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ABSTRACT Protein crystallization, aggregation, liquid–
liquid phase separation, and self-assembly are important in
protein structure determination in the industrial processing
of proteins and in the inhibition of protein condensation
diseases. To fully describe such phase transformations in
globular protein solutions, it is necessary to account for the
strong spatial variation of the interactions on the protein
surface. One difficulty is that each globular protein has its
own unique surface, which is crucial for its biological function.
However, the similarities amongst the macroscopic properties
of different protein solutions suggest that there may exist a
generic model that is capable of describing the nonuniform
interactions between globular proteins. In this paper we
present such a model, which includes the short-range inter-
actions that vary from place to place on the surface of the
protein. We show that this aeolotopic model [from the Greek
aiolos (‘‘variable’’) and topos (‘‘place’’)] describes the phase
diagram of globular proteins and provides insight into protein
aggregation and crystallization.

Simple isotropic models that treat the protein molecules as
spherical particles with short-range attractive interactions ex-
plain certain features of the protein phase diagram (1–5). In
particular, liquid–liquid coexistence turns out to be metastable
with respect to solidification when the range of interaction is
less than one quarter of the particle diameter (6–10). This
metastability has been observed for a variety of protein
solutions (11–15) and in colloidal solutions (16–18), but not in
simple fluids where the range of interaction is long (19). The
isotropic model, however, fails to describe the phase diagram
of protein solutions quantitatively and cannot address phe-
nomena such as protein aggregation and self-assembly.

We use a simple model in which the energy of each particle
depends only on its position relative to other particles and on
its own orientation but is independent of the orientation of
other particles. In this model, the pair potential of particles i
and j has the form w(Vi, Vj, rij) 5 u(Vi, rij) 1 u(Vj, 2rij). Here,
rij is the vector distance between particles i and j while V
represents the three Euler angles that define the orientation of
the particle. For such an additive model, it is possible to define
the orientation-averaged free energy, fi({rij}), of an individual
particle as

exp@2b fi$rij%!] ; Eexp@2bO
j51; jÞi

N

u~Vi, rij!#
dVi

8p2
. [1]

As usual, N is the number of particles, and b 5 1ykBT, where
kB is Boltzmann’s constant and T is the absolute temperature.
The free energy fi({rij}) of a particle depends on the positions
of all of the particles with which it interacts. If we can ignore
correlations between these interactions, then fi({rij}) can be
written as Sj51; jÞi

N U(rij), where U is a temperature-dependent,

effective isotropic potential given by exp[2bU(rij)] 5
*exp[2bu(Vi, rij)]dViy8p2.

To study the conditions under which the aeolotopic potential
u(Vi, rij) is ‘‘averageable,’’ i.e., accurately approximated by the
effective potential U(rij), we use the following modified square-
well model. A protein molecule is represented by a spherical
particle with a ‘‘map’’ of attractive regions covering a fractional
area a of the surface. In this work, maps consisted of s
non-overlapping spots of equal area on grids formed by
equidistant meridional lines intersected by lines of constant
latitude (see Fig. 1). As in the isotropic square well model (20),
particles i and j are said to be neighbors if the distance rij

between the centers of the two particles lies within s # rij ,
ls (where l is the reduced range of interaction and s is the
diameter of the hard core). A particle i is said to make a
contact with its neighbor j if the vector rij passes through an
attractive spot on protein i. The energy u(Vi, rij) is defined as
2«y2 times the number of contacts made by the particle.

The effective pair potential for our model is a standard
square-well potential with range l and a temperature-
dependent depth given by

«eff~T! 5 2kT ln@aexp(«̂y2)1(12a)], [2]

where «̂ [ «ykT. To establish whether the aeolotopic potential
is averageable, the reduced effective energy «̂eff(T) [
«eff(T)ykT is to be compared with f̂ [ 22fi({rij})ynkT, the
actual free energy per pair of neighbors (n is the number of
neighbors).

We have numerically calculated f̂ from Eq. 1 as a function
of «. Fig. 2 shows representative results for a particular map of
25 randomly placed spots with a 5 0.01 and for two different
numbers of neighbors: n 5 3 and n 5 5. For each n we show
the results for five sets {rij} of randomly chosen positions of the
neighbors. The black line is «̂eff(T).

For all configurations of the neighbors shown, the n 5 3
results for f̂ are close to «eff(T), while for n 5 5, the free energy
f̂ falls below «̂eff(T) at sufficiently large energies. This is
because there are no orientations for which all five contacts are
ever made. In fact, in four of the five configurations of
neighbors, only three contacts were ever simultaneously made
for this particular map. We see that, if the particle has three
neighbors, its potential is averageable. For n 5 5 it is not, and
the full free energy must be explicitly calculated.

In Fig. 3a, we show the results of our simulations for the
probability pn that a particle cannot make all contacts with n
randomly located neighbors for n 5 3 (squares) and n 5 5
(circles). Each point represents the results for a different map.
As expected, maps with different patterns of the attractive
spots, but the same s and a, have similar probabilities. The solid
lines are given by

pn~S, a! 5 exp[2knn3s3/2an23/2], [3]
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where kn is of order one†. For the lines shown in Fig. 3a, we
find k3 5 0.67 and k5 5 0.80.

When pn ' 1, only very specific configurations of neighbors
allow contacts with all neighbors and the potential is not
averageable, whereas when pn ' 0, all contacts are made in
numerous orientations and the aeolotopic potential is aver-
ageable. In Fig. 3b, we present the simulation results for pn(s,
a) 5 0.5 for n 5 3 (squares) and n 5 5 (circles). For maps whose
s and a fall significantly above the open symbols (i.e., pn , 0.5),
the potential is averageable; below, it is not. The lines are
obtained from Eq. 3 for n 5 3 (solid) and n 5 5 (dashed),
assuming the values of kn given above. The solid triangle in Fig.
3b corresponds to the parameters of the map we have used in
Fig. 2 (s 5 25, a 5 0.01).

The key parameter that determines whether an average
potential can be used instead of an aeolotopic one is the
number of neighbors n. Interactions that are averageable near
the liquid–liquid critical point, where n ' 3 (1), may no longer
be averageable in the crystal, where n . 5. Thus, it is not always
appropriate to use the same effective potential to describe both
the liquid and solid phases.

This conclusion is borne out when we analyze the phase
diagram of globular protein solutions. In Fig. 4, we show as
open symbols the liquidus line (squares) and coexistence curve
(circles) measured for the protein gIIIb-crystallin (11, 13). We
have previously shown that the isotropic square well model
with a reduced range of interaction l 5 1.25 produces the

correct coexistence curve (blue coexistence curve), provided
that the depth of the potential has the appropriate temperature
dependence (1). However, the liquidus line predicted by using
the same potential in the solid (dashed red line) differs

†One way to derive Eq. 3 is as follows. The probability that n neighbors
make all n contacts for a particular orientation of the central sphere
is an. This orientation allows a small rotational jiggle about each of
the three axes of the sphere within an angle Du ; (ays)1y2yn without
losing any contacts. If two orientations differ by more than Du, their
probabilities of making all contacts are statistically independent (this
last statement holds only for maps with many randomly placed spots).
There are 1y(Du)3 such independent orientations, and the probability
that none of them makes all n contacts is exp(2any(Du)3). Substi-
tuting for Du, we recover Eq. 3.

FIG. 1. Schematic representation of the interactions of a model protein with its neighbors. The attractive spots on the central particle are shown
as transparent. The central particle makes a contact with the front right neighbor but not with the front left neighbor.

FIG. 2. The reduced free energy as a function of the reduced
energy. The black line is obtained assuming independent interactions.
The red and blue lines are the simulation results for f̂ with n 5 3 and
n 5 5, respectively, for five different randomly chosen configurations
of the neighbors. The same map, with a 5 0.01 and s 5 25, was used
for both sets of simulations. For a given configuration of neighbors, the
probability p(m; n) that the central particle makes m contacts was
calculated (for each m in the range 0 # m # n) by directing counting
of the contacts for 10 million random orientations of the central
sphere. The reduced free energy then was obtained from
f̂ 5 (2yn)ln[Sm50

n p(m; n)exp(m«̂y2)]. The inset shows the percentage
of simulations in which the maximum number of contacts made is nmax.
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significantly from the experimental results (2). The aeolotopic
model accounts in a natural way for the difference in apparent
potentials in the two phases. The energy per particle that
corresponds to the blue liquidus line (Fig. 4) is 2c«y2 5
247kBTc, where c is the number of contacts made per particle
and Tc is the critical temperature (2, 21). For c ' 10, we find
that « ' 9kBTc. The effective energy at the critical temperature
for l 5 1.25 is «eff(Tc) 5 1.3kBTc (1). Using these values of «
and «eff(Tc), we find from Eq. 2 that a ' 0.01. Remarkably, this
value of a produces an «eff(T) that yields the blue coexistence
curve in Fig. 4. We see that the aeolotopic model provides a
self-consistent and accurate representation of the liquidus line
and the coexistence curve.

Aeolotopic interactions are responsible for protein aggre-
gation. The number of neighbors within the aggregate is large,
the energy per contact is much larger than the thermal energy,
and the interactions are not averageable. All of these factors
produce large energy barriers between the various conforma-
tions of aggregates which prevent the aggregates from rear-
ranging into a crystal. Therefore, when the aeolotopic inter-
actions are strong, metastable aggregates will abound, even
though the crystal is the thermodynamically more stable

structure. This view is consistent with the observation that, if
the virial coefficient is too negative, amorphous aggregation
dominates (22, 23). Of course, to properly address the com-
petition between crystallization and aggregation, the kinetic
properties of the aeolotopic model need to be investigated.
However, the perspective we have presented suggests that it is
the isotropic interactions between the proteins—both attrac-
tive and repulsive—which favor the formation of crystals over
aggregates, while the aeolotopic interactions determine only
the details of the crystal structure.

The aeolotopic model we have discussed captures the im-
portant features that characterize the interactions of proteins
in solution. It provides a natural explanation as to why
different apparent potentials are needed to describe the liquid
and solid phases. Furthermore, the aeolotopic model lays the
foundation for an analysis of phenomena unique to protein
solutions, such as oligomerization, amorphous aggregation,
and self-assembly.
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