in this
component, as described by Greicius et al. (22), is not found. Fig.

1 C, C�, D, and D� shows components that are predominantly in
the left (C and C�) and right (D and D�) hemispheres, the middle
frontal and orbital (BA 6�9�10), superior parietal (BA 7�40),
middle temporal gyrus (BA 21), and the posterior cingulate (BA
23�31; C and C� only). These are the only components that show
strong lateralization and are areas known to be involved in
memory function. Fig. 1 E and E� encompasses part of the striate
and parastriate (BA 17�18). The visual cortex is apparent in two
separate components. The more lateral visual areas are in Fig.
1 A and A�, and the more medial visual areas are in this figure.
Fig. 1 F and F� shows the pre- and postcentral gyri (BA 1�2�3�4)
in one component, representing the motor and sensory network.
Fig. 1 G and G� shows the superior temporal (BA 22) area as the
main element of this spatial map. Involvement of the cingulate
(BA 23) and superior frontal (BA 9�10) areas is also seen. This
cluster of brain regions bears a strong resemblance to the
occipitotemporal pathway (ventral stream). Fig. 1 H and H�
involves mainly the superior parietal cortex (BA 7) with addi-
tional involvement in the occipitotemporal (BA 37) and precen-
tral (BA 4) areas. Fig. 1 I and I� involves the superior temporal
(BA 22) and insular and postcentral cortex (BA 1�2), which are
areas acknowledged to represent the auditory cortex.

All of the spatial maps mentioned above are found in both
data sets. Each separate analysis, however, also yielded a com-
ponent that was not present in the other. In the analysis of the
first scan, the following component was found: Fig. 1J shows a
cluster consisting of the frontopolar area (BA 10), prefrontal
cortex (BA 11), dorsal anterior cingulate (BA 32), and superior
parietal cortex (BA 7). This predominantly frontal spatial map
has been found in earlier research and is proposed to be involved
in executive control and working memory function (14, 23). In
the analysis of the second scan, another component was found:
Fig. 1K shows the prefrontal (BA 11), dorsal anterior cingulate
(BA 32), and posterior cingulate (BA 23�31) regions, which
seem to be part of the default-mode network shown in Fig. 1B.
A combination of the map in Fig. 1K and the map in Fig. 1B�
resembles the map in Fig. 1B.

The results shown in Fig. 1 suggest that 9 of the 10 components
are qualitatively spatially consistent. To quantify the consistency,

Fig. 1. Tensor-PICA estimated resting patterns of the first (A–J) and second (A�–I� and K) multisubject data sets: coronal, sagittal, and axial view of spatial map
for each component. A–I and A�–I� show components found in both data sets. J and K components are unique to their data sets. Images are z statistics overlaid
on the average high-resolution scan transformed into standard (MNI152) space. Black to yellow are z values, ranging from 2.0 to 5.0. The left hemisphere of the
brain corresponds to the right side of the image.
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the tensor-PICA analysis was repeated 100 times on surrogate
data sets (see Data Analysis). The outcome was averaged,
resulting in 10 mean maps of coherent resting fluctuations,
presented here in terms of percentage BOLD signal change (Fig.
2). All components except K are reproducible in this analysis. In
these maps of coherent resting fluctuations, the average per-
centage BOLD signal f luctuation reaches values of up to 3%.
Map B, for example, shows that in the default-mode network,
�2% signal f luctuation can be found in the posterior cingulate
and superior parietal areas, whereas in map D, �3% BOLD
signal f luctuation can be seen in the superior parietal region. Fig.
3 shows the mean variability (across different surrogate data
sets) per component on a scale from 0.1% to 50% around this
estimated percentage BOLD signal change. Variation of these
coherent resting fluctuations differs among and within compo-
nents. For example, map A shows less variation overall than map
F. Also, as shown in map B, the posterior areas are more
consistent than the anterior areas. When comparing Figs. 2 and
3, it is noticeable that, in general, areas with a relatively high
mean percentage BOLD signal change are also the areas that are
the most consistent, i.e., show the least variation around this
mean.

Conclusion and Discussion
In this article, we show a variety of coherent low-frequency
fluctuations in the BOLD signal identified across subjects. In
addition to being consistent, these coherent fluctuations also
seem to be very dynamic. The percentage BOLD signal change
in these areas can reach levels as high as 2–3%, and areas with
high mean percentage BOLD signal change also show high levels
of consistency.

The coherent resting fluctuations presented in this article
include functionally relevant regions involved in motor function,
visual processing, executive functioning, auditory processing,
memory, and the default-mode network (encompassing atten-
tion and�or even consciousness). This finding is in line with

previous research, which has consistently shown coherent fluc-
tuations in the BOLD signal within specific neuroanatomical
systems (9, 12, 14, 15, 17). As in previous studies, we denote these
regional coherent fluctuations as representing a ‘‘network.’’
Whether these fluctuations are of neuronal origin or reflect
changes in local physiology remains unclear. The most direct
evidence of an association between some of these fluctuations
and neuronal activity comes from the observed correlation
between the BOLD signal and cortical electrical activity in
studies employing simultaneous fMRI and electroencephalo-
grams (19, 24) and the observation of change in these networks
resulting from neurological disease (22). However, other studies
suggest that these fluctuations in the BOLD signal primarily
reflect changes in underlying brain physiology independent of
neuronal function (4–6). A number of the networks presented in
this study were already recognized in earlier connectivity studies
aimed at those specific regions, for example, the motor cortex (9)
and the visual cortex (12, 19). Besides areas involved in sensory-
related processing such as the auditory and visual cortex, regions
involved in higher cognitive functioning are also represented by
separate networks. Some networks involve groups of areas
known to activate together in task-related fMRI. For example,
components C and D encompass areas such as the dorsolateral–
prefrontal cortex and superior parietal cortex, i.e., areas that
have repeatedly been found to be active during memory tasks
(25–27). In this analysis, these networks show very little spatial
variation around the mean percentage BOLD signal change (see
Fig. 3). An interesting aspect of components C and D is that these
are the only ones to show a similar activation pattern in opposite
hemispheres in separate components. This result could poten-
tially reflect hemispheric specialization in memory function.
Map B, which includes the cingulate cortices, inferior parietal,
and medial prefrontal regions, has consistently demonstrated
deactivation in spatial maps of task-related activation (17, 28–
31). This component is now commonly referred to as the
default-mode network because it seems to be active during rest

Fig. 2. Mean (across 100 surrogate multisubject data sets) tensor-PICA estimated resting patterns: coronal, sagittal, and axial view of spatial map for each
component. Images are percentage BOLD signal change, overlaid on the average high-resolution scan transformed into standard (MNI152) space. Black to yellow
is percentage signal change, ranging from 0.5% to 3.0%.
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and suspended when specific goal-directed behavior is needed
(7, 18). The existence of this network during resting state has
already been validated in several studies (14, 15, 17), and it shows
great resemblance to the brain areas found to be involved in
random episodic silent thinking, as described by Andreasen et al.
(32). The appearance is consistent across samples, but within the
network the posterior parts show less variation than the anterior
parts (see Fig. 3). This result possibly explains the separation of
this component in the tensor-PICA analysis of the second
original data set in components B� and K in Fig. 1.

Ten different and reproducible components are presented in
this article. This division into separate systems potentially re-
f lects the organization of the human brain, although we do not
suggest that the brain consists of disconnected functional resting
networks. In this article, components are defined as spatially
independent areas showing coherence in low-frequency fluctu-
ations. This by no means excludes the notion that there are
interactions possible between different resting patterns and that
the human brain demonstrates properties of a small-world
network, as described by Achard et al. (3). The number of
identifiable patterns is to some extent determined by the limi-
tations of current imaging and analysis sensitivity and specificity.
Additional improvements in modeling and�or data acquisition
might result in a more fine-grained characterization of such
functional connectivity.

In this article, we apply a technique that identifies multiple,
separate, coherent resting fluctuations in group fMRI data.
Compared with single time course correlation approaches, an
ICA approach does not require predefined regions of interest or
the identification of a seed voxel location. One of the main
advantages of an ICA approach over simple regression ap-
proaches is that multiple regression techniques like ICA can
separate resting fluctuations from other structured noise-related
signal variations, such as those induced by head motion or
cardiac and respiratory pulsations. The fact that the decompo-
sition in this case is determined by the spatial signal character-
istics (optimization for spatially independent components) also

implies that these resting fluctuations can be separated from
cardiac or respiratory physiology despite the fact that the typical
echo-planar image sampling (2.85 s in the present case) renders
the latter effects to be aliased. For example, refs. 14 and 16
provide experimental evidence that estimated resting fluctua-
tions are not contaminated by aliased physiological noise such as
respiration and the cardiac cycle.

Previous work on group resting fMRI analysis using ICA (14,
15) simply concatenated individual time-series data from differ-
ent subjects. By concatenating individual data, the subject-to-
subject variance is not modeled as a separate variance compo-
nent. The tensor-PICA approach used in this study differs in that
the analysis simultaneously decomposes all data in three do-
mains: space, subject, and frequency. The advantage of this
method is that the between-subject variation is estimated directly
as part of the decomposition, enabling consistent between-group
as well as within-group analysis to quantify the consistency of
these networks.

In this study, transformation of fMRI time courses into the
frequency domain was used because strong similarity in the
temporal domain across subjects cannot be assumed for any of
these resting-state fluctuations. Estimating ICA components
from the power spectra effectively discounts possible phase
variations between components. The decomposition does not
impose sparseness in the spectral domain, and it also does not
imply that isolated frequencies are associated with an individual
component. Indeed, the estimated power spectra do not show
isolated peak frequencies for any of these effects, but instead all
show distribution of strong power at low frequency across a
range of frequencies, consistent with the majority of resting-
fMRI studies (9, 10, 14, 15). The estimated power spectra did not
show isolated frequencies, and the separation of signal into
different components, therefore, is largely driven by the differ-
ence in the spatial characteristics. This finding is consistent with
results from tensor-PICA decompositions on task fMRI data
(see ref. 21 for details) where, for example, the decomposition
successfully separates task-related activation from task-related

Fig. 3. Maps of coefficient of variation: coronal, sagittal, and axial view of spatial map for each component. Images are percentage variation around the mean
percentage BOLD signal change, overlaid on the average high-resolution scan transformed into standard (MNI152) space. Red denotes much variation around
the mean; blue denotes little variation.
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deactivation and stimulus-correlated head motion, despite the
fact that all three effects are similar in the temporal and
frequency domain.

There are, however, limitations to the method presented here.
First, as with cross-correlation analysis, the analysis is based on
a linear decomposition of the data. As such, it is possible that this
linear decomposition misses interesting functional connectivity
between brain regions with highly nonlinear relationships in the
data (33). Note, however, that the first-order (linear) part of any
possible functional relationship between different voxels will be
reflected in the current set of components. Second, functional
connectivity at an individual subject level cannot easily be
inferred from these findings because we present results at a
mixed-effects level. In this study, the aim was to perform a group
analysis, i.e., characterize the expected average level of resting
fluctuation at the population level. In clinical studies, however,
it might be more appropriate to investigate the individual subject
level instead. Third, whereas the trilinear decomposition gives
interpretable discrimination across the spatial modes, the esti-
mates across the frequency domain appear less informative. To
better understand the temporal dynamics of these effects, the
combination of fMRI with other imaging techniques such as
electroencephalograms (19, 24) shows great promise. Finally,
note that bootstrapping methods like those used here can
underestimate variances. Note, however, that each surrogate
data set was limited to a rather small group size of six, which in
turn will give a larger estimate of the within-group variation at
the mixed-effects level. Analysis of a larger pool of scans and
subjects would generate a more reliable estimation of the
consistency of these effects.

Our findings confirm the idea that the baseline state of the
brain is by no means an inactive state. Instead, the brain appears
to be very dynamic, showing coherent slow fluctuations in the
BOLD signal of a magnitude comparable to task-induced sig-
nals. These coherent, slow fluctuations are grouped in separate
anatomically and functionally plausible networks. The sensory
cortices as well as areas involved in higher cognitive functioning,
e.g., memory function, constitute separate networks. The ob-
served magnitude of these fluctuations in the BOLD signal at
rest is consistent with previous findings (9, 19), and this mag-
nitude at rest puts the magnitude of ‘‘activations’’ usually found
in task-related experiments into perspective. An important issue
is the implication of these large fluctuations at rest on the
interpretation of activation found in task-related fMRI studies.
In these studies, the fMRI signal during ‘‘on’’ periods is con-
trasted with recordings during a baseline or control condition.
Previous studies have demonstrated that the default-mode net-
work is still detectable during such a control condition (16, 17),
and it is highly likely that this is the case as well for other resting
patterns we found in this study. If the fluctuations in the BOLD
signal within these brain areas are correlated to the design used,
it will be difficult to interpret the origin of the significant results
because in some brain areas it will be hard to distinguish whether
the activation is because of the task or the control condition. In
cases where these fluctuations are uncorrelated to the task, they
will be treated as noise and thus reduce the signal-to-noise ratio
and statistical power of the fMRI experiment. This phenomenon
has been described by Fox et al. (34), who demonstrate that
coherent spontaneous fluctuations indeed account for a signif-
icant fraction of the variability in measured event-related BOLD
responses.

In this study, 10 consistent resting patterns with relatively large
coherent fluctuations in the BOLD signal are presented. These
results show very plausible networks that are in line with findings
in previous research (9, 12, 14, 15, 17, 20). The coherent
fluctuations have been identified in resting fMRI data of healthy
subjects. It is of great interest to investigate whether these
patterns are present to the same extent under different condi-

tions. For example, it has already been shown that one or more
of these patterns are affected by disease (22, 35, 36). Using
resting-state fMRI to investigate the influence of disease and�or
medication on the brain has apparent clinical advantages be-
cause no complicated experimental design is required, and no
task needs to be practiced beforehand. Not having to use a task
is a significant benefit, especially when studying patients who
may have difficulties performing a task, for example, patients
with Alzheimer’s disease. Understanding these resting fluctua-
tions in terms of their spatial and temporal characteristics, their
magnitude and consistency, and their origin is, therefore, of
prime importance to taking advantage of the benefits of resting
fMRI.

Materials and Methods
Subjects. Ten healthy right-handed subjects (age 22.8 � 2.3, five
male�five female) participated in this study after giving written
informed consent in accordance with the VU University Medical
Center Medical Ethical Committee. All subjects underwent an
fMRI session of �40 min on two different occasions. The time
between the first and second fMRI session averaged 8.7 days
(5–14 days). For the resting-state scan, subjects were instructed
to lie with their eyes closed, think of nothing in particular, and
not fall asleep.

Imaging Methods. Two hundred whole-brain, T*2-weighted echo
planar images were acquired on a 1.5-T Sonata scanner (Sie-
mens, Erlangen, Germany) (sequence parameters: repetition
time � 2,850 ms; echo time � 60 ms; flip angle � 90°). Thirty-six
axial slices (3.3 mm isotropic) were acquired. For registration
purposes, a high-resolution T*2-weighted echo planar image and
a high-resolution T1-weighted image were also acquired.

Data Analysis. Preprocessing. The image preprocessing was carried
out by using the Oxford Centre for Functional Magnetic Reso-
nance Imaging of the Brain Software Library (FMRIB, Oxford
U.K.; FSL version 3.2; ref. 37). The following prestatistics
processing was applied: motion correction (38), removal of
nonbrain structures from the echo planar imaging volumes (39),
spatial smoothing by using a Gaussian kernel of 6 mm FWHM,
mean-based intensity normalization of all volumes by the same
factor (i.e., 4D grand-mean), high-pass temporal filtering
(Gaussian-weighted least-squares straight line fitting) (FWHM �
150 s), and Gaussian low-pass temporal filtering (FWHM � 5.6 s).
After preprocessing, the functional scans were registered to the
MNI152 standard space (average T1 brain image constructed
from 152 normal subjects at the Montreal Neurological Institute,
Montreal, QC, Canada) by using affine registration (FLIRT; ref.
38). From the resulting affine transformation matrices, a
midspace was defined as the transformation that approximates
the average size and shape of the individual subjects’ spaces by
calculating the geometric mean of the affine transformation
matrices. Within this midspace, the data were kept at the original
echo-planar imaging resolutions, reducing the computational
burden of a simultaneous decomposition. Finally, the individual
time-series data were converted to voxel-wise power spectra.
Because there is no task in resting-state data to restrict what
subjects are doing during a specific time course, we cannot
assume a consistent temporal response for individual compo-
nents between subjects. However, in the frequency domain,
these resting fluctuations of interest are typically associated with
strong power in the range of 0.01–0.1 Hz. This preprocessing
resulted in 20 data sets, with data obtained from two different
resting fMRI sessions for each of the 10 subjects.
Statistical analyses. A modified version of the tensor-PICA ap-
proach was used for statistical analyses (21). The 20 individual
data sets were divided into two group data sets: the first included
the first resting-state scan of every subject; the second included
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the second scan of each. These two group data sets were
decomposed separately into groups of vectors that characterize
the structured signals in the spatial, frequency, and subject
domain by using tensor PICA (21). Twenty-five components per
data set were estimated, the number of which was determined
from the estimated data covariance matrix of all 20 individual
subject data sets by using the Laplace approximation of the
model order for a probabilistic principal component analysis
model (40). From these components, 10 were qualitatively
selected by visual inspection as anatomically relevant areas
across subjects, potentially depicting functionally relevant
resting-state networks. Components excluded from further anal-
ysis show clearly interpretable distinct artifacts caused by, among
other things, head motion, physiological noise, misregistration,
or image fluctuations in cerebral spinal f luid (see refs. 14 and
21 for examples of the spatial patterns of head motion and phys-
iological noise). Final maps were thresholded at a posterior
probability threshold of P � 0.5 by using an alternative
hypothesis-testing approach based on the fit of a Gaussian�
Gamma mixture model to the histogram of intensity values in
each map (40).

To quantify the spatial consistency of the fluctuations, the
individual subjects’ data sets were combined into surrogate
group fMRI data sets by using a bootstrapping procedure. Each
surrogate data set contained data from six randomly selected
subjects and one of the two possible subjects’ sessions. Overall,
100 of a possible 13,440 multisubject data sets were created, each
containing 100 (frequencies) � 41,582 (voxels) � 6 (subjects)
data points. These 100 group data sets were analyzed similarly
to the 2 original data sets. To reduce computational burden, the
analysis was performed by using a mask to exclude ventricular

spaces. For each group data set, 25 components were extracted.
Based on their spatial cross-correlations, the 2,500 components
were automatically grouped into pairs of 100 maps, which
successively explained less amount of residual variation among
the set of all components. Sets were selected to represent �97%
of the total variance. For each of these sets of components,
voxel-wise mean and standard deviation maps were calculated.
The corresponding mean maps for each independent component
were converted to expected voxel-wise percentage BOLD signal
change. These maps were combined with the estimated standard
deviation across the pool of virtual populations into maps of
voxel-wise coefficients of variation (i.e., by calculating CVj �
�j��j � 100 at each voxel j). These maps describe the amount of
typical percentage variation around the expected percentage
BOLD signal change at every voxel’s location across the decom-
positions. For example, a value of CVj � 25 indicates that at voxel
j, there is an expected �25% deviation around the reported
mean percentage BOLD signal change value �j. These maps
were subsequently thresholded at �50% variation. Artefactual
maps showing head motion or the effect of magnetic field B0
inhomogeneities were excluded from further analysis. Note that
the maps of coefficients of variation show the variability between
different analyses of the virtual populations, not the (average)
variability within any one of the 100 analyses. As such, Figs. 2 and
3 present complementary pieces of information. For example,
two areas can show identical expected percentage BOLD fluc-
tuation with very different coefficients-of-variation.
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