
Differential metabolic networks unravel the effects of
silent plant phenotypes
Wolfram Weckwerth*, Marcelo Ehlers Loureiro†, Kathrin Wenzel*, and Oliver Fiehn*‡

*Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, 14424 Potsdam, Germany; and †Departamento de Biologia
Vegetal, Universidade Federal de Viçosa, 35670001, Viçosa, Brazil
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Current efforts aim to functionally characterize each gene in model
plants. Frequently, however, no morphological or biochemical
phenotype can be ascribed for antisense or knock-out plant geno-
types. This is especially the case when gene suppression or knock-
out is targeted to isoenzymes or gene families. Consequently,
pleiotropic effects and gene redundancy are responsible for phe-
notype resistance. Here, techniques are presented to detect unex-
pected pleiotropic changes in such instances despite very subtle
changes in overall metabolism. The method consists of the relative
quantitation of >1,000 compounds by GC�time-of-flight MS, fol-
lowed by classical statistics and multivariate clustering. Comple-
mentary to these tools, metabolic networks are constructed from
pair-wise analysis of linear metabolic correlations. The topology of
such networks reflects the underlying regulatory pathway struc-
ture. A differential analysis of network connectivity was applied
for a silent potato plant line suppressed in expression of sucrose
synthase isoform II. Metabolic alterations could be assigned to
carbohydrate and amino acid metabolism even if no difference in
average metabolite levels was found.

metabolomics � metabonomics � data mining � regulatory networks �
functional genomics

S ilent phenotypes are genetically modified organisms that do not
show obvious changes in morphology, yield, growth rates, or

related parameters when compared with parental lines under given
physiological conditions (1). This phenomenon is especially aston-
ishing when genes are altered that are known to play pivotal roles
in overall plant fitness (2). It is thought that such organisms might
have found ways to circumvent the deleterious effects of the
mutated genes or that redundancy in gene families (3) could
prevent injurious outcomes. The most apparent form of gene
redundancy is the frequent coexpression of enzyme isoforms
involved in various metabolic pathways (4–6). In most cases,
enzyme isoforms cannot be distinguished on the basis of enzyme
activities. Here, techniques like metabolomics might aid functional
characterization (7), assuming that the primary alteration of en-
zyme-encoding genes pleiotropically affects biochemical pathways.
The working hypothesis is that a network of metabolic associations
represents a snapshot response of the underlying biochemical
network at a given biological situation, which then can be used to
observe changes between different genotypes (8, 9). This view is
theoretically supported by the concept of ‘‘metabolic control anal-
ysis’’ (10) and the concept of maximal connectivity in a biochemical
network (11). Specifically, the effects on metabolite pool concen-
trations may be higher than the alteration in enzymatic flux control
or enzyme activities. Recently, silent yeast phenotypes were dis-
criminated from WT strains by using multivariate statistics applied
to NMR (12) or MS (13) based metabolic fingerprints, with the
objective to cluster genotypes together that were defective in genes
with similar functions. However, resolution of the NMR and MS
data prohibited the actual determination of individual metabolites
to underpin the biochemical basis of the clustering results.

Here, we present an approach to the study of silent plant
phenotypes. We propose to use unbiased metabolite detection

concomitant with differential topology analysis of metabolic cor-
relation networks as complementary tools to classical univariate
and multivariate statistical tests. As a test case for a silent plant
phenotype, an antisense potato plant line was used that was
constitutively reduced in gene expression encoding for the sucrose
synthase isoform II (SS2) under the control of the 35S promoter.
The primary biochemical action of sucrose synthase is sucrose
cleavage to UDP-glucose and fructose, which may also work
bidirectionally in vivo in tubers (14). In general, several isoforms of
sucrose synthase are known to play pivotal roles in plant develop-
ment, carbon partitioning, phloem unloading, and sink strength
(15–19). However, it is difficult to allocate specific functions of
particular isoforms. When two genes encoding sucrose synthase are
expressed in the same cell, the proteins form homo- or heterotet-
ramers (20–22), suggesting that the isozymes are interchangeable in
at least some cellular roles. This gene redundancy might lead to
silent phenotypes if specific isoforms have decreased activities using
the antisense approach. Specifically, no change in total enzyme
activity can be anticipated. The objective of this study was now to
investigate with metabolomic and statistical tools whether (i) the
silent SS2 antisense genotype can be discriminated from the
parental line and whether (ii) biochemical effects on primary
metabolism can be found as an important classifier in discrimina-
tion.

Experimental Protocol
Thirty to 40 individual SS2 antisense plants were compared with the
Desirée cv. background line. Northern blot RNA analysis was
performed from 1 g fresh weight (FW) of leaf tissue by using a KpnI
fragment of SuSy 2 clone as probe. Plants were grown in controlled
greenhouse conditions in a randomized plot. One-hundred-
milligram FW tuber slices (5 mm i.d.) were harvested 3 mm below
the peels, perpendicular to the main tuber axis. For leaves, 300 mg
FW disks were sampled. Samples were extracted and fractionated
into a polar and a lipophilic fraction as given in ref. 23. GC-time-
of-flight (TOF) analysis was performed on an HP 5890 gas chro-
matograph with standard liners containing glass wool in split mode
(1:25) at 230°C injector temperature, with a liner exchange for every
50 samples. The GC was operated at constant flow of 1 ml�min
helium on a 40-m, 0.25-mm i.d., 0.25-�m RTX-5 column with 10-m
integrated precolumn, a start temperature of 80°C, 2 min isother-
mal, temperature ramping by 15°C�min to 330°C, 6 min isothermal.
Data were acquired on a Pegasus II TOF mass spectrometer
(LECO, St. Joseph, MI) and CHROMATOF software (Fig. 6, which
is published as supporting information on the PNAS web site) at 20
s�1 from m�z 85–500, R � 1, 70 kV electron impact (EI), and
autotuning with reference gas CF43. Samples were compared
against reference chromatograms that had a maximum of detect-
able peaks at S�n � 20. For identification and alignment, peaks
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were matched against a customized reference spectrum database,
based on retention indices and mass spectral similarities. Relative
quantification was performed on ion traces chosen by optimal
selectivity from coeluting compounds. Tables on quantitative re-
sults were exported in ASCII format. Artifact peaks such as column
bleeding, phtalates, and polysiloxanes were removed. All data were
normalized to plant mg FW and to internal references (ribitol and
nonadecanoic acid methyl ester). For all statistical tests, data were
log-transformed, resulting in more Gaussian-type distributions
(Fig. 7, which is published as supporting information on the PNAS
web site). Significance levels for Pearson correlations r were com-
puted depending on the number of metabolite pairs n found in the
chromatograms by using t � r�(n � 2)0,5�(1 � r2)0,5 and controlled
for a potential impact of outliers by robust fit assessments in
MATLAB 6.5.0 (Mathworks, Natick, MA). Univariate ANOVA for
production of box-whisker plots and F-statistics probabilities were
also carried out in MATLAB. For multivariate statistics, empty cells
were replaced by genotype means. The statistical package SAS�STAT
8.01 (SAS Institute, Cary, NC) was used to perform a normal kernel
discriminant function analysis (DFA) method with equal band-
width to estimate the group-specific probability density with R �
0.4. Principle component analysis was performed by using PIROU-
ETTE 2.0 (Infometrix, Woodinville, WA) with mean-centering and
unit variance scaling. Graphical visualization using the Fruchter-
mann-Reingold 2D layout algorithm was done by the PAJEK soft-
ware package (http:��vlado.fmf.uni-lj.si�pub�networks�pajek).
For calculation of metabolite connectivity and changes in metab-
olite�metabolite ratios, lipophilic (secondary) metabolites were
disregarded because biological regulatory mechanisms and turn-
over rates are known to be quite different compared with polar
(primary) metabolites (24).

Results and Discussion
Sucrose Synthase II Antisense Potato Plants Have No Visible Pheno-
type. By Northern blot analysis using specific cDNAs for the sucrose
synthase isoforms SS1, SS2, and SS3, it was shown that all sucrose
synthase genes were expressed in all potato tissues, but that
expression levels varied (Fig. 1A). The expression of SS2 was most
specific for leaf veins, implying a role in carbon partitioning for
long-distance transport. For this reason, we expected metabolic
effects in mature leaves (as carbon source) and tubers (carbon
sinks). Expression of the SS2 antisense construct was tissue specific.
In leaf tissue, the sense SS2 band was completely suppressed

concomitant with a strong antisense signal whereas in tuber the
sense band was still expressed beside a strong antisense band (Fig.
1B). However, the total sucrose synthase activity was not found to
be significantly decreased due to the coexpression of the other two
enzyme isoforms. This phenomenon is often observed in plant
molecular biology. In some cases, the total activity may even be
found to have increased after suppression or knockout of a specific
gene (25). In maize mutants, a loss of the sucrose synthase isoform
sus1 was reported to have no phenotypic effect but was associated
with ectopic expression of the other gene isoform (sh1 gene)
complementing sus1 (26).

Consistent with this background knowledge, it was not expected
to find a strong phenotype for the antisense expression of the SS2
isoform in potato. No significant change in plant morphology or
development, or target metabolites such as starch, sucrose, glucose,
or fructose contents was observed in comparison with the parental
line (Table 1; see also Fig. 8, which is published as supporting
information on the PNAS web site). Such a finding is called a ‘‘silent
phenotype’’ in plant biotechnology. However, we assumed that the
antisense expression of sucrose synthase should still have measur-
able effects on related key enzymes in carbohydrate metabolism
that counteracted the primary effect of the altered biochemical
network in a pleiotropic way. Based on the strength of the SS2
suppression in leaves, enzyme activity measurements focused on
this organ. No significant difference was found for the acid and
alkaline invertases, fructobisphosphatase, fructokinase, and the
maximum catalytic activity Vmax of sucrose-6-phosphate synthase
(SPS). In contrast, SPS was found to be more activated in SS2 plants
by using the selective SPS assay (Vsel) (27). This finding means that
the SPS enzyme was less sensitive to inhibition by inorganic
phosphate (the SPS allosteric inhibitor), which suggests a higher
sucrose mobilization in SS2 plants. Intriguingly, the maximal cat-
alytic activity of sucrose synthase was increased in the antisense
tubers (Table 1), pointing to an increased sucrose influx. In the next
sections, we describe how metabolic networks respond to differ-
ences in the SPS activation state.

Comprehensive GC-TOF Analysis Detects >1,000 Metabolites. In pre-
vious studies, metabolite profiling using GC�quadrupole MS re-
sulted in the detection of �80 metabolites in potato tubers (23) and
over 300 predefined compounds in leaf extracts (7). Although these
data sets were sufficient to distinguish metabolic states of clearly

Fig. 1. RNA expression analysis of sucrose synthase isoforms in potato plants.
(A) Tissue specificity of isoforms SS1, SS2, and SS3 using a 2.6-kb sense frag-
ment. SOL, source leaf, SIL, sink leaf. (B) Hybridization of SS2-specific cDNA
fragments in sense (2.6 kb) and antisense (2.1 kb) directions in a Northern blot
from WT and SS2 antisense plants in comparison with the total amount of
sample RNA applied.

Table 1. Biochemical and physiological comparison of WT and
SS2 antisense plants

WT SS2

Leaf
Morphology Regular Regular
Total sucrose synthase 92 � 14 77 � 13
SPS non-selective assay 382 � 91 484 � 66
SPS selective assay* 45 � 4 152 � 10
Fructobisphosphatase 4,177 � 218 5,152 � 518
Acid invertase 80 � 30 110 � 20
Alkaline invertase 65 � 28 116 � 11
Fructokinase 3,485 � 218 3,883 � 518

Tuber
Morphology Regular Regular
Total sucrose synthase* 260 � 8 303 � 8
Yield: tuber number 12.8 � 2.1 9.5 � 0.8
Yield: tuber weight 22.6 � 4.8 18.1 � 1.8
Starch 309 � 29 273 � 14

Significant differences are highlighted by asterisks. Maximal catalytic ac-
tivities for enzymes involved in carbohydrate metabolism are given as average
values and SEs in nmol�min�1�(g FW)�1 for five individual plants per line.
Morphology (see photographs in Fig. 8) and yield were assessed on eight
plants per line, indicating the silence of the SS2 phenotype. Average tuber
weight is given in g per tuber. Starch content is given in �M�g FW.
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different plant genotypes, they did not extract the full information
contained in these chromatograms. To increase the efficiency of
information extraction, GC�TOF MS (28) was applied concomi-
tant with automated mass spectral deconvolution, identification,
and export of metabolite peaks. Compared with quadrupole MS,
GC-TOF data acquisition has the great advantage that far more
spectra can be acquired across a chromatographic peak. Addition-
ally, relative ion intensities in mass spectra remain constant over the
chromatographic elution profile. Both properties largely enhance
the suitability of (i) finding peaks in a completely unbiased manner,
even for low abundant trace compounds, and (ii) deconvoluting
coeluting mass spectra in complex chromatograms, in which very
often more than two side peaks overlap with any specific metab-
olite. This MS deconvolution facilitates correct peak annotation by
spectra purification.

When Solanum tuberosum plants were analyzed by GC-TOF and
mass spectral deconvolution, over 1,200 peaks were found from the
two fractions of a single leaf extract, and �600 peaks were detected
in a typical potato tuber. Considering method artifacts and double
peaks known to be formed for some metabolites, �1,000 leaf
metabolites and 500 tuber metabolites can be estimated to be
detectable by this method. The deconvolution power is demon-
strated by detection of low abundant hexose isomers like psicose,
tagatose, and allose (Fig. 2). Limits of mass spectral deconvolution
were found for trace compounds that coeluted with 1,000-fold more
concentrated peaks as given for the example of allose and fructose
(Fig. 6), where allose reached a match factor of only 67% identity
to the pure reference compound. On average, peaks with signal�
noise ratio �100 resulted in 89% match factor for identification.
Low abundant peaks with signal�noise ratio �25 had an average
match factor of 66%.

Difference in Metabolite Mean Levels and Variances Were Too Small
for Deriving Functional Information from Genotype Clustering. To
find subtle differences in SS2 antisense plants in comparison with
their parental background, �30 individual plants per line were
analyzed, according to the central limit theorem (29). Average
levels of 262 of 1,216 leaf metabolites were found to be different at
a t test significance level of P � 0.05 (Table 2; see also Fig. 9, which
is published as supporting information on the PNAS web site),
ranging from 1.1- to 4.6-fold differences between the silent trans-
genic and its parental genotype. Intriguingly, no metabolite with

known chemical structure changed �2-fold in SS2�WT compari-
sons. Only 15 metabolites had a Pleaf

� � 0.000041, when significance
thresholds were lowered for reduced risks of false positive findings
to an overall probability of 95% by Bonferroni estimation. Among
these compounds, the only metabolite that could be identified was
galactonic acid. The other 14 were therefore primary candidates for
de novo structural elucidation; 7 of these were classified as sugar-
related compounds by their corresponding mass spectra. Only one

Fig. 3. Metabolite–metabolite correlations given in scatter plots. Blue, SS2;
red, WT plants. Unitless relative metabolite peak areas (see Experimental
Protocol) are given as log-scaled data. Differences in linear regression slopes
are hence converted to differences in offsets (P � 0.01).

Fig. 2. GC-TOF analysis deconvoluting uncommon monosaccharides such as
tagatose, psicose, and allose in polar extracts of potato leaves. Unique ion
traces such as m�z 103 (red), 307 (green), 160 (blue), or 319 (black) are
automatically selected for relative quantitation. Mass spectra for coeluting
peaks a and b (allose and fructose) are given in Fig. 6.

Table 2. Differences in metabolite levels between SS2 and WT
plants for tubers and leaves

Tuber Leaf

Metabolite P value
x-fold

SS2�WT Metabolite P value
x-fold

SS2�WT

Lysine 0.000018 1.5 Allose 0.028 1.9
GABA 0.002 1.4 Arabinitol 0.023 1.1
Glutamine 0.002 1.4 GABA 0.007 0.7
Homoserine 0.002 1.4 Galactonic acid 0.000013 0.8
Citrulline 0.004 1.3 Glycerol 0.037 0.8
Valine 0.004 1.3 Glycine 0.050 1.2
Lactate 0.005 0.8 Isoleucine 0.021 1.6
Tyrosine 0.008 1.3 Mannitol 0.012 0.7
Isoleucine 0.009 1.3 Ribose 0.008 0.8
Oxoproline 0.010 1.4 Shikimate 0.001 0.8
Phenylalanine 0.010 1.4 Threonine 0.010 0.7
Tryptophane 0.015 1.4 Trehalose 0.003 0.6
Malonate 0.017 0.7 Tyramine 0.008 0.6
Methionine 0.021 1.2
Glycine 0.046 1.2
Fructose-6P 0.048 0.7
�-alanine 0.050 1.3

Tuber: 656 metabolites tested; 34 reached a significance level of P � 0.05;
18 metabolites had P � 0.01. Leaf: 1,216 metabolites tested; 262 reached a
significance level of P � 0.05; 98 metabolites had P � 0.01. Only polar
metabolites with known chemical structure are shown. fa, fatty acid; falc, fatty
alcohol.
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lipophilic compound was found among these hits, implying that leaf
metabolism was more significantly affected for polar phase metab-
olites than for lipophilics.

For tubers, far fewer significant changes were found. Only 34 of
656 metabolites detected were found to be below the t test threshold
level of P � 0.05 (among them 25 polar phase metabolites), and only
lysine satisfied the Bonferroni criterion of Ptuber

� � 0.000076. Mean
values of metabolite levels directly involved in the enzymatic
reaction of sucrose synthase, i.e., sucrose, glucose, or fructose, were
not significantly changed in tubers or leaves.

Next, genotype discrimination was tested by clustering tools to
find further evidence for biochemical alterations in the silent SS2
phenotype. According to its silent phenotype, SS2 tuber or leaf
metabolic phenotypes were not distinguishable from WT plants by
unsupervised principal component analysis (PCA) using the first
two vectors, which explained 93–95% of the total metabolic vari-
ance. Apart from the fairly small differences in mean values
between the two genotypes, this result is probably caused by the
high amount of non-genotype related variance caused by all other
metabolites. By using lower-order vectors, metabolic phenotypes
could partly or fully be discriminated between SS2 and WT plants
(Fig. 10, which is published as supporting information on the PNAS
web site). On leaf metabolic phenotypes, glucose, fructose, and
sucrose had almost no impact on this discrimination, but rather
those compounds that were already observed to have significantly
different mean values. For tubers, glucose and fructose were found
among the most important metabolites for classification based on
loading scores for vector 4 (4.0% of total variance, Fig. 10) when
restricting the PCA analysis to polar metabolites. In accordance
with the alteration in sucrose synthase and specific SPS activities,
this finding indicated a subtle alteration in glucose and fructose
metabolism between SS2 and WT tubers.

Alternatively, supervised learning methods such as DFA can be
used to classify metabolite data sets (12). By using a nonparametric
normal kernel DFA, genotypes could be discriminated by using
internal cross-validation. Investigation of the discriminant func-
tions, however, pointed to the same metabolites that had already
been demonstrated to be significantly different in mean levels, e.g.,
lysine levels in tubers or galactonic acid in leaves. In this respect,
DFA was not helpful for gaining further insights into metabolic
alterations in the SS2 plants or pointing to the primary cause of the
genetic defect.

Metabolic Correlation Analysis as a Complementary Biochemical Tool.
Analyzing a large number of snapshots of the same genotype
permitted the search for metabolic correlations (Fig. 3) that per se
contain inherent information on how metabolites are related within
a complex network of reaction pathways and regulatory events.
In a recent study, we demonstrated that metabolic fluctuations
may cause linear associations between metabolite levels as a
consequence of the underlying reaction pathway structure (8, 9).
However, experimentally observed correlations between variables
are not straightforwardly interpretable in a complex system (9, 30,
31). Studies on RNA levels have derived hypotheses from weak
correlations of rxy � 0.40 (32). In our study, several thousand
metabolite pairs were found meeting such low thresholds. There-
fore, we suggest restricting the analysis of metabolic correlations to
higher thresholds that are more significant to display biological
connectivity (moderate (rxy � 0.60) to strong (rxy � 0.80) linear
relationships).

Some clear differences were observed between WT and SS2
antisense plants. For example, a significant change in correlation
offsets was found for lysine and isoleucine levels in potato tubers
after log transformation (Figs. 3 and 7), which was not apparent
from the small differences in average levels. The same was found
for the glutamine-asparagine pair. From this observation, it can be
concluded that not only were average levels of these amino acids
increased in SS2 antisense tubers, but also the ratio between these

metabolite pairs was altered. This finding indicates a shift of relative
control over carbon partitioning between the pools of soluble
metabolites of both genotypes. Such observations might facilitate
linking changes in metabolic levels back to the relative impact on
different biochemical pathways.

The significance of changes in slopes was tested by transforming
all data to metabolite�metabolite ratios, for which fixed correla-
tions were found above a threshold of rxy � 0.80 in one of both
genotypes (t test, P � 0.05). From 17,205 tuber metabolite corre-
lations tested, 1,181 (6.9%) showed a strong correlation in at least
one of both genotypes, and, for 157 of these pairs, significant
differences in metabolite�metabolite ratios were found (Table 3).
The largest group (65 pairs) among these included at least one
amino acid, and the most prominent effects were found for pairs
that included lysine, glutamine, and �-aminobutyric acid (GABA).
For leaves, 1,733 of 75,078 (2.3%) searched polar metabolite pairs
were found to have a correlation rxy � 0.80 in at least one genotype.
Among these, 317 were calculated to have significantly different
metabolite�metabolite ratios. Unlike in tubers, the largest effect in
leaves was found among sugar alcohols. As exemplified in Fig. 3,
some metabolite pairs such as arabinose-tagatose showed clear
correlation in SS2 leaves, which was not evident in WT leaves. For
other pairs, like trehalose-erythritol, metabolite levels in both SS2
and WT leaves implied a strong linear correlation, and again a
difference in metabolite ratios was found. Two hundred twenty-six
of the metabolite pairs with altered correlation slopes were related
to carbohydrate metabolism and only 15 to amino acids. The most
apparent differences were found for leaf metabolite pairs that
included erythritol, mannitol, trehalose, or tetronate. Comparing
the results for leaf and tuber metabolite ratios, these differences in
control of carbon partitioning suggest that the overall effect of the
SS2 antisense construct was organ dependent.

Topology of Metabolite Correlation Networks Reveals Alteration in
Carbohydrate Metabolism in Silent SS2 Plants. The working hypoth-
esis was that primary carbohydrates like sucrose, fructose, and
glucose are heavily interconnected with multiple other pathways
and might thus have impact on overall reaction networks (33, 34).
Therefore, we assumed changes of the structural properties of the
metabolic network itself. In analogy to recent studies of protein
interaction networks (35), transcriptional regulation frameworks
(36), and reconstructed metabolic systems (33, 37, 38), we extended
metabolic correlation analysis to the level of network topology,
which may be used for further calculations or visualized by graphs.
For WT and SS2 leaf total correlation networks, few direct corre-
lations between polar and lipophilic metabolites were found. Due
to the sheer number of pairwise metabolic correlations, large
overview network graphs easily get incomprehensible. Therefore,
the subnetwork of polar metabolites was further investigated to
emphasize the effects on primary metabolism and to exemplify the
idea of using connectivity topology ranking (Fig. 4). Strong corre-
lations between trehalose and sugar alcohols were observed in
leaves but not in tuber networks. Besides its proposed role in sugar
sensing in plants (39), trehalose also affects sucrose synthase and
invertase activities (40) and is thus directly related to basic sucrose
metabolism. Generally, the partial network graph in Fig. 4 points to
a more general way to assess genotypic differences: intriguingly,
trehalose and sugar alcohols had far fewer numbers of network
connections in SS2 than in WT leaves. We propose to use such
differences of ‘‘metabolite connectivities’’ as a general tool to study
perturbation in metabolic networks. First, the connectivity count of
each metabolite has to be normalized to the total number of
correlations in the metabolic network. At any given relevance level
of rxy, the average number of correlations per metabolite was found
to be higher in SS2 tubers compared with WT tubers, and lower in
SS2 leaves than in WT leaves (Fig. 11, which is published as
supporting information on the PNAS web site). This result indicates
robustness of network calculations to the choice of the actual
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threshold taken for rxy. Second, the connectivity distribution P(k) of
polar metabolites was shown to follow the typical power law for
scale-free networks (41) (Fig. 5). In scale-free networks, most nodes
are only sparsely connected with others whereas some few nodes are
heavily associated with many others. This property is uniformly and

Table 3. Differences in ratios of polar metabolite pairs
comparing SS2 and WT tubers and leaves

Metabolite
ratio

P
value

x-fold
WT�SS2

Tuber
Arg/homoserine 0.000 1.8
Arg�lys 0.000 1.6
Asn�gln 0.000 1.5
Asn�homoserine 0.000 1.8
Gly�homoserine 0.000 1.9
Met�lys 0.000 1.4
Ser�homoserine 0.000 1.6
Shikimate�homoserine 0.000 1.7
Thr�homoserine 0.000 1.9
Met�GABA 0.001 1.5
Met�homoserine 0.001 1.7
Succinate�phe 0.001 1.5
Thr�lys 0.001 1.7
Arg�citrulline 0.002 1.3
Thr�GABA 0.002 1.6
Val�lys 0.003 1.3
Gly�GABA 0.004 1.5
Val�homoserine 0.004 1.6
Leu�lys 0.005 1.3
Ser�GABA 0.005 1.6
Shikimate�met 0.005 1.3
Ile�lys 0.007 1.2
Thr�gln 0.008 1.5
Malate�fumarate 0.010 0.8
Inositol�fructose-6p 0.013 0.6
Ser�citrulline 0.017 1.2
Met�citrulline 0.018 1.2
Ser�val 0.018 1.2
Glycolate�homoserine 0.024 1.7
Arg�val 0.026 1.2
Benzoate-4OH�caffeate 0.027 1.2
Gly�gln 0.028 1.4
Met�val 0.034 1.1
Ser�phe 0.042 1.4
Putrescine�phe 0.044 1.4
Thr�val 0.044 1.3
Gln�homoserine 0.046 1.4
Met�phe 0.047 1.3

Leaf
Trehalose�arabinitol 0.000 2.8
Mannitol�arabinitol 0.000 2.4
Galactitol/arabinitol 0.000 1.3
Glucose-6deoxy�erythritol 0.000 0.7
Glucose-6deoxy�mannitol 0.000 0.5
Erythritol�arabinitol 0.001 1.6
Erythritol�trehalose 0.001 0.6
Tetronate�mannitol 0.001 0.6
Glycerate�malate 0.005 1.4
Erythritol�mannitol 0.009 0.7
Trehalose�mannitol 0.016 1.1
Galactitol�mannitol 0.017 0.6
Sorbitol�galactitol 0.021 0.9
Beta-alanine�asp 0.023 4.8
Tagatose�arabinose 0.023 1.4
Glycerate�tetronate 0.025 1.2
Glucose-6deoxy�trehalose 0.025 0.4
Beta-alanine�arabinitol 0.032 1.9
Galactose�arabinitol 0.032 0.6
Quinate�glucose-6deoxy 0.034 1.6
Tetronate�malate 0.037 1.2
Glu�asp 0.037 0.8

Only polar metabolites with known chemical structure are shown. Protei-
nogenic amino acids are abbreviated by three-letter code. Tuber: 1,181 pairs
tested; 157 pairs with P � 0.05; 62 pairs with P � 0.01. Leaf: 1,733 pairs tested;
317 pairs with P � 0.05; 149 pairs with P � 0.01.

Fig. 4. Enlarged view of polar metabolite correlations in WT and SS2 leaves
at rxy � 0.80. am, amine; CHO, carbohydrate; ac, acid; extension lp, leaf polar
fraction.

Fig. 5. Distribution function P(k) of polar potato plant metabolite correla-
tions at rxy � 0.7, giving the probability that a randomly selected metabolite
has exactly k correlations to other metabolites. Blue, SS2; red, WT plants;
crosses, tubers; diamonds, leaves.
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linearly distributed over the whole connectivity range, and it
provides the possibility to compare SS2 and WT network connec-
tivities by ranking the relative differences in correlations per
metabolite. In Table 4, the extremes in connectivity differences are
given for compounds with known chemical identity. Most interest-
ingly, effects for primary carbohydrate metabolism in SS2 tubers
could be observed more clearly than by the other statistical methods
previously applied. Sucrose showed more correlations in SS2 tubers
whereas fewer correlations were found for glucose, fructose, and
galactose. This finding of opposite effects found for sucrose with

respect to glucose and fructose is in accordance with the increased
total activity of sucrose synthase in tubers. Additionally, large
relative changes in aspartate connectivity in tuber metabolic net-
works were found. Together with the significant changes in metab-
olite�metabolite ratios for aspartate-derived amino acids such as
homoserine and lysine and increased lysine average values, this
result indicates a general shift in control of aspartate-derived
biochemical pathways in SS2 tubers. This result is in good agree-
ment with the recent finding that sucrose and amino acid metab-
olism are intimately connected in potato tubers (23).

Conclusions
The functional assignment of silent phenotypes is a necessity for
today’s genomic strategies, specifically when altering the expression
of one of several enzyme isoforms. Here, it is shown how to
distinguish the silent SS2 phenotype from its parental background
line by comprehensive metabolome analysis combined with statis-
tical tools. Particularly, topological differences in metabolic corre-
lation networks proved useful to complement findings of subtle
differences in variances and averages of metabolite levels. A
mechanistic interpretation of such observations is still hampered by
two important features: first, a high number of metabolic peaks in
MS are as yet unknown, disabling a link to known biochemical
networks. Second, regulations that can cause metabolic correlations
can be based on all system levels, i.e., transcription, translation, and
ultimately enzyme activities including protein interaction clusters.
The utility of metabolic networks has to be complemented with
classical biochemical studies, for instance by comprehensive pro-
filing of metabolic fluxes (42) or enzyme activities as in this study.
Nevertheless, analysis on the metabolome level is applicable to all
kinds of perturbated biological systems at competitive costs, en-
abling the use of a wide variety of statistical tools for generating
novel hypotheses.

We thank Gareth Catchpole for MATLAB calculations, Frank Kose for
improving network algorithms, Alisdair Fernie for help with SS2 expression
analysis, and Birgit Linkohr for carrying out DFA analyses. This project was
funded through the Max Planck Society and a Fundaçao de Amparo à
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Table 4. Difference in relative connectivity in metabolic
networks between SS2 and WT plants

Leaf Tuber

Metabolite

Rel. connectivity
SS2 � WT,
r � 0.70 Metabolite

Rel. connectivity
SS2 � WT,
r � 0.70

Arabinitol �4.467 Phenylalanine �8.08
Galactitol �2.641 Glucose �7.84
Glucose-6-deoxy �4.435 Arginine �6.28
Glyceraldehyde �4.274 �-Alanine �5.05
Mannose �3.263 Galactose �4.89
Normethyladrenaline �3.344 Alanine �4.88
Quinic acid �3.246 Fructose �4.61
Trehalose �2.460 GABA �4.37
Glutamate 2.218 Raffinose 4.23
Malate 2.327 Citrate 4.50
Raffinose 2.454 Sucrose 4.63
Fructose 2.661 Homoserine 6.68
Psicose 2.725 Aspartate 6.90
Fumaric acid 2.788 Glycerate 7.70
Isotetronate 3.154 Phosphate 8.47
Oxoproline 3.704 Nicotinate 11.08
Phenylalanine 4.231
Tetronate 4.871
Aspartate 5.576
Tagatose 6.481

Metabolites with negative values have a higher connectivity in WT plants.
Positive values indicate a higher connectivity in SS2 plants.
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