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ABSTRACT We have previously derived a theoretical
measure of neural complexity (CN) in an attempt to charac-
terize functional connectivity in the brain. CN measures the
amount and heterogeneity of statistical correlations within a
neural system in terms of the mutual information between
subsets of its units. CN was initially used to characterize the
functional connectivity of a neural system isolated from the
environment. In the present paper, we introduce a related
statistical measure, matching complexity (CM), which reflects
the change in CN that occurs after a neural system receives
signals from the environment. CM measures how well the
ensemble of intrinsic correlations within a neural system fits
the statistical structure of the sensory input. We show that CM
is low when the intrinsic connectivity of a simulated cortical
area is randomly organized. Conversely, CM is high when the
intrinsic connectivity is modified so as to differentially am-
plify those intrinsic correlations that happen to be enhanced
by sensory input. When the input is represented by an
individual stimulus, a positive value of CM indicates that the
limited mutual information between sensory sheets sampling
the stimulus and the rest of the brain triggers a large increase
in the mutual information between many functionally special-
ized subsets within the brain. In this way, a complex brain can
deal with context and go "beyond the information given."

The intricate connectivity that links functionally specialized
groups of neurons within and among brain areas is an out-
standing characteristic of mammalian brains. Through an
ongoing, recursive, and parallel process of signaling called
reentry (1), the anatomical connectivity of the brain supports
a functional connectivity, a complex pattern of correlations
among sets of neuronal groups (2). In a previous paper, we
introduced a measure called neural complexity (CN) that
characterizes the functional connectivity of a neural system in
terms of the set of statistical correlations among its units (3).
It was shown that CN is low when these units are either
completely uncorrelated or completely correlated. Conversely,
CN is high when a neural system displays both functional
segregation and integration among its units or, equivalently,
when their correlations are both strong and heterogeneous.

In deriving CN, we considered a neural system in isolation
from environmental stimuli and at a given developmental time.
A more complete characterization of the functional connec-
tivity of the brain must relate it to the statistical structure of
the signals sampled from the environment. Such signals acti-
vate specific neuronal populations and, as a result, synaptic
connections between them are strengthened or weakened. In
the course of development and experience, the fit or matching
between the functional connectivity of the brain and the
statistical structure of signals sampled from the environment
tends to increase progressively through processes of variation
and selection mediated at the level of the synapses (1). These
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processes are particularly well demonstrated by the organiza-
tion of primary visual areas. Within a visual area, the connec-
tivity is initially organized in a uniform way. During develop-
ment and experience, it undergoes a selection process such that
groups of neurons responding to similar orientations become
preferentially connected (4, 5). The resulting functional con-
nectivity, which constitutes a basis for various Gestalt criteria
(6, 7), matches the prevalence of extended colinear edges in the
retinal image.

In order to characterize the fit or matching to the statistical
structure of environmental signals from a more general per-
spective, we introduce here a statistical measure, called match-
ing complexity (CM), which reflects the change in CN observed
when a neural system is receiving sensory input. Through
computer simulations, we show that when the synaptic con-
nectivity of a simplified cortical area is randomly organized,
CM is low and the functional connectivity does not fit the
statistical structure of the sensory input. If, however, the
synaptic connectivity is modified and the functional connec-
tivity is altered so that many intrinsic correlations are strongly
activated by the input, CM increases. We also demonstrate that,
once a repertoire of intrinsic correlations has been selected
that adaptively matches the statistical structure of the sensory
input, that repertoire becomes critical to the way in which the
brain categorizes individual stimuli. After developing and
illustrating the properties of CM, we consider the contrast
between this selectionist approach and standard information
processing views, and we discuss its applicability to various
experimental paradigms.

Theory

Following a previous paper (3), we consider a neural system
Xwith n units which are taken to represent neuronal groups.
We assume that its activity is described by a Gaussian
stationary multidimensional stochastic process (8). The joint
probability density function describing such a multivariate
process, corresponding here to its functional connectivity,
can be characterized in terms of entropy and mutual infor-
mation (MI; refs. 8 and 9). MI is a general measure of the
deviation from independence, or correlation, among many
variables. For instance, consider a bipartition of the system
X into a jth subset Xj composed of k units and its comple-
ment X - Xf. The MI between Xj and X - Xj is given by

MI(Xk;X- Xk) = H(Xk + H(X- X,) H(X), [1]

where H(Xf) and H(X - X7) are the entropies ofXf andX -

Xf considered independently, and H(X) is the entropy of the
system considered as a whole (joint entropy). MI is zero ifX7
and X - X7 are statistically independent, and it is positive
otherwise.

Previously (3), we considered a neural system X, character-
ized by a synaptic connectivity CON(X), that is isolated from
the environment (Fig. 1A). To thoroughly characterize its
functional connectivity, all correlations among the units of the
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FIG. 1. Schematic illustration of neural complexity (CN) and
matching complexity (CM). In A-C a neural system X is composed of
units linked by a matrix of anatomical connections CON(X) (Left). This
anatomical connectivity gives rise to a functional connectivity COV(X)
(Center). Correlations are indicated by arrows between the units (thick
= strong, thin = weak). (A) Isolated system. Intrinsic neuronal activity
gives rise to COV'(X), from which one obtains the system's intrinsic
complexity, C (X) (1). (Right) The average mutual information
(MI(Xk; X Xk)) for all bipartitions of the system is plotted versus
subset sizes (Eq. 2); CN(X) is the area under the curve. (B) (Left) A
sensory sheet S is connected to the systemXby anatomical connections
CON(S, X). (Center) Events in the environment cause coactivation of
units within S. The functional connectivity of the system is modified
by the input: some correlations are enhanced, others are diminished.
In this case, the MI between some of the subsets increases and there
is an overall increase in complexity (Right). (C) (Left) All connections
within X are set to 0. Remaining correlations within the system
(Center) are due to the stimulus per se and correspond to the extrinsic
complexity CE(X) (Right). (D) Complexity matching CM is obtained by
subtracting intrinsic and extrinsic complexity from the total complexity
(Eq. 3). The two plots illustrate graphically two equivalent formulations
of CM, in terms ofMI values between subsets within the system (Left; Eq.
4) and in terms ofMI values between subsets of the system and the sensory
sheet (Right; Eq. 6). Shaded areas under the curves are equal.

system (one-to-many, many-to-many) must be considered.
This was done by taking into account the set of all possible
bipartitions of the system. The complexity CN(X) of a neural
system is then defined as

tions in the system (i.e., the system is integrated). Moreover,
the average MI must be higher for larger subsets, indicating
that such correlations are heterogeneous (i.e., if considering
more units adds to MI, then individual units must have
different, specialized functions).

In this paper, we set out to evaluate how the set of
correlations measured by CN(X) changes when the system
samples stimuli from the environment (Fig. IB). We assume
that the systemX samples a stimulus i through a sensory sheet
S and a fixed extrinsic connectivity represented by a matrix
CON(S; X) between S and a subset of the system units. S and
CON(S; X) are not considered to be part of the system, so that
we can express the MI between the system and the sensory
sheet when it samples the ith stimulus as MI(X; Si). The
complexity CN(X) observed when the system is isolated is
called intrinsic complexity CI(X). When the system samples a
stimulus through the sensory sheet we observe a total com-

plexity CT(X). To evaluate the response of the system, the
contribution to CT(X) due to the stimulus per se should be
discounted. This extrinsic complexity CE(X) can be obtained by
setting CON(X) = 0 (Fig. 1C). We can now define the matching
complexity CM(X; Si) between X and Si as

Thus, CM(X; Si) is the change in the complexity of the system
beyond that accounted for by its intrinsic complexity CN(X)
and extrinsic complexity CE(X) (Fig. 1D Left); CM(X; Si) can
be positive, negative, or zero. Eq. 3 refers to a given stimulus
Si; in general, since the statistical structure of the signals
sampled from the environment will be characterized by many
different stimuli, one should calculate the average matching
(CM(X; Si)) for a set of n stimuli, where i = 1 ... n. According
to Eq. 2, it follows that

n/2
CM(X; S) = >(MIT(X; X-X} ))

k=l

-(MI'(Xj; X X)) (MIE(X; X - xk)). [4]

Given that the MI over the set of all bipartitions comprises all
correlations within the system, CM measures the extent to
which the set of correlations intrinsic to the system are
enhanced or reduced, on average, by the signals sampled from
the environment.

This definition of CM in terms of changes in MI within X is
precisely related to the distribution of the MI between X and
Si. Since extrinsic input and intrinsic noise inX are on average
uncorrelated, the MI between any subset X? and Si is equal to
the total entropy of X? minus the intrinsic entropy of X' (8):

n/2

CN(X) -= E(MI(Xk; X-xX)),
k=l

[2]

where the ensemble average is taken over all possible bipar-
titions of size k. According to Eq. 2, CN(X) measures the
average MI for bipartitions of the system over all bipartition
sizes. For CN(X) to be high, two conditions have to be met: the
average MI between individual units and the rest of the brain
must be high, indicating that there are many strong correla-

[6]
n

CM(X; Si) = (MIT(X; Si)) - (MIE(Xj; Si)).
k=l

Thus, CM also measures the change in the average MI between
Si and all subsets of X, summed over all subset sizes, which is
due to the connectivity of the system. Given a fixed value ofMI
betweenX and Si, matching measures how well the MI between
X and Si is distributed to subsets of units ofX (Fig. ID Right).

Implementation. In order to evaluate CM(X; Si) for many
sets of stimuli and for systems with many different connectivity

CM(X; Si) = CT(X) - CN(X) - CE(X). [3]

MIT(X; S,) = H(X) - H'(Xj). [5]

By considering Eq. 4 and substituting, using first Eq. 1 and then
Eq. 5, it can be shown that CM(X; Si) = E i/2(MIT(X/ ; Si)
+ MIT(X - Xk; Si)) - (MIE(X,; S.) + MIE(X - Xk; Si)). By
extending the sum over subset sizes to k = n, one obtains that
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patterns, we implemented model systems as linear realizations.
As in ref. 3, this allowed us to derive covariance matrices
analytically. Each linear system X consisted of n units which
received connections from m other units (1 - m < n 1, no
self-connections), resulting in a connection matrix CON(X).
CON(X) was normalized so that the absolute value of the sum
of the afferent synaptic weights per unit was set to a constant
value w < 1. If we consider the vector A of random variables
that represents the activity of the units of X, subject to
uncorrelated Gaussian noise R of unit magnitude, we have
that, under stationary conditions, A = A*CON(X) + R. By
defining Q = [1 - CON(X)]-1 and averaging over the states
produced by successive values of R, we obtain the intrinsic
covariance matrix COVI(X) = (At*A) = (Qt*R'*R*Q) = Qt*Q,
where the superscript t refers to the transpose. Ifwe include the
contribution of extrinsic input Si, we have that A = A*CON(X)
+ Si*CON(S; X) + R. Substituting W = CON(S; X)*Q, we
obtainA = Si*W + R*Q. By averaging over the states produced
by successive values ofR and Si, we obtain the total covariance
matrix COVT(X) = (At*A) = (Wt*S'*Si*W) + (Q'*Rt*R*Q) =
Wt*COV(Si)*W + Qt*Q. The extrinsic covariance matrix
COVE(X) can be derived by setting CON(X) = 0. Under
Gaussian assumptions, all deviations from independence
among the units are expressed by their covariances; from these
values of H(X) and therefore of CN(X) can be derived accord-
ing to standard formulae (8).

Results

In order to illustrate the notion of CM with simple examples,
we consider model systems and stimuli that capture some basic
aspects of the organization of a primary visual area and of its
inputs. The model systems contained four units that responded
to vertical segments and four units that responded to horizon-
tal segments. The input to the eight units consisted of a set of
18 individual stimuli representing either vertical or horizontal
elongated bars (Fig. 2A Upper). Assuming stationarity, each
stimulus activated the eight units with a given probability. The
overall statistical structure of this set of stimuli was repre-
sented by positive correlations between contiguous units with
similar orientation selectivity, as well as by negative correla-

tions between units with different orientation selectivity (Fig.
2A Lower).
Matching the Statistical Structure of the Input. Fig. 2 B-F

shows results obtained for 50 model systems using this set of
stimuli. For systems with randomly generated connectivities,
(CM(X; Si)) values were near 0 (mean = 0.01 ± 0.03; Fig. 2C
Upper). The connectivity matrix for one of these systems
illustrates that positive and negative synaptic weights were
distributed at random among all the elements (Fig. 2C Upper)
giving rise to an almost flat covariance matrix (Fig. 2D Upper).
For these systems, CN(X) was also low (mean = 0.31 ± 0.07;
Fig. 2F Upper). The broad distribution of the angles between
their eigenvectors indicates that COVI(X) differed from the
average COIr(X) (Fig. 2F Upper).
For any set of stimuli, many different synaptic connectivities

can lead to an increase in (CM(X; Si)). For instance, substantial
gains in (CM(X; Si)) were obtained by implementing paradigms
for synaptic change similar to those used in ref. 12 (data not
shown). Since the focus here is on the significance of an
increase in (CM(X; Si)) rather than on any particular neural
mechanisms, we present the results obtained with a con-
strained nonlinear optimization algorithm (Matlab Optimiza-
tion Toolbox, Natick, MA). This is a standard method of
gradient ascent on a function [in this case, (CM(X; Si)), with w
< 0.5 and no self-connections]. For any given stimulus, this
algorithm evaluated the change in MI for all bipartitions of the
system. Synaptic weights were incrementally modified such
that, on average, intrinsic correlations that supported an
increase in MI(Xf; X - X') in response to the stimulus were
enhanced. This process was repeated for a fixed number of
iterations, after which a different stimulus was presented in a
random sequence.
The histogram in Fig. 2B Lower shows (CM(X; Si)) values

obtained for 50 systems of eight units whose connectivity was
modified by gradient ascent. As expected, (CM(X; Si)) was
considerably increased (mean = 0.33 ± 0.01). The connectivity
matrix shown (Fig. 2C Lower) is representative of what was
found in all cases. Each unit tended to have positive connec-
tions with contiguous units of similar orientation specificity
and negative connections with other units. The resulting
functional connectivity, as illustrated by the intrinsic covari-
ance matrix (Fig. 2D Lower), was also such that units with the
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same orientation preference were positively correlated, while
units with different orientation preferences were slightly neg-
atively correlated. Furthermore, it was found that, although
CM(X; Si) and CN(X) values could occasionally increase or
decrease independently, after gradient ascent the functional
connectivities associated with increased values of (CM(X; Si))
showed high values of CN(X) (mean = 1.45 + 0.04; Fig. 2E
Lower). The small angle between the sorted eigenvectors
indicated that the average COVT(X) was a scaled version of
COVI(X) (i.e., it had the same eigenvectors but higher eigen-
values; Fig. 2F Lower).

For the above examples, we chose systems in which all the
units (n = 8) received direct input from S and all the
connections among them were allowed to change. We found
that, under these conditions, an increase in (CM(X; Si)) values
was associated with a nearly one-to-one correspondence be-
tween the overall statistical structure of the input and both the
synaptic and functional connectivity of the system. These
examples were specifically chosen to demonstrate the notion of
fit or matching in a straightforward way. We emphasize,
however, that such one-to-one correspondence is in general
neither present nor necessary. For example, we computed the
value of (CM(X; Si)) obtained by gradient ascent in four systems
with 10 units, 2 of which were not directly connected to S. An
analysis of the synaptic connectivity indicated that these two
additional units became specialized to detect the presence of
long vertical or horizontal bars, respectively. Thus, these units
discovered an important statistical feature of the input stimuli,
although in this case a one-to-one correspondence did not
hold. In addition, CM and CN values were higher than those
obtained with systems of 8 units [(CM(X; Si)) = 0.65 + 0.06 and
CN(X) = 2.30 + 0.15], indicating that larger repertoires of
intrinsic correlations provide the potential for higher values of
(CM(X; SE)). By contrast, (CM(X; Si)) and CN(X) remained
around zero for systems of 10 or more units with random
connectivities. Results qualitatively similar to the ones pre-
sented here were obtained upon using many different sets of
stimuli as well as different numbers of units in the systems
(data not shown).
Matching Individual Stimuli: The Role of Context. Once a

system has come to match the overall statistical structure of the
signals sampled from the environment, what happens when it
is presented with individual stimuli? By itself, a given stimulus
will inevitably contain only a small subset of the statistical
regularities in the input. The following examples show that
such stimuli enhanced or reduced the set of intrinsic correla-
tions in the system, depending on whether they were consistent
or inconsistent with the overall statistical structure of previ-
ously encountered inputs.
We examined the responses of the two networks whose

connectivities are shown in Fig. 2C. Fig. 3 shows the responses
of the two networks to the two different stimuli. The first
stimulus was similar to some of those in the original stimulus
set (Fig. 2A). The second stimulus was novel and unlike any of
the stimuli encountered before in that a vertical and a hori-
zontal line segment were present together. The histograms
represent the change in the strength of all intrinsic correlations
[MIT(X; X- X,) - MI1(X,; X - X) MIE(X; X- Xk)]
in response to the given stimulus. The histograms obtained
from the random network (Fig. 3 Upper) show that it did not
"recognize" either stimulus and CM was close to 0 [CM(X; Sl)
= 0.01; CM(X; S2) = 0.02]. Fig. 3 Lower illustrates the responses
of the system modified by gradient ascent on CM with the
original stimulus set (Fig. 2A). Fig. 3A Lower shows that, for
the first stimulus, there was a marked increase in the strength
of many intrinsic correlations. The system "recognized" the
stimulus and CM was positive [CM(X; SI) = 0.24]. A detailed
analysis indicated that the intrinsic correlations triggered by
this stimulus provided a specific context which could be
interpreted as filling in missing evidence and implying certain
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FIG. 3. Responses of a network before (Upper) and after (Lower)

gradient ascent on CM to known (A) and novel (B) stimuli. (A)
Histograms showing the difference between total, intrinsic, and ex-
trinsic MI for all bipartitions of the system upon presentation of a
stimulus activating units 2 and 3 to the random network (Upper) and
to the network modified by gradient ascent (Lower). In the case of the
modified network, this stimulus enhances not only the positive corre-
lation between units 2 and 3 but also their positive correlations with
other units responding to vertical bars (1-4) and their negative
correlations with units responding to horizontal bars (5-8). (B) As in
A, but with a stimulus that activates units 2 and 6.

predictions-for example, that the two active elements were
likely to be part of an elongated vertical bar, and that vertical
bars were rarely present simultaneously with horizontal bars.
By contrast, when the system was tested with the novel stimulus
(Fig. 3 Lower), there was a decrease in the strength of intrinsic
correlations and CM was negative [CM(X; S2) = -0.09]. Such
a response can be considered as an indication of novelty. On
the other hand, when this novel stimulus was included in the
original set and the process of gradient ascent was allowed to
proceed, the stimulus was found to result in positive values for
CM (data not shown).
Discussion

In mammalian brains, most neurons receive signals from other
neurons rather than directly from sensory inputs. Moreover,
there is increasing evidence that neural responses to such
sensory inputs cannot be characterized in terms of fixed
receptive fields, since neurons are sensitive to multiple con-
textual cues (10). Furthermore, the brain is spontaneously
active. After development and experience, such intrinsically
generated activity constitutes a highly organized functional
connectivity seen even in the absence of sensory inputs, as
strikingly demonstrated by dreaming and imagery (11). These
observations raise serious questions about attempts to describe
the brain as an information processing device.

In this paper, we provide some conceptual and operational
tools to address these issues from a different, selectionist
perspective (1). Relying on the notion of neural complexity
(CN) (3), we have here introduced a related statistical measure,
matching complexity (CM), which represents the change in
complexity in a neural system when it responds to signals from
an environment. While CN measures the amount and hetero-
geneity of the intrinsic functional connectivity of a neural
system, CM measures how well that functional connectivity fits
or matches the statistical structure of its sensory inputs. We
showed that as CM increases the intrinsic functional connec-

c
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tivity becomes progressively more adapted to the statistical
structure of the sensory input. Our analysis also indicated that
the functional connectivity of the brain constitutes an intrinsic
"context" which by necessity dominates its responses to any
single stimulus. Previous large-scale computer simulations (7,
12) suggest that reentry, involving ongoing recursive signaling
among multiple sets of neuronal groups (1, 13), is the key
process by which such intrinsic context is made available in a
rapid and parallel way. The constructive and correlative prop-
erties of reentry allow the brain to solve the binding problem
(12), to recreate the effects of extrinsic signals even in their
current absence, to fill in ambiguous signals, and to predict future
occurrences. Its associative properties ensure that local changes in
synaptic efficacy are dependent on this intrinsic context.
The present analysis sheds a new light on the relationship

between the processes of categorization and association. For
categorization, the units of a system must become specialized
and respond to different inputs; for association, these units
must be able to correlate their responses with those of many
other units. According to the notions introduced here, a single
principle, the increase in MI among subsets of units within the
brain, can account for the seemingly opposite requirements of
categorization and association, provided that there are bio-
logical mechanisms to ensure that this increase occurs for both
small and large subsets. An increase in the MI between
individual units and their inputs will reflect an increase in
functional integration; an increase in the MI between subsets
composed of many units and their inputs will reflect the
functional specialization of individual units within these larger
subsets. Thus, both the functional integration and the special-
ization of a neural system will increase, translating into an
increase in CN. For CM to increase, it is additionally required
that, on average, CN increases more when extrinsic input is
present than when it is absent. This can be achieved if
mechanisms mediating synaptic changes have a way to deter-
mine the degree to which their responses are modulated by
extrinsic inputs. A possibility is that these mechanisms are
sensitive to the level of activity of diffuse neuromodulatory
systems that signal the alternation between sleep and wake-
fulness as well as the saliency of stimuli. Another possibility is
that connections more likely to relay extrinsic inputs (e.g.,
forward connections) may differ, for example with respect to
voltage dependency, from connections that carry mostly in-
trinsic inputs [e.g., backward and lateral connections (refer-
ences in ref. 12)].

Matching, Information Processing, and Context. Since CM
is expressed in terms of MI, the notion of matching in a
selectional system can usefully be related to the statistical
foundations of information theory (9). Standard applications
of information theory consider the problem of transmitting
signals across a channel with limited capacity and noise.
Various strategies are employed to deal with problems such as
dimensionality reduction (fewer outputs than inputs), redun-
dancy reduction (information compression), and noise. How-
ever, several fundamental aspects of brain organization are
puzzling when viewed in these terms: (i) the number of units
in the brain is much larger than that of the units that receive
direct sensory inputs (the opposite of dimensionality reduc-
tion); (ii) there is evidence for extensive correlated neural
activity in response to a stimulus (14) (the opposite of redun-
dancy reduction); and (iii) the signals coming from the sensory
periphery are a minority with respect to reentrant signals from
the rest of the brain even in so-called "relay" nuclei (the
opposite of noise reduction). Considered from the present
perspective, however, the larger the number of units, the vaster
the repertoire of subsets that can be selected by interacting
with signals from the environment. Moreover, if CM is high, MI
from the same stimulus is efficiently distributed to many
different subsets in the brain, implying a high degree of
correlated neural activity rather than a reduction of redun-

dancy. If CN is also high, however, each of the subsets
responding to a given stimulus will have a specialized relation
to the rest of the brain, so that redundant inputs from the
stimulus can lead to different functional consequences. The
existence of more than one way satisfactorily to recognize a

given input is an instance of degeneracy, another fundamental
property of selective systems (1). Finally, the present analysis
relates changes in MI among subsets of units within the brain
to changes in the distribution of MI between these subsets and
the sensory input (compare Eq. 3 with Eq. 6, and see Fig. 1D).
This means that, if CN and CM are both high, for a small value
of the extrinsic MI between an individual stimulus and the
brain there will be a large increase in the intrinsic MI among
subsets of units within the brain. If incoming stimuli act largely
by modulating intrinsic correlations, the reentrant interactions
that support such correlations should not be considered as a
source of noise, but rather as providing the context that makes
incoming stimuli meaningful. By characterizing context in
terms of MI within the brain, our analysis shows that the brain
can literally go "beyond the information given" (15).

Applications and Predictions. The present analysis leads to
several predictions. For example, stimuli that reveal the con-
structive nature of perception, such as illusory contours,
two-dimensional diagrams that lead to three-dimensional per-
cepts (Necker cube), and random-dot sterograms should be
associated with positive values of CM. In particular, there
should be a change in CM when a hidden figure suddenly
emerges from a noisy background. This should go along with
an increase in correlated activity along specific corticocortical
and corticothalamic reentrant loops. More generally, mean-

ingful and meaningless stimuli, such as words vs. nonwords,
should be associated with different values of CM. As for CN
(16), among the most interesting applications of CM should be
those in the field of functional neuroimaging. It will be
important to determine the sensitivity of various neuroimaging
techniques with respect to changes in these measures. It
remains to be seen whether measuring brain responses to
repeated presentations of stimuli approximates quasistation-
ary conditions. If that is the case, paradigms measuring CM
should provide, compared with subtraction paradigms based
on activity, a more comprehensive assessment of the "mean-
ing" of a given stimulus to a given subject in terms of the range
and specificity of the set of associations that the stimulus triggers.
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