## Gene sequence tags from *Plasmodium falciparum* genomic DNA fragments prepared by the "genease" activity of mung bean nuclease

G. Roman Reddy<sup>\*†</sup>, Debopam Chakrabarti<sup>\*‡</sup>, Sheldon M. Schuster<sup>‡§</sup>, Robert J. Ferl<sup>¶</sup>, Ernesto C. Almira<sup>‡</sup>, and John B. Dame<sup>\*†</sup>

\*Department of Infectious Diseases, College of Veterinary Medicine, <sup>‡</sup>Interdisciplinary Center for Biotechnology Research (ICBR), <sup>§</sup>Department of Biochemistry and Molecular Biology, College of Medicine, <sup>§</sup>Department of Horticultural Sciences, College of Agriculture, University of Florida, Gainesville, FL 32611

Communicated by Louis H. Miller, June 30, 1993

ABSTRACT A genes-first approach to genome sequencing is described which efficiently generates gene sequence tags from genomic DNA. Mung bean nuclease (EC 3.1.30.1) cleaves the genomic DNA of many organisms before and after genes and within some introns. Analysis of gene sequence tags prepared from mung bean nuclease-digested Plasmodium falciparum DNA demonstrates that this method has several advantages over the popular cDNA expressed sequence tag approach. To date, 673 sequence tags containing over 215 kb of sequence have been generated from 400 clones. Sixty clones (15%) have significant similarity to sequences in the protein and translated nucleic acid data bases. These represent 51 unique genes, of which only 5 encode previously known *P*. falciparum proteins. The identified proteins include those expressed in erythrocytic, exoerythrocytic, and gametocytic stages of the parasite. Thirty percent of clones identified appear to carry complete coding regions. The spacer DNA separating genes is rarely cloned. These gene sequence tags will form a useful data base from which to initiate projects to develop new therapeutics, vaccines, and strategies to control human malaria.

*Plasmodium falciparum* is the most dangerous and rapidly proliferating of the four *Plasmodium* species parasitic in humans and kills about 1 million people worldwide annually (1). The paradigm shift now occurring in biology is toward having all the genes of an organism recorded in data bases, available to be used as the starting point for further investigations (2). Identification, sequencing, and mapping of the structural genes will provide a foundation data base from which to launch applied research programs for antimalarial drug and vaccine development. Recent reports on random sequencing of cDNA libraries from human brain (3, 4) and Caenorhabditis elegans (5, 6) have demonstrated that this is an efficient method for obtaining preliminary data on coding sequences. A P. falciparum cDNA library is limited, however, to the genes expressed in the life cycle stage used to prepare the mRNA, and the probability of obtaining a given cDNA sequence depends on the level of expression of the gene. Obtaining rare cDNA clones at random, including those that encode regulatory enzymes/proteins, is problematic. Utilizing the "genease" activity of mung bean nuclease (EC 3.1.30.1) to obtain the sequences of genes from genomic DNA (7-9) overcomes these problems.

Under modified reaction conditions mung bean nuclease cleaves P. falciparum genomic DNA precisely before and after genes and within some introns (7, 9). This method makes it possible to clone intact genes or gene fragments from virtually all structural genes of the parasite. Although the

DNA of *Plasmodium* spp. is the best studied (7–11), this approach has also been used in numerous other protozoans, including *Trypanosoma* (12), *Giardia* (13), *Toxoplasma* (14), *Leishmania* (15), and *Babesia* (16, 17). It has been suggested that altered DNA structure near gene boundaries determines the recognition sites for this activity (9), which are likely to be found in the genomes of a much larger range of organisms, including higher eukaryotes. This distinctive genes-first approach to genome characterization has been evaluated here by examining a large number of gene fragments.

## MATERIALS AND METHODS

Library Construction and Preparation of DNA for Sequencing. P. falciparum clone HB3 (American Type Culture Collection no. 50113) was continuously cultivated in vitro in human erythrocytes (18). Cultures at a parasitemia of 8-10% were lysed with 0.1% saponin, and genomic DNA was isolated by using an SDS/proteinase K method (19). P. falciparum genomic DNA samples were routinely analyzed by Southern blot hybridization (20) using the human Alu I repeat as a probe, and only the DNA preparations that contained <1% human DNA were employed in the study. The DNA was digested with mung bean nuclease (Promega) at 50°C in the presence of 30% (vol/vol) formamide essentially as described (9). The digestion was monitored by comparing the size of the circumsporozoite protein (CSP) gene fragment with the size previously reported (7-9). Reaction products which contained the 1.3-kb CSP fragment were selected for cloning. The DNA was blunt ended with T4 DNA polymerase (21), ligated into EcoRV-cut, calf-intestinealkaline-phosphatase-treated pBluescript SK (+) (Stratagene), and used to transform Escherichia coli strain XL1blue. Recombinant clones were selected at random, and plasmid DNA was isolated from 1.5-ml liquid cultures by a boiling preparation method essentially as in ref. 22.

Sequencing Reactions and Analysis. Cyclic sequencing reactions were performed on clones with inserts  $\geq 0.3$  kb by using a *Taq* dye primer cycle sequencing kit with T3 and T7 primers, as described by the supplier (Applied Biosystems). The samples were analyzed on an Applied Biosystems 373A DNA sequencer, and data were edited manually to remove vector sequences and also to remove 3' end sequences of low reliability. Sequence tags translated into all six reading frames were compared against the protein data bases [translated GenBank (GP), daily GenPept update (GPU), Protein

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "*advertisement*" in accordance with 18 U.S.C. §1734 solely to indicate this fact.

Abbreviations: BLAST, Basic Local Alignment Search Tool; ORF, open reading frame.

<sup>&</sup>lt;sup>†</sup>To whom reprint requests should be addressed.

The sequences described in this paper have been deposited in the GenBank data base (accession nos. T02634-T02808 and T09496-T09993).

| <u></u> | Est Europea of  | Sequences Producing Highest Secrip         | Accession Number          | Homologous               | Identity/       | Highest               | Random               |
|---------|-----------------|--------------------------------------------|---------------------------|--------------------------|-----------------|-----------------------|----------------------|
| Clone   | Est. Expanse of | Sequences Producing Highest-Scoring        | g Accession Number        | Perion (2.2.)            | Similarity (%)  | Score                 | Probability          |
|         | Ciones          | Segment Pairs                              |                           | Region (a.a.)            | Similarity (70) | 30010                 | Flobability          |
| 0026M   | F               | 30S Ribosomal Protein S-18                 | PIR·IH0419                | 9 to 68                  | 60/83           | 188                   | 3.90e-21             |
| 0368M   | Ē*              | 30s Ribosomal Protein S12@                 | PIR:R3EG12                | 24 to 121                | 61/84           | 322                   | 3.60e-43             |
| 0524M   | Č*              | 30s Ribosomal Protein S12@                 | PIR:R3EG12                | 27 to 121                | 62/82           | 317                   | 6.40e-42             |
| 0324M   | Č*              | 50s Ribosomal Protein L16                  | PIR:R5KT16                | 73 to 110                | 44/65           | 87                    | 4.30e-05             |
| 0204M   | C*              | 60S Ribosomal Protein L18A                 | PIR:R5RT18                | 7 to 107                 | 54/77           | 304                   | 3.00e-40             |
| 0482M   | C*              | 60s Ribosomal Protein L27a                 | GP:TETRPL29A_1            | 58 to 149                | 45/72           | 187                   | 1.90e-21             |
| 0390M   | E               | 60s Ribosomal Protein L8                   | PIR:R5RTL8                | 7 to 110                 | 59/80           | 283                   | 2.20e-36             |
| 0088M   | E               | Actin II@@                                 | GP:PFAACTII_1             | 150 to 217               | 89/89           | 320                   | 4.00e-42             |
| 0284M   | U               | Adenylyl Cyclase Gene                      | GPU:DDIADCYA_1            | 734 to 794               | 34/63           | 85                    | 5.30e-05             |
| 0100M   | C*              | Alternative Splicing Factor-1@             | PIR:B40041                | 104 to 185               | 51/70           | 212                   | 1.00e-24             |
| 0202M   | C               | Alternative Splicing Factor-1@             | PIR:B40041                | 17 to 100                | 51/74           | 234                   | 4.200-20             |
| 018/M   | E               | ATP-Dependent RNA Helicase                 | PIK:511403<br>DID:512520  | 433 to 320<br>882 to 934 | 51/78           | 07                    | 9.50c-22             |
| 0211M   |                 | Ben-like Sex-Determining Region            | PIR-C21124                | 21 to 77                 | 38/59           | 92                    | 4 60e-09             |
| 021111  | 0               | Hypothetical Protein CS319                 | 1 IK.C21124               | 21 60 //                 | 50,57           | /2                    | 11000 07             |
| 0487M   | Е               | Ca+2 Dependent Protein Kinase@             | <b>GP:SOYCADPK</b> 1      | 159 to 247               | 50/68           | 143                   | 7.70e-14             |
| 0532M   | Е               | Ca+2 Dependent Protein Kinase@             | PIR:A40811 -              | 140 to 220               | 35/53           | 170                   | 3.70e-18             |
| 0075M   | С               | Cathepsin D                                | PIR:KHPGD                 | 333 to 407               | 59/74           | 82                    | 2.50e-08             |
| 0405M   | U               | Clustered Aspargine Rich Protein           | PIR:A23535                | 197 to 283               | 36/64           | 107                   | 1.40e-14             |
| 0017M   | С               | Cyclophilin                                | PIR:S07585                | 2 to 104                 | 67/78           | 327                   | 7.40e-41             |
| 0362M   | C*              | DNAJ Protein (B. Subtilis)                 | GP:BACHSP_4               | 5 to 86                  | 53/71           | 120                   | 3.20e-10             |
| 0291M   | E               | DNAJ Protein (E. coli)                     | PIR:HHECDJ                | 37 to 84                 | 41/60           | 100                   | 1.80e-07             |
| 0422M   | C*              | DNAJ Protein Homologue HSJ1                | GP:HUMHSJIMR_2            | 3 to 34                  | 53/68           | 99                    | 2.70e-15             |
| 0431M   | U               | Duplicate Procyclin                        | PIR:S061/1                | 48 to /3                 | 61/84 ·         | 91                    | 7.20e-06             |
| 0132M   | C               | Dynamin<br>Dunain Data Chain#              | PIK:511508                | 0 10 /9<br>2212 to 2274  | 20/73           | 208                   | 0.10e-23             |
| 0145M   | E               | Dynein Beta Chain#                         | PIK:517033<br>DID:\$17653 | 2212 to 2274             | 20/00           | 84                    | 2.70e-10<br>8.20e-05 |
| 0345M   | E               | Chucase 6 P. Isomerse@@                    | PIR.317033<br>DID: 436567 | 1 to 00                  | 29/30           | 0 <del>4</del><br>456 | 8.200-05<br>1 40e-64 |
| 0130M   | E               | Glutamate Debydrogenase                    | PIR.DENCED                | 824 to 882               | 61/79           | 182                   | 4 60e-21             |
| 0065M   | E               | Glycerol 3-P Dehydrogenase                 | PIR·A25189                | 199 to 242               | 63/81           | 143                   | 4.00e-14             |
| 0147M   | . E             | Glycerol 3-P Dehydrogenase@                | PIR · A26687              | 197 to 242               | 45/65           | 97                    | 1.60e-06             |
| 0321M   | E               | Glycerol 3-P Dehydrogenase@                | PIR:A26687                | 199 to 242               | 61/79           | 132                   | 2.70e-12             |
| 0421M   | Ē               | GTP Binding Protein RYH1                   | PIR:S12789                | 108 to 188               | 53/69           | 201                   | 1.20e-23             |
| 0058M   | Ē               | GTP Binding Protein YPT3                   | PIR:S10026                | 62 to 168                | 61/86           | 316                   | 3.90e-42             |
| 0406M   | E               | Initiation Factor 4A-1#                    | PIR:S00986                | 244 to 360               | 75/86           | 488                   | 3.00e-69             |
| 0197M   | Е               | Initiation Factor eIF-4A#                  | PIR:JS0039                | 154 to 188               | 54/80           | 113                   | 4.50e-09             |
| 0225M   | Ε               | Iron Responsive Element Binding<br>Protein | PIR:S18720                | 483 to 569               | 62/75           | 284                   | 4.70e-37             |
| 0424M   | Е               | Lactate Dehydrogenase                      | GPU:LISACTLDH 6           | 45 to 102                | 32/70           | 97                    | 5.40e-07             |
| 0224M   | Ē               | Liver Stage Antigen @@                     | GPU:PFALSA1G 1            | 1660 to 1761             | 95/95           | 423                   | 2.10e-57             |
| 0522M   | Ē               | Mitochondrial Phosphate Carrier<br>Protein | GP:HUMMPCP_1              | 99 to 191                | 55/69           | 255                   | 4.00e-32             |
| 0175M   | Е               | Mitochondrial Pyridine Nucleotide          | <b>GP:ECOPNTAB 2</b>      | 61 to 106                | 54/78           | 133                   | 1.30e-12             |
| 0344M   | E               | Transhydrogenase Beta Subunit#             | CDU-ECODNT 2              | 152 to 271               | 10/69           | 270                   | 1 500 25             |
| 0344191 | E               | Transhydrogenase Beta Subunit#             | GPU:ECOPN1_2              | 155 10 271               | 49/08           | 270                   | 4.506-55             |
| 0314M   | E               | Nitrogen fixation-U Protein                | GP:AVINIFREG_1            | 234 to 281               | 43/66           | 120                   | 9.60e-11             |
| 0488M   | E               | Poly A Nuclease                            | GP:YSCPAN1A_1             | 1064 to 1114             | 43/54           | 110                   | 2.10e-08             |
| 0031M   | E               | Proteasome C3 (Rat)                        | SP:PRC3\$RAT              | 60 to 176                | 52/68           | 297                   | 4.50e-38             |
| 0158M   | E               | Ras-Like Protein TC4                       | GP:HUMRASAC_1             | 39 to 110                | 70/83           | 299                   | 1.50e-38             |
| 0100M   | C*              | Regulatory Protein - Yeast                 | PIR:S1/012                | 12 to 99                 | 29/59           | 129                   | 1.20e-11             |
| 0220M   | C<br>F          | RIDI Protein - S. typnimurium              | CD-UUMPD255 1             | 1 to 03                  | 39/01<br>55/01  | 103                   | 8.00e-08             |
| 0229M   | E               | Ribonucleotide Reductase@                  | CD-ULIMPD255_1            | 153 to 190               | JJ/01<br>A0/61  | 129                   | 2.600.00             |
| 0347M   | E               | Ring Infected Surface Antigen##            | PIR · A 25526             | 755 to 841               | 33/59           | 88                    | 3.00c-05             |
| 0337M   | Ē               | S. cerevisiae Gene (Vasa Protein)          | GP:YSCSE0 1               | 239 to 327               | 32/66           | 147                   | 1 50e-14             |
| 0176M   | Ē               | S. pombe cdc21 Gene                        | GP:YSPCDC21 1             | 762 to 831               | 37/62           | 118                   | 2.10e-10             |
| 0046M   | Ē               | Serine Hydroxy Methyl Transferase          | GPU:NEUSERHMT_1           | 45 to 120                | 57/77           | 215                   | 9.30e-26             |
| 0201M   | C*              | Serine Proteinase type 1 Precursor         | PIR:A38738                | 342 to 424               | 37/57           | 131                   | 4.30e-12             |
| 0104M   | C*              | Sexual Stage Specific Protein@@            | PIR:S10313                | 60 to 145                | 76/79           | 216                   | 3.30e-26             |
| 0334M   | E               | Staphylococcus xylosus BBM3XM              | GP:STABBM3XM_1            | 295 to 363               | 17/79           | 116                   | 7.80e-10             |
| 0167M   | E               | Thioredoxin                                | SP:THIO_RHORU             | 22 to 83                 | 37/64           | 98                    | 5.10e-07             |
| 0343M   | Ŭ               | Thrombospondin Precursor##                 | PIR:A37905                | 384 to 402               | 57/73           | 71                    | 3.90e-07             |
| 0049M   | E               | Iubulin II (alpha)@@                       | GP:PFAATUBIL 1            | 3/3 to 450               | 91/91           | 376                   | 2.40e-50             |
| 0343M   | U               | Obiquitin Carrier Protein                  | GPU:ALFUBIQUIT_1          | 42 10 141                | ן ווענ          | 308                   | 1.108-39             |

Table 1. Genes putatively identified by producing high-scoring segment pairs with sequences in GenPept, GPUpdate, SwissProt, and PIR databases

Sequence tags from 400 clones (273 with tags from both strands and 127 with tags from 1 strand) were compared against the translated nucleic acid and protein databases using the NCBI network BLAST. The minimum length of sequence submitted to BLAST search was 200 bases. All the sequence pairs with scores of 70 and above were manually reviewed for putative identification of genes. The 60 clones (15% of total) with putative identification are given in the table. These represent 51 unique genes (13%) of which only 5 closely match previously reported *P. falciparum* sequences. @, Clones of same exons; #, Clones of different exons; @@, Exact match to *P. falciparum* genes; ##, Non-exact match to *P. falciparum* genes; C, complete protein coding sequence; C\*, Sufficient length for a complete protein coding sequence; E, Exon; U, unknown.

Identification Resource (PIR) data base, and Swiss-Prot (SP)], by using the National Center for Biotechnology Information (NCBI) network Basic Local Alignment Search Tool (BLAST) server (23).

## RESULTS

**Random Sequencing of Mung Bean Nuclease Library Clones** and BLAST Search Analysis for High-Scoring Segment Pairs. Four hundred and sixty clones (average insert size 1.3 kb) were selected at random from a library of mung bean nuclease digestion fragments for sequencing from one or both ends (Table 1). A total of 673 unique sequence tags were obtained that met criteria for sequence quality and length. These sequences, derived from 400 clones, have an average length of 320 nucleotides, and together make up more than 215 kb of DNA sequence from P. falciparum. These sequences were compared with those in the protein sequence data bases by using the BLAST network server (23). High-scoring segment pairs from 60 clones were considered biologically significant, and these established the putative identification of 51 P. falciparum genes (Table 1). (In Table 1, 3.90e-21 in the random probability column indicates a probability of  $3.90 \times 10^{-21}$ .) The other 9 identified clones were linked to at least one other clone by forming a high-scoring segment pair with one of eight different data base sequences as shown in Table 1. Three of these represent different exons from the same gene, and 6 are clones of the same exons. These 6 clones represent 10% of the identified sequences and define the project's frequency of redundancy, since it is assumed that a similar percentage of unidentified clones are likewise represented by multiple clones. Five of the 51 genes identified were P. falciparum sequences already in the data bases and were derived from erythrocytic, exoerythrocytic, and sexual stages of the para-

A. P. falciparum glucose-6-phosphate isomerase



FIG. 1. PREDICT analysis. The output from PREDICT is presented for previously described mRNA coding sequences from *P. falciparum* and human glucose-6-phosphate isomerase, a clone with high-scoring segment pairs with proteasome C3, and an unidentified clone with a long ORF. In *A* and *B*, the frame that encoded the protein is used for analysis. In *C* and *D*, the frame that encoded the longest ORF is shown. The solid horizontal line indicates a score of zero. Scores for *P. falciparum* protein sequences almost never fall below zero, whereas the scores for human genes or the other two frames on the coding strand rarely exceed zero. Initiation codons and stop codons are marked as short and long vertical bars, respectively.

150 300 356

0079M7

311

150 0079M3 site [ $\alpha$ -tubulin, actin II, glucose-6-phosphate isomerase, sexual-stage-specific protein, and liver stage antigen (LSA-1)]. Two other clones had homology to *P. falciparum* genes (ring-infected surface antigen and thrombospondin precursor).

Analysis of Genes Putatively Identified by High-Scoring Segment Pairs. The putatively identified clones were compared to protein and nucleotide sequences in the data bases to judge whether the clones represent complete genes (Table 1). Seven clones appeared complete, since they showed similarity extending from the initiation codon through to the termination codon. Eleven clones probably represent complete gene fragments, since they showed similarity beginning from either the initiation codon or the termination codon, and they were large enough to encode the complete protein. Either the sequence from the other end for these clones is not available or homology was not observed. Together, these 18 clones represent 30% of the genes identified by similarity. Thirty-seven of the remaining clones (62%) have one or more exons but appear incomplete. Exons are defined here on the basis of the presence of consensus intron/exon junctions at or near the homologous regions specific for P. falciparum (24). Due to insufficient information, it was not possible to define for the other 5 clones whether they represent exon(s) or full-length gene fragments.

PREDICT Data Analysis for Identifying the P. falciparum-**Specific Coding Sequences.** The PREDICT computer program, based on patterns of codon usage and amino acid composition of P. falciparum genes, identifies open reading frames (ORFs) specific for P. falciparum genes and displays a running average of a prediction score in each of the three reading frames (25). The output from this program for glucose-6-phosphate isomerase (G6PI) mRNA from P. falciparum and human (GenBank accession nos. J05544 and K03515, respectively) and for sequence tags for clones 0031M and 0079M is in Fig. 1. P. falciparum sequences yielded scores above the solid horizontal lines, suggesting that they contain P. falciparum-specific ORFs. This is contrasted with human G6PI mRNA, where the score remains at or below the horizontal line for most of the sequence. Two hundred and twenty-one clones (60 clones with putative identification and 161 clones with no putative identification) were analyzed on PREDICT to determine the percentage of clones that contain P. falciparum-specific long ORFs near the ends (Fig. 2). Sequence tags where there was no ORF 60 amino acids or longer above the horizontal line in any frame were considered as



FIG. 2. Average length of longest *P. falciparum*-specific ORF among sequence tags. Sequence tags from 60 clones with putative identification ( $\Box$ ) and 161 clones with no putative identification ( $\blacklozenge$ ) were analyzed by using PREDICT as in Fig. 1. The length of the longest ORF for each clone was determined. These data are presented as the percentage of clones in each group distributed in 10-amino-acid intervals along the range from 0 to 140 amino acids. The average length of the longest ORF for clones with a putative identification was 100 amino acids and that for clones with no putative identification tion was 89 amino acids.





0.6-

lacking a long ORF. All 60 putatively identified clones had long ORFs (average ORF = 100 amino acids) in the same reading frame that yielded the highest-scoring segment pair. Eighty-six percent of the clones with no putative identification contained ORFs  $\geq 60$  amino acids (average ORF = 89 amino acids).

DNA Blot Analysis of Clones to Verify Derivation from P. falciparum Genome. Probes prepared from 32 putatively identified and 3 unidentified mung bean nuclease-prepared clones were hybridized to Southern blots of genomic DNA. Clones used include those for which the BLAST scores were  $\geq$ 150 and 0065M, 0075M, and 0314M. All probes hybridized strongly with P. falciparum genomic DNA, but none hybridized to human genomic DNA (Fig. 3). Only 0049M and 0390M cross-hybridized weakly with yeast genomic DNA. Hybridizations for clones 0025M, 0030M, 0127M, 0202M, 0229M, and 0337M were performed at different times (data not shown).

## DISCUSSION

Genes expressed in the erythrocytic, exoerythrocytic, and sexual stages of parasite development were identified among the clones reported here. These results suggest that this approach using genomic DNA will offer genes expressed in all stages of the life cycle. Access to all of the genes of the parasite is essential for establishing a gene sequence data base from which to approach the biology of the parasite.

The presence of introns did not significantly hinder the genease approach. Under the conditions of mung bean nuclease digestion selected, nearly one-third of the clones contain intact genes. The majority of the other two-thirds appear to be clones of one or more exons, suggesting that these genes contain one or more introns that are sensitive to mung bean nuclease digestion. Previously, in 9 of 10 genes analyzed, the major reaction product consisted of a single DNA fragment which contained the entire extent of the coding sequence, including introns where present (9). It thus

FIG. 3. Hybridization of putatively identified gene fragments to blots of genomic DNA from P. falciparum, human, and yeast. Genomic DNA from P. falciparum (1  $\mu$ g), human leukocytes (7 µg), and Saccharomyces cerevisae clone YPH 274 (1 µg) was digested to completion with EcoRI, blotted onto nylon membrane, and hybridized to probes prepared from selected clones. Each filter hybridized is indicated at the top with the name of the clone used as probe, and the lanes of P. falciparum, human, and yeast DNA are marked as P, H, and Y, respectively.

appears that conditions of the digestion may be modified to release genes as intact coding sequences or exons. Conditions selected here may have resulted in a greater proportion of the introns being cleaved. However, they proved useful for identifying clones based on sequence similarity, since only  $\approx$ 14% of the clones lacked P. falciparum-specific long ORFs located near the ends. Further, a proportion of these are likely to be gene fragments with long noncoding sequences at the ends or fragments containing exons encoding fewer than 60 amino acids. These results suggest that either little of the noncoding DNA of the parasite genome remains after mung bean nuclease digestion or it is not cloned. This is further supported by the fact that even though only clones containing  $\geq$ 0.3-kb inserts were selected for sequencing, <20% of the overall library was rejected for small insert size (data not shown).

Recent reports identifying a major contamination of randomly sequenced human cDNA clones with nonhuman DNA (26, 27) raise a concern about the integrity of sequences generated from random clones. The results of 221 clones analyzed with the PREDICT program strongly suggest that all the clones containing long ORFs are derived from the P. falciparum genome. This conclusion was further verified by DNA blot analysis of 32 putatively identified and 3 unidentified clones. All clones hybridized strongly to P. falciparum DNA and failed to hybridize with human DNA. Only clones 0049M and 0390M, which encode tubulin and 60S ribosomal protein L8, respectively, weakly cross-hybridized to yeast DNA. This may be understood, since these genes have regions highly conserved among diverse species. Microbial contamination of the *in vitro* cultures was not observed, but a small amount of human DNA (<1%) was present in the DNA used for cloning. Since all of the 35 clones examined were from the P. falciparum genome, we are 95% confident that  $\geq 90\%$  of the clones are *P*. falciparum sequences (28). BLAST searches have not identified any clones as human, either gene coding regions or repetitive sequences. However, it is expected that any further work on clones of interest will

include first confirming that the sequence is from *P. falciparum*.

The malaria parasite has  $\approx 1.5 \times 10^7$  bp of unique DNA (29); thus the genome may encode  $\approx 7500$  genes, assuming an average of 2 kb per gene. This set of 400 clones thus represents  $\approx 5\%$  of the genes of the parasite. In the UNDP/ World Bank/WHO-TDR Malaria Sequence Database, sequences of fewer than 150 different genes were reported from *P. falciparum*. Our data add over 200 kb of genomic sequence from  $\approx 360$  unique clones and allow an initial, tentative identification of 46 previously undescribed *P. falciparum* genes. The majority of the unidentified clones are likely to be genes, the identity of which may be determined in the future.

Given the fundamental differences between the cDNA sequencing approach and the present genes-first genomic DNA approach, it is remarkable that the proportion of clones identified here (15%) by similarity to gene sequences in the data bases is comparable to that of human brain cDNA (17%) (3, 4). The proportion is less than half that of C. elegans cDNAs (31-42%), but a significant percentage of the identified C. elegans clones are redundant (5, 6). The redundancy among the mung bean clones is 10%, which is twice the rate for human brain cDNA (5%) (3) but less than half that for C. elegans cDNA (24%) (6) with a similar number of clones examined. These statistics are consistent with the expectation that a genomic gene library from a parasitic protozoan would contain a low percentage of redundant clones and a high proportion of genes which are not yet described in the data base as compared to a cDNA library. The relative abundance of various gene fragments in the library of mung bean digestion fragments will be a function of the gene copy number, the genome size, the mung bean nuclease reaction, and the effects of cloning methods used. Preliminary results comparing P. falciparum expressed sequence tags from erythrocytic stage mRNA with the mung bean nuclease sequence tags suggest that the frequency of redundancy in cDNA is higher and a different set of genes is identified (unpublished results).

Numerous avenues of research into the biochemistry of the parasite have been opened by using the genes identified to date. Clones encoding several ribosomal proteins, heat shock proteins, GTP-binding proteins, proteases, protein kinases, microtubular proteins, metabolic enzymes, iron-responsive element, alternative splicing factor, and cyclophilin are now available to initiate biochemical analyses. In addition to these better-understood gene identifications, finding a gene closely related to nitrogen fixation U protein raises questions about the significance of such a protein in a malaria parasite. This may be further evidence of the green ancestry of malarial parasites (30).

Recombinant expression of certain of these genes will provide proteins in quantities needed for targeted drug development. Hemoglobin proteolysis in the digestive vacuoles of malaria parasites is a biochemical pathway unique to Plasmodium spp. (31) and thus an excellent target for developing new therapeutics (32, 33). This ordered process requires initiation by an aspartic protease (31, 32). Of the three proteases putatively identified (Table 1), one (0075M) is a full-length aspartic protease (cathepsin D-like protein). Similarly, the gene for cyclophilin is putatively identified. This protein is thought to be the enzymatic target for cyclosporin A (34), a drug known to inhibit the growth of malaria parasites (35, 36). Transcripts for these two gene products were detected in the erythrocytic stages of this parasite by two independent methods (unpublished results). Gene sequence tags generated in this study can also be used to construct a fine-resolution chromosomal map.

We thank M. W. Weig for *in vitro* cultivation of the asexual stage parasites. We are grateful to A. Saul for providing the PREDICT

computer program. We are indebted to T. P. Yang, T. C. Rowe, P. J. Laipis, H. S. Nick, A. F. Cockburn, N. Kamel, and D. R. Allred for their helpful discussions in the formative stages of the project. We thank R. C. Littell for assistance with the statistical analyses. We thank T. F. McCutchan for helpful discussions on this manuscript. This study was supported by a program grant from the Division of Sponsored Research at the University of Florida, Gainesville. This paper is University of Florida Agricultural Experiment Stations Journal Series no. R-03376.

- 1. World Health Organization (1990) Practical Chemotherapy of Malaria (WHO, Geneva).
- 2. Gilbert, W. (1991) Nature (London) 349, 99.
- Adams, M. D., Kelley, J. M., Gocayne, J. D., Dubnick, M., Polymeropoulos, M. H., Xiao, H., Merril, C. R., Wu, A., Olde, B., Moreno, R. F., Kerlavage, A. R., McCombie, W. R. & Venter, J. C. (1991) Science 252, 1651-1656.
- Adams, M. D., Dubnick, M., Kerlavage, A. R., Moreno, R., Kelley, J. M., Utterback, T. R., Nagle, J. W., Fields, C. & Venter, C. J. (1992) Nature (London) 335, 632–634.
- Waterston, R., Martin, C., Craxton, M., Huynh, C., Coulson, A., Hillier, L., Durbin, R., Green, P., Shownkeen, R., Halloran, N., Metzstein, M., Hawkins, T., Wilson, R., Berks, M., Du, Z., Thomas, K., Thierry-Mieg, J. & Sulston, J. (1992) Nature Genet. 1, 114-123.
- McCombie, W. R., Adams, M. D., Kelley, J. M., FitzGerald, M. G., Utterback, T. R., Khan, M., Dubnick, M., Kerlavage, A. R., Venter, J. C. & Fields, C. (1992) Nature Genet. 1, 124-131.
- McCutchan, T. F., Hansen, J. L., Dame, J. B. & Mullins, J. A. (1984) Science 225, 625-628.
- Dame, J. B., Williams, J. L., McCutchan, T. F., Weber, J. L., Wirtz, R. A., Hockmeyer, W. T., Maloy, W. L., Haynes, J. D., Schneider, I., Roberts, D., Sanders, G. S., Reddy, E. P., Diggs, C. L. & Miller, L. H. (1984) Science 225, 593-599.
- Vernick, K. D., Imberski, R. B. & McCutchan, T. F. (1988) Nucleic Acids Res. 16, 6883–6896.
- 10. Szafranski, P. & Godson, G. N. (1990) Gene 88, 141-147.
- 11. Bzik, D. J., Peck, J. Y. & Fox, B. A. (1993) Mol. Biochem. Parasitol. 56, 185-188.
- 12. Brown, K. H., Brentano, S. T. & Donelson, J. E. (1986) J. Biol. Chem. 261, 10352-10358.
- Adam, R. D., Aggarwal, A., Lal, A. A., de la Cruz, V. F., Mc-Cutchan, T. F. & Nash, T. E. (1988) J. Exp. Med. 167, 109-118.
- 14. Johnson, A. M., Illana, S., Dubey, J. P. & Dame, J. B. (1987) Exp. Parasitol. 63, 272–278.
- 15. Muhich, M. L. & Simpson, L. (1986) Nucleic Acids Res. 14, 5531-5556.
- Tetzlaff, C. L., McMurray, D. N. & Rice-Ficht, A. C. (1990) Mol. Biochem. Parasitol. 40, 183–192.
- 17. Tripp, C. A., Wagner, G. G. & Rice-Ficht, A. C. (1989) Exp. Parasitol. 69, 211-225.
- 18. Trager, W. & Jensen, J. B. (1976) Science 193, 673-675.
- Dame, J. B. & McCutchan, T. F. (1983) J. Biol. Chem. 258, 6984-6990.
- 20. Southern, E. M. (1975) J. Mol. Biol. 98, 503-517.
- Maniatis, T., Fritsch, E. F. & Sambrook, J. (1982) Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Lab. Press, Plainview, NY), p. 395.
- 22. Holmes, D. S. & Quigley, M. (1981) Anal. Biochem. 114, 193-197.
- Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. (1990) J. Mol. Biol. 215, 403-410.
- 24. Weber, J. L. (1988) Exp. Parasitol. 66, 143–170.
- 25. Saul, A. & Battistutta, D. (1988) Mol. Biochem. Parasitol. 27, 35-42.
- 26. Anderson, C. (1993) Science 259, 1685.
- 27. Gersuk, V. H. & Rose, T. M. (1993) Science 260, 605.
- Diem, K. & Lentner, C., eds. (1970) Documenta Geigy Scientific Tables (Geigy Pharmaceuticals, Ardsley, NY), 7th Ed., pp. 85-103.
- Dore, E., Birago, C., Frontali, C. & Battaglia, P. A. (1980) Mol. Biochem. Parasitol. 1, 199-208.
- 30. Palmer, J. D. (1992) Curr. Biol. 2, 318-320.
- Goldberg, D. E., Slater, A. F. G., Cerami, A. & Henderson, G. B. (1990) Proc. Natl. Acad. Sci. USA 87, 2931–2935.
- Goldberg, D. E., Slater, A. F. G., Beavis, R., Chait, B., Cerami, A. & Henderson, G. B. (1991) J. Exp. Med. 173, 961-969.
- 33. Miller, L. H. (1992) Science 257, 36-37.
- Gasser, C. S., Gunning, D. A., Budelier, K. A. & Brown, S. M. (1990) Proc. Natl. Acad. Sci. USA 87, 9519–9523.
- 35. Thommen-Scott, K. (1981) Agents Actions 11, 770-773.
- Nickell, S. P., Scheibel, L. W. & Cole, G. A. (1982) Infect. Immun. 37, 1093-1100.