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ABSTRACT In this paper, a new way to think about, and
to construct, pairwise as well as multiple alignments ofDNA
and protein sequences is proposed. Rather than forcing
alignments to either align single residues or to introduce gaps
by defining an alignment as a path running right from the
source up to the sink in the associated dot-matrix diagram, we
propose to consider alignments as consistent equivalence rela-
tions defined on the set of all positions occurring in all
sequences under consideration. We also propose constructing
alignments from whole segments exhibiting highly significant
overall similarity rather than by aligning individual residues.
Consequently, we present an alignment algorithm that (i) is
based on segment-to-segment comparison instead of the com-
monly used residue-to-residue comparison and which (ii)
avoids the well-known difficulties concerning the choice of
appropriate gap penalties: gaps are not treated explicitly, but
remain as those parts of the sequences that do not belong to
any of the aligned segments. Finally, we discuss the applica-
tion ofour algorithm to two test examples and compare it with
commonly used alignment methods. As a first example, we
aligned a set of 11 DNA sequences coding for functional
helix-loop-helix proteins. Though the sequences show only low
overall similarity, our program correctly aligned all of the 11
functional sites, which was a unique result among the methods
tested. As a by-product, the reading frames of the sequences
were identified. Next, we aligned a set of ribonuclease H
proteins and compared our results with alignments produced
by other programs as reported by McClure et al. [McClure,
M. A., Vasi, T. K. & Fitch, W. M. (1994) Mol. Biol. Evol. 11,
571-592]. Our program was one of the best scoring programs.
However, in contrast to other methods, our protein alignments
are independent of user-defined parameters.

1. Introduction

In 1970, Needleman and Wunsch (1) published an algorithm
for the alignment of two protein sequences. This algorithm
aligns sequences by maximizing a score which is calculated by
summing over the weights associated to matches and subtract-
ing a penalty for each gap inserted during the alignment.
Virtually all present-day alignment algorithms are based-one
way or the other-on the Needleman-Wunsch algorithm.

Although this algorithm produces reasonable alignments if
the compared sequences are closely related, it has some
well-known shortcomings: it is hardly capable of detecting
similar regions of sequences with a small overall similarity, and
the resulting alignments depend sensitively on a set of user-
defined parameters, especially the gap penalty.

In addition, even though in theory the Needleman-Wunsch
algorithm can be extended quite easily to produce score-
optimal alignments of more than two sequences, the complex-
ity of the algorithm grows exponentially with the number of
sequences (1, 2), prohibiting extension of the algorithm to
more than three sequences.
Some authors therefore have proposed to restrict the search

space of the multiple alignment problem by using reasonable
heuristics (3). In this way, as many as eight protein sequences,
each containing several hundred amino acid residues, have
been aligned simultaneously.
Another practical solution for multiple alignment is to use

successive pairwise alignments of single sequences or clusters
of sequences, instead of simultaneous alignment of all se-
quences under consideration. However, in addition to other
shortcomings of this procedure, its results depend sensitively
on the order of the pairwise alignments which in turn is solely
determined from alignments of only two sequences at a time.

In this paper, we propose a new concept for sequence
alignment, which differs fundamentally from Needleman-
Wunsch based algorithms and also from the local alignment
procedures proposed by Argos (4), Argos and Vingron (5),
Waterman and Jones (6), and Johnson and Doolittle (7).

Instead of comparing individual residues, we use gap-free
segment-to-segment alignments with variable segment length.
In particular, our algorithm does not employ any gap penalties.

Regions of low similarity, often obscuring alignments based
on classical Needleman-Wunsch algorithms, are excluded
from our alignment. This allows detection and correct align-
ment of short similar regions in very long sequences of low
overall similarity by our alignment.

Finally, we discuss applications of our algorithm to two test
examples and compare the results with alignments produced by
commonly used alignment methods.
We compared our program with several other methods in

two examples. Our program was the only one of those methods
that correctly aligned a set of 11 genomic DNA sequences with
very limited similarity. We also applied our method to a set of
ribonuclease H proteins and compared our results with a study
published by McClure et al. (8). Here, our program was among
the best scoring methods. Moreover, in contrast to other
methods, our protein-alignment algorithm is independent of
user-defined parameters.
To us, this seems to suggest that our proposal is well suited

to produce biologically plausible alignments and that further
efforts to improve its performance and to explore its potential
may be justified. In addition, it should also be worthwhile to
compare our approach with similarly structured proposals as
suggested, for instance, by Taylor (9) or V. Brendel (personal
communication, Dagstuhl Conference on Molecular Bioinfor-
matics, 1995).

2. Basic Algorithm for the Alignment of Two DNA or
Protein Sequences

In this section, we describe an algorithm for the alignment of
two nucleic acid or protein sequences. The main idea of our
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approach is to base alignments on comparing whole segments
of the sequences instead of comparing single residues only. We
require the segments that are to be compared have the same
length, and we do not allow any gaps within them. Since such
pairs of segments appear as diagonals in the so called dot
matrix, we will refer to them by this term, and we call our
method DIALIGN for diagonal alignment.
We also define an alignment to be a consistent equivalence

relation, defined on the set of all positions of all sequences
involved. Here, "consistent" means simply that the overall
order of the positions in each sequence is respected. If only two
sequences are to be compared, consistency holds if for any two
diagonals D1 and D2 belonging to the alignment either Di <<
D2 or D2 << D1 holds, where "D1 << D2" means that the
positions aligned to each other in D1 precede those aligned in
D2 in both of the respective sequences.

2.1. Weighting the Significance of Diagonals. We have to
introduce a measure that enables us to assess the significance
of a diagonal-i.e., the similarity of the respective seg-
ments-to select a suitable set of diagonals.

Let D be a fixed diagonal, let 1 be the length of D, and let m
denote the number of matches contained in D. By P(l,m), we
denote the probability of any given diagonal of length 1 to
contain at least m matches. This probability is given by

P(l,m) iE () ( P) '[]

wherep is the probability of a single point in the dot matrix to
represent a match. For simplicity, one may assume uniform
distribution-i.e., one may assume p = 0.25 for nucleic acid
sequences and p = 0.05 for proteins. Next, motivated by
traditions established in statistical mechanics and information
theory, we consider§ the negative logarithm

E(l,m) := - ln (Pl,m) [2]

of the probability of a diagonal of length I to contain at least
m matches, and we define the weight of the diagonal D by

fE(l,m), if E(l,m) > T
w(D) 0 otherwise [3]

where T is a user-defined threshold introduced to limit the
number of diagonals under consideration and to retain only
those diagonals that have a very good chance to be biologically
relevant. If protein sequences or short DNA sequences are to
be aligned, a threshold is not needed. In this case our algorithm
is completely independent of user-defined parameters.
The weight w(D) is high if a random-diagonal of length I is

unlikely to contain as many as m matches. So, a high weight of
a diagonal D indicates that the similarity of the corresponding
segments is not expected to have come about by chance alone
and, hence, is likely to be caused by those evolutionary
processes one wants to uncover by comparative sequence
analysis.
One important feature of our approach is that, in contrast

to segment comparisons and "word searches" in conventional
alignment algorithms (see for instance refs. 4-7), it enables us
to compare the significance of diagonals of different lengths:
formula 3 assigns high weights to shorter diagonals if they have
a high rate of matches, as well as to longer diagonals with a
lower rate of matches provided the diagonals are long enough.

2.2. Computing Maximum Alignments. If the diagonals
D1,... ,Dk form a consistent set of diagonals, the score of this
set is defined to be the sum 1i,=j w(D1).
A consistent set of diagonals with maximum score is termed

a maximum alignment.
A maximum alignment of two sequences X = (XI.... , XLI)

and Y = (Y1, ... , YL2) of length L1 and L2, respectively, can
be calculated by an algorithm similar to the conventional
dynamic programming algorithms. First, one determines, for
every pair of positions (i,j) with 1 c i c LI and 1 c j c L2, all
integers k . 0 with k c min(i - 1,j - 1) forwhich the diagonal
(Xi-k, Yj-k; ... ; Xi,Yj) from (i - k,j - k) to (ij) has a positive
weight. Next, for every pair (i j) as above, one defines a value
"score(ij)," which is the score of a maximum alignment of the
prefixes (XI, ... , Xi) and (Y1, ... , Yj). Furthermore, if this
maximum alignment consists of the diagonals D1, ... , Dk with,
say, Di << D2 << ... << Dk, the data of the last diagonal Dk
have to be retained. We express this by definingprec(i,j) := Dk,
where in case there are several alignments with maximal score,
we choose Dk to be the right-most diagonal of all diagonals in
question. This convention is reflected by the apparent asym-
metry in Definition 8 below.
For each diagonalD = (Xi-k, Yj-k; ... ; Xi, Yj) with a positive

weight, the maximum sum of weights accumulated up to and
including D is denoted by "o-(D)" and the diagonal "preced-
ing" D by "X(D)."

Obviously, the values of oa and 7r satisfy the relations

oa(D) = score(i - k - 1,j - k - 1) + w(D) [4]

and

'r(D) =prec(i - k - 1,j - k - 1). [5]

Using these notations, we can compute the values of score
recursively by

score(i,j) = max{score(i,j - 1),score(i - 1,j),o-(Dij) [6]

where Di,j is any-say, the longest-diagonal ending at the
point (ij) that satisfies

o(Dij) = max{lo(D):D ends at the point (i,j)}, [7]

while prec may be defined by, say,

prec(i,j - 1) if score(i,j) = score(i,j- 1),

prec(i - 1,j) if score(i,j- 1) < score(i,j)

prec(i,j) := = score(i - 1,j),
Dinj if score(i,j - 1),score(i - 1,j)

< score(i,j) = o-(Dij).
[8]

Straightforward dynamic programming can now be used to
calculate all these values, which then allow us to find a
maximum alignment by a simple backtracking process: We set
Di := prec(Li,L2) and Di+, := IT(D1) as long as n(Di) is
defined.

Clearly, this algorithm works independently of how the
weights of diagonals are defined and, hence, allows experi-
menting with different choices not only of T, but also with
other ways of defining w (see, for instance, Section 5 below).

3. Multiple Alignment

In this section, we discuss an extension of the above described
algorithm to N sequences, where N > 2. A direct extension of
the algorithm would use N-dimensional diagonals-i.e., N-

§In the following, adopting standard conventions from present math-
ematics, we use the symbol ": =" rather than "=" in every formula in
which the left-hand term is defined by the right-hand term, rather than
found or claimed to be equal by some kind of reasoning.
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tuples of segments instead of the pairs of segments we have
used for the alignment of two sequences.
However, this would increase the computational complexity

of the algorithm exponentially relative to the number of
sequences to be aligned. Aside from these practical difficulties
and, much more important, we do not want to restrict our
attention to similarities that occur consistently in all of the N
sequences. A motif occurring in two sequences should not be
assumed a priori to occur in all the other sequences too.
We therefore prefer another approach and construct the

multiple alignment from "two-dimensional" diagonals. As
before, we try to select a consistent set of diagonals with a
maximal sum of weights. However, now diagonals originate
from all of the 2N(N - 1) possible pairwise sequence com-
parisons.
We rely on evaluating our diagonals by their respective

weights in contrast to the conventional alignment algorithms
which maximize a sum of single matches, penalizing isolated
matches only in terms of sophisticated gap penalties. Conse-
quently, diagonals are sorted according to their weights irre-
spective of the initial pairwise sequence comparison they
originate from.
To reduce the total number of diagonals under consider-

ation, we may restrict our attention to only those diagonals
which belong to one of the pairwise maximum alignments;
however, this is not a prerequisite for the algorithm and is used
only to enhance its efficiency. So, in a first step of our multiple
alignment algorithm, all N(N- 1) pairwise maximum align-
ments are constructed by the algorithm described in the
previous section. The resulting set of diagonals is denoted by
95.

In a second step, the set 95 is sorted according to the weights
of the diagonals in a greedy way. Diagonals are incorporated
one by one into the multiple alignment starting with the
diagonal of maximum weight, provided they are consistent with
the diagonals already incorporated (our concept of consistency
is discussed in Section 4). Diagonals not consistent with the
growing set of consistent diagonals are rejected. The result of
this selection process is a consistent set of diagonals-i.e., a
multiple alignment A.

Diagonals with high weights are most likely to be biologically
relevant, and, hence, are added first to the alignment. Thus,
they establish a frame into which the diagonals with lower
weights have to fit to be included into the multiple alignment.

Next, we complete the alignment A using an iterative
procedure: Those parts of the sequences that are not yet
aligned by the alignment A are realigned by the above de-
scribed procedure, considering now of course only those
diagonals which are consistent with the existing alignment A.

Again, the resulting diagonals are sorted according to their
weights and included into the alignmentA as described above.
This procedure is repeated as often as possible-i.e., as long as
there are any diagonals of positive weight which can be added
to the existing multiple alignment A.

Obviously, many other variants of extending our pairwise
alignment procedure to more than two sequences are imag-
inable, and they should be investigated in the future (see also
below). Yet, at present, the variant we have described above
appears to be fully satisfactory: it is efficient and it appears to
produce biologically meaningful results.

4. Alignments and Consistency

One crucial concept of the multiple alignment algorithm
described in the last section is our concept of consistency. We
had to decide whether or not a diagonal is consistent with the
diagonals already incorporated into the alignment. To define
consistency properly, we have to introduce some mathematical
formalism.

Consider a set of sequences {X(), ... , X(N)} where X( =

(XV) ,... , XL)) is the ith sequence. The set

X:= {(i,l)Il ' i ' N,1 I LiL} [9]

of all positions of all sequences can be regarded as a partially
ordered set (X,<): for any two positions x andy we definexx
y if and only if (i) both positions belong to the same sequence
and (ii) x precedes or equals y in the natural order of this
sequence; that is, if and only ifx = (i,l) andy = (i,k) for some
i E {1, . . ., N} and some l,k E {1, . .. , Li}with I - k.

Obviously, any alignment can be regarded as an equivalence
relationA on the set X: xAy means that positionx is aligned (or
coincides) with position y, though, of course, not every equiv-
alence relation on the setX deserves to be called an alignment.
An alignmentA has to meet a certain consistency criterion. To
define this criterion, we note that every relation R on the set
X extends the relation ".' to a (quasi-partial order) relation
CR" which is given by

<R -(R U i-<) [10]

where for a relation S defined onXwe denote by St its transitive
hull, so two elements x,y E X are in relation S, if and only if
there exist elements xo, ... , xk E X with xO = x, xk = y, and
Xi-jSxj for all i = 1, . .., k.
Now we define: An equivalence relation A on the set X is

called an alignment if all restrictions of the extended relation
4'!A" to the single sequences coincide with their respective
natural order relation.

IfA is an alignment of the partially ordered set X, then for
every positionx E Xand every i E { 1, ... , N}, there is a lower
bound b4(x,i) and an upper bound bA(x,i), so that x can be
consistently aligned with the pair (i,k) if and only if

[11]

holds [clearly, if x = (i,l), for some 1 E {1, L. , L1}, then

bA(x,i) = bA(X,i) = 1]-

To decide whether a diagonal D is consistent with a given
alignmentA, we have to know the values bA(x,i) and bA(x,i) for
any x E X and i E {1, . .. , N}. So, for every diagonal that is
consistent withA and therefore suitable to be included into the
multiple alignment, we have to calculate the values b(x,) and
b,(x,i) for the alignment A generated by A and the newly
included diagonal D.

Let D consist of the pairs (xi,yi), ... , (xk,yk)with x, < .__
c xk andy1 < .....< yk. If we define cA(x,i) to be 1 ifxAy holds
for some position y of the ith sequence and to be 0 otherwise,
it can be shown that the values b4(x,i) and bA (x,i) are given as
follows (with p E {1, . . ., k} always assumed to be chosen
appropriately):

max[bA(x,i),bA(X, i)],

if xAxp,
if xAyp,

max[bA(x,i),bA(Y, i)+ CA(yp, i) ], if X>AXp A

X;kAXqVq >p,

max[bA(x,i)bA(xp,i) + cA(Xp,i)], if x> AypA
X;YqVq >p,

Proc. Natl. Acad. Sci. USA 93 (1996)

bA(x, i) -< k -< bA(x,i)

kbA(X,i) else,
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bj(x, i) =

min[bA(x, i),bA(Yp, i)],

min[b.(x, i),b-A(Xp, O)]
if xAxp,
if xAyp,

min[bA (X, i),bA(Yp,i) -CA(Yp,i)], if x <AXp A

X*AXqVq >p,

min[bA(x,i)bA(xp,i) - cA(xp,i)], if x <AYpA

X*AyqVq <p,
IbA(X, i) else,

5. Refinements of the Alignment Algorithm

5.1. The weight-oriented sorting of diagonals prior to con-
struction of a consistent set of diagonals can lead in some cases
to "biologically wrong" alignments. Consider, for example, a
set of sequences containing a common motif. A biologically
meaningful alignment would certainly bring together all in-
stances of the motif in one single column.
However, if the conservation of the motif is low, it might

happen that the motif is found in some of the pairwise
alignments, but in others it is displaced by a diagonal D not
consistent with the "correct" diagonals.

If we are lucky, the weight ofD is smaller than the weights
of the correctly aligned motifs in the other sequence pairs. In
this case, D will be rejected in the selection process described
in Section 3 and replaced in the next iteration step by a correct
diagonal.
However, if w(D) is too high,D will be incorporated into the

multiple alignment, and some of the correct diagonals will be
rejected instead.

Hence, to favor similarities occurring in more than two
sequences, we may introduce a second weight function w* on
the set 9, which reflects not only the significance of a diagonal
D, but also the significance of all diagonals that have any
overlap with D. Such a weight function w* can be calculated as
follows.

Consider two diagonals D, and Din. If altogether three
sequences S(i), S°, S(k) are involved in the diagonals D, and Dm
with, say, Sly) belonging to both diagonals D, and Dm and if D,
and D, have a common region in sequence Sly), then the
corresponding positions of the other two sequences are con-
nected indirectly by D, and Di. This way, a segment of S(i) is
connected with a segment of S(k)-i.e., we have a third diagonal
Dn belonging to the sequences S(i) and Sly). In this situation, we
define

wv-(D,,D.) wW(Dn). [121

If diagonals D, and Dm have no overlap or if they are identical,
we define

)7(D,Dm) := O- [131

Now, for any diagonal D, we may define its overlap weight
w*(D) by

w*(D) := w(D) + E w7v(D,E). [14]
EEa

Here, we expect our sequence family to consist of an unbiased
sequence sample. If instead our family is expected to contain
large subfamilies of closely related sequences biasing the
overlap weights toward favoring diagonals from those subfam-
ilies, one may use any of the correction methods discussed in
the literature (10) to counterbalance this bias.
Anyway, instead of sorting diagonals according to their

weights w before starting the selection process, we may now

sort them according to their-uncorrected or corrected-
overlap weights.

5.2. A further modification concerns the weight function w
if protein sequences are to be aligned. Amino acids show
different degrees of similarity, which necessitates the employ-
ment of more sophisticated similarity matrices.
To assess the significance of a diagonal D of length 1, we may

consider the sum s of the similarity values of the residue pairs
aligned by D instead of the number of matches. We may then
calculate the probability of any diagonal of length I to have at
least the respective sum of similarity values, and continue as
described above.
We believe that developing similarity matrices from se-

quence statistics directly related to our approach will further
improve the performance of our algorithm, and we plan to
develop such statistics in the near future (S. Perrey, J. Stoye,
and A.D., unpublished data).

5.3. A similar modification of the weight function w can be
applied if DNA sequences are to be aligned which are sup-
posed to contain protein coding regions. In this case, it may be
advisable to consider only segments whose length can be
divided by three, and to translate them into peptides before
comparing them. The weight of a DNA diagonal is then
calculated as the weight of the corresponding peptide diagonal
using the procedure described just above. As is shown in the
next section, one may even identify reading frames using this
approach.

6. Examples

6.1. DNA Alignment. We have applied our alignment
method to a set of 11 genomic DNA sequences coding for basic
helix-loop-helix DNA binding proteins reported by Dang et al.
(11) (GenBank accession nos. X57435, X16106, S77532,
M24405, X51990, Y00396, X55666, M33620, L12469, X51330,
and X03719).
These proteins have a DNA binding site of about 30 amino

acids which has been detected based on experimental evi-
dence. They appear to be mostly unrelated outside this region,
prohibiting detection of the binding site by common alignment
algorithms.
We applied our alignment program directly to the genomic

DNA sequences of those proteins. The lengths of the DNA
sequences vary between 960 and 7225 bp and all sequences
contain introns.

Diagonals for our alignment were calculated by systematic
translation of the nucleic acid sequences using all possible
reading frames as described in Section 5.3. The threshold T for
the weights of the diagonals has been set to T := 16. This value
proved to be useful for suppression of diagonals in random
sequences of comparable length. Twenty of the 55 initial
pairwise alignments correctly aligned the functional site of the
sequences.

Diagonals produced by the pairwise alignments were sorted
according to their (uncorrected) overlap weights w* as de-
scribed in Section 5.1. All of the 20 correct diagonals were
incorporated into the resulting multiple alignment. Since these
20 correct diagonals connected (directly or indirectly) all of the
11 DNA binding sites with each other, one single column
containing all 11 DNA binding sites emerged in the first
iteration step of the alignment.

Moreover, the region where all of the 11 sequences were
aligned at a time, was clearly defined. This region coincides
with the functional site described in ref. 11.
As we had translated all "DNA diagonals" of the dot matrix

into "peptide diagonals," all combinations of reading frames
were possible. It is remarkable, that all of the 20 diagonals
which connected the functional sites of the sequences were in
the correct reading frame, though we did not presuppose any

Applied Mathematics: Morgenstern et aL
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Table 1. Alignment of 11 DNA sequences coding for basic
helix-loop-helix proteins

Correctly aligned Length restrictions,
Program (ref.) functional sites bp

DFALIGN (12) 0 2000
PILEUP (13) 2 2000
CLUSTAL (14) 2 None
GENALIGN (15) 0 None
DIALIGN 11 None

Comparison of our diagonal-alignment (DIALIGN) method with
other DNA alignment programs. We have aligned a set of 11 genomic
DNA sequences coding for basic helix-loop-helix proteins. The lengths
of the DNA sequences vary between 960 and 7225 bp. Two programs
were not able to align sequences of this length at all. In this case, we
shortened the sequences to a length of 2000 bp by cutting off regions
outside the functional site to allow comparison.

information concerning the (known) reading frames in our
alignment.

Since the threshold T is the most crucial parameter of our
algorithm, we tried to find out how the resulting alignments
were influenced by the value of T. We therefore aligned the 11
basic helix-loop-helix sequences using different values for T.
For 15.7 c T s 19.8, the results were as described above-i.e.,
all 11 functional sites were (eventually) aligned correctly. With
T = 14.5, as well as with T = 21.5, still nine sites were correctly
aligned.
We have also applied four widely used alignment programs

to the above set of sequences. None of them appeared to be
capable of producing similarly satisfying results (see Table 1).

6.2. Protein Alignment. Recently McClure et al. (8) have
published a systematic comparison of twelve commonly used
protein alignment programs. We have applied our program to
the sequences used in this study and found it among the three
best scoring programs - together with the programs DFALIGN
and CLUSTAL V. But in contrast to the other programs, our
program is independent of user-defined parameters if protein
sequences are to be aligned. The results of the three best
scoring programs are shown in Table 2.
As a further test example, we used protein sequences from

the Brookhaven Protein Data Bank. We compared our align-
ments with structure alignments performed by Lessel and
Schomburg (16), which we used as "standard of truth." Though
we used no information about the three-dimensional struc-

tures of the sequences, our algorithm was capable of correctly
aligning regions of structural similarity (unpublished data).

Conclusions

If sequences show only limited regions of similarity, our

algorithm aligns only those regions. In other words, it is a
"local" alignment algorithm in the sense of Smith and Water-
man (17). Yet, whereas the Smith-Waterman algorithm finds
only the one single best local alignment, our algorithm can

include several regions of similarity into the alignment (con-
sistency provided). This is an important feature if, for example,
coding regions of DNA sequences are separated by introns.

In accordance with other authors (12, 18, 19), we construct
multiple alignments using iterative pairwise alignments to keep
the computational complexity of the algorithm low.

Yet, in contrast to these approaches, pairwise alignments are

not crucial for our procedure, since they are only used for
preselection of diagonals to be included into the multiple
alignment. In particular, our algorithm is independent of the
order in which the pairwise alignments are constructed.
Assembling the multiple alignment from two-dimensional

diagonals necessarily sacrifices information that could be
obtained from higher dimensional ones. By introducing overlap
weights, we favor those two-dimensional diagonals that are

"projections" of a high scoring multidimensional diagonal.
However, nonconsistent random overlaps of diagonals may

increase overlap weights as well. Methods using consistent
multidimensional overlaps, therefore, are desirable and should
be developed in the future.
Our algorithm shows only little dependence on user-defined

parameters. Because gaps are not treated explicitly, we avoid
the well known difficulties of how to choose proper gap
penalties (20). Restrictions of the length of the diagonals speed
up the algorithm, but have no essential influence on the
resulting alignments. The threshold T, on the other hand, does
influence the results. However, since the purpose of T is to
keep the number of random diagonals low, appropriate values
for T can be obtained from alignments of random sequences.
Moreover, in most of our test examples, we have found that T
can be varied considerably without changing the results in an
essential way and T is not at all required for alignments of short
DNA sequences or protein sequences.
The examples demonstrate the capability of our algorithm to

find functional sites even if the sequences under consideration

Table 2. Alignment of ribonuclease H sequences

Program and Motif
no. of sequences I II III IV Parameters/comments

CLUSTAL V

12 100 75 75 75 Defaults; parameters tweaked are pairwise:
10 100 70 70 80 indel: (1-8) and k-tuple (1-2); multiple
6 100 67 50 50 alignment: 1 (6-12) and E (2-10)

DFALIGN

12 100 100 83 100 Begin weighting sequence 3 with value 3
10 100 60 70 100 Begin weighting sequence 4 with value 3
6 100 100 67 100 Begin weighting sequence 2 with value 2

DIALIGN

12 92 83 92 92 No parameters
10 100 80 90 100 No parameters
6 100 100 83 100 No parameters

Comparison of the diagonal-alignment (DIALIGN) method with other protein-alignment programs. We
used ribonuclease H sequences as test sequences and compared the alignments produced by our method
with the results of other alignment methods as reported in McClure et al. (8). The results of the three
best scoring programs are shown above. As in ref. 8, we aligned a set of 12 sequences, as well as subsets
of 10 and 6 sequences. The sequences contain four motifs. The entries in the respective columns denote
the percentage of correctly aligned motifs. In contrast to other methods, our program is independent of
user-defined parameters if protein sequences are to be aligned. The results of the programs CLUSTAL V
and DFALIGN are cited from McClure et al. (8).

Proc. Natl. Acad. Sci. USA 93 (1996)
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only exhibit a low overall similarity. Therefore, our method
seems to be an appropriate and sensitive tool to detect local
functional similarities in sets of relative large sequences, and
we believe that it justifies further efforts to improve its
performance and to explore its potential. In addition, it should
also be worthwhile to compare our approach with similarly
structured proposals as suggested for instance by Taylor (9) or
V. Brendel (personal communication).
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