
Proc. Nati. Acad. Sci. USA
Vol. 88, pp. 10495-10499, December 1991
Biophysics

Efficient detection of three-dimensional structural motifs in
biological macromolecules by computer vision techniques

(three-dimensional structural comparison/crystallographic coordinates/efficient computer vision algorithm/macromolecular
structure analysis)

RUTH NUSSINOV*t AND HAIM J. WOLFSONt§
*Sackler Institute of Molecular Medicine, Faculty of Medicine and tComputer Science Department, School of Mathematical Sciences, Tel Aviv University, Tel
Aviv 69978 Israel; tLaboratory of Mathematical Biology, National Cancer Institute, National Institutes of Health, Frederick Cancer Research Facility,
Building 469, Room 151, Frederick, MD 21702; and §Robotics Research Laboratory, Courant Institute of Mathematical Sciences, New York
University, 715 Broadway, 12th Floor, New York, NY 10003

Communicated by Jacob T. Schwartz, July 29, 1991 (received for review February 1990)

ABSTRACT Macromolecules carrying biological informa-
tion often consist of independent modules containing recurring
structural motifs. Detection ofa specific structural motif within
a protein (or DNA) aids in elucidating the role played by the
protein (DNA element) and the mechanism of its operation. The
number of crystallographically known structures at high res-
olution is increasing very rapidly. Yet, comparison of three-
dimensional structures is a laborious time-consuming proce-
dure that typically requires a manual phase. To date, there is
no fast automated procedure for structural comparisons. We
present an efficient 0(n3) worst case time complexity algorithm
for achieving such a goal (where n is the number of atoms in the
examined structure). The method is truly three-dimensional,
sequence-order-independent, and thus insensitive to gaps, in-
sertions, or deletions. This algorithm is based on the geometric
hashing paradigm, which was originally developed for object
recognition problems in computer vision. It introduces an
indexing approach based on transformation invariant repre-
sentations and is especially geared toward efficient recognition
of partial structures in rigid objects belonging to large data
bases. This algorithm is suitable for quick scanning of struc-
tural data bases and will detect a recurring structural motif
that is a priori unknown. The algorithm uses protein (or DNA)
structures, atomic labels, and their three-dimensional coordi-
nates. Additional information pertaining to the structure
speeds the comparisons. The algorithm is straightforwardly
parallelizable, and several versions of it for computer vision
applications have been implemented on the massively parallel
connection machine. A prototype version of the algorithm has
been implemented and applied to the detection ofsubstructures
in proteins.

One of the basic emerging principles in molecular biology is
the modular nature of DNA sequence elements and of the
corresponding sequence-specific protein factors recognizing
them. The domains appear to be independent units (1).
Structural and functional studies of these domains have
demonstrated the existence of several structural motifs. The
motifs include the helix-turn-helix (HTH) (2), zinc fingers
(3), homeodomain (4), leucine zipper (5), helix-loop-helix
(6), Ser-Pro-Lys-Lys histone (7), proline-rich (8) and glu-
tamine-rich (9) motifs, the antiparallel 13-sheet (10) apparently
inserted in the minor groove, and more recently a pair of
83-strands in the major groove of the DNA (11). All of these
motifs typically include less than 100 amino acid residues.
Finding a given structural motif in a protein may clearly aid
in understanding its role (12). The latter is inferred by analogy
with other proteins containing the motif. Structural compar-

isons are thus central to molecular biology. The problem we
are faced with is to devise efficient techniques for routine
scanning of structural data bases and searching for recur-
rences of inexact structural motifs. The degree of allowed
errors is to be determined by the user.
The most commonly used computerized macromolecule

comparison approaches deal mainly with comparison of the
primary structure of molecules. They are based on character
string comparison algorithms, most ofwhich use variations of
the dynamic programming technique (for a good survey, see
ref. 13). Structural comparison is superior to this primary
sequence analysis, since it takes into account the spatial
geometric structure of the molecules involved and not only
their order on the primary chain. The increasing need for
direct structural analysis of macromolecules has led to the
development of several computerized methods (14-16).
These methods, however, look for predefined motifs in the
secondary structure of the macromolecule. Moreover, these
motifs are usually composed of contiguous amino acids on
the primary chain, such as a-helices or 1-sheets. The method
that we develop enables elucidating similar substructures in
different molecules without specifying in advance what these
structures should be. Moreover, the motifs do not necessarily
involve contiguous amino acids, so the approach is truly
three dimensional (3D). This enables detection of various
structural patterns.

Currently, true 3D structural comparisons are carried out
mainly using interactive computer graphics and visualization
facilities. The programs compare the locations of every pair
of corresponding atoms in any two specific structures. Al-
though useful, this tool falls short ofwhat is needed. Since the
computer graphic programs compare either two complete
(crystal or computed) structures or any user-specified sub-
sections, they are excellent for individual protein or nucleic
acid analysis but are very time consuming for extensive
comparisons.
From a mathematical standpoint, the structural compari-

son problem between two molecules can be formulated as
follows. Given the 3D coordinates of the atoms of two
molecules, find a rigid transformation (rotation and transla-
tion) in space so that a "large" number of atoms of one
molecule matches the atoms of the other molecule. The
matching should preserve not only the geometric constraints
of a rigid body but also the "labeling" constraints of the
individual atoms (i.e., atom types) and their relevant chem-
ical links. Moreover, one needs an efficient comparison
technique of each structure versus all previously known
structures simultaneously.

Abbreviations: 2D and 3D, two and three dimensional, respectively;
HTH, helix-turn-helix; RS, reference set.
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The mathematical problem stated above is closely related
to the model-based recognition problem of 3D rigid objects.
This problem has been intensively investigated in computer
vision. One of the major problems in this field is to discover
previously known objects in scenes, where some of the
objects might appear to partially occlude each other. This is
the, so called, model-based object recognition task (for
extensive surveys, see refs. 17 and 18). By considering a
molecule as an object consisting of many rigidly connected
features (atoms), one can apply some of the computer vision
techniques to our problem. Partial occlusion here is equiva-
lent to the absence of partial substructures.

Several techniques have been suggested to tackle this
problem. Some of them (19) exploit specific visual features
that do not translate favorably to our problem. Others (20)
employ tree search techniques resulting in exponential algo-
rithm complexity. The most relevant techniques for our
purpose are those known as alignment (21), pose-clustering
(22), and geometric hashing (23) (for a comparison of these
techniques, see ref. 24).

Recently, the geometric hashing paradigm for model-based
object recognition was introduced by Lamdan et al. (23, 25,
26). This technique is especially geared toward recognition of
partially occluded objects belonging to large-object data
bases, and its complexity is a low-degree polynomial in the
objects size. It is also very well suited for massive parallel
implementation, and prototypes of this algorithm have been
implemented on the highly parallel connection machine (27,
28). Techniques derived from computer vision have not been

yet applied to molecular biology. We believe that their
application will result in a significantly better performance
than the manual graphics methods currently used not only
because they introduce a fully automated approach but also
because they have a key ability to detect patterns not known
a priori.
The algorithm presented here includes automated scanning

of a large number of structures. It assumes no a priori
predefined motif. It is a true geometrical 3D comparison
algorithm and thus is completely independent of the order of
the amino acids in the primary chain. Furthermore, since the
algorithm is sequence-independent, it is insensitive to gaps,
insertions, or deletions, which constitute a major difficulty in
structural comparisons based on sequence alignments. In
principle, it can be implemented for both structure-related
sequence motifs [sequence patterns that are associated with
a specific structure (29)] and structural motifs (whose actual
sequences may vary). It is general and can be used on both
molecular model and crystal structure data. In addition to
atomic coordinates, such a data base should preferentially
also contain consistently defined sets of properties, such as

secondary structures and hydrogen bonding (29). Several
such data bases are being developed. Our algorithm can use

protein or DNA/RNA structures, atomic labels, conforma-
tion coordinates, secondary structures, and tertiary interac-
tions (29) in its structural comparisons (30). The more infor-
mation included in the data base; the faster is the comparison.
Although growing fast, the B-DNA crystal structure library

is still limited. Currently there are several DNA structural
computation schemes (e.g., refs. 31-34). The RNA structural
information is mostly derived from tRNA crystal structures.
A version of our proposed algorithm has been applied (35)

to proteins that have been compared using other methods. It
recovered all the alignments that have been obtained by the
other methods, but whereas all these other methods used
some additional information, which has been crucial for their
success, our algorithm used no prior assumptions.

The Geometric Hashing Paradigm

The geometric hashing paradigm for model-based object
recognition was introduced by Lamdan et al. (23, 25). Effi-

cient algorithms were developed for recognition of rigid
objects both in two and three dimensions.
We present here a variant of the geometric hashing tech-

nique for recognition of identical partial structures in rigid 3D
objects. For the moment we will use purely geometric
language whose biological equivalents are as follows. A
(geometric) rigid object is analogous to a molecule. Such an
object consists of a set of points, which correspond to atoms.
Each point may have a label (the name of an atom). Given a
data base of known objects (molecules) and an observed
object, the algorithm finds those objects in the data base,
having large substructures nearly identical with substruc-
tures of the observed object. The points of matched sub-
structures should have equivalent labels and identical 3D
coordinates modulo translation and rotation (rigid motion) in
space. No a priori knowledge of the desired substructure is
assumed.

In a model-based object recognition system, one has to
address two major interrelated problems, namely, object
representation and matching. The representation used must
be rich enough to allow reliable distinction between the
different objects in the data base, yet terse enough to enable
efficient matching. A major factor in a reliable representation
scheme is its ability to deal with recognition of partial
substructures. In the geometric hashing technique objects are
represented as sets ofgeometric features (in our case, points),
and their geometric relations are encoded using minimal sets
of such features under the allowed object transformations (in
our case, rigid motion). This is achieved by standard methods
of analytic geometry invoking coordinate frames based on a
minimal number of features and representing other features
by their coordinates in the appropriate frame. In the sequel
we present the geometric hashing method for 3D point
matching under translation and rotation.
The substructure recognition problem can be rephrased to

the following point-set matching task, where one is given a set
of known (model) point sets and an observed point set. The
recognition task becomes the following subset isometry prob-
lem: Is there a rotated and translated subset of some model
point set that matches a subset of the observed point set, so
that both the geometric and labeling constraints are satisfied?

Representation of Geometric Constraints. Our goal is to
represent a set of 3D points belonging to a rigid body by few
intrinsic parameters. This representation should efficiently
encode the geometric constraints of a rigid body, be trans-
lation and rotation invariant, and enable handling of partial (a
priori unknown) substructure information.
Assume that we are given an arbitrary set of m points

belonging to a rigid body. One can pick any ordered triplet of
noncollinear points in the set and represent all the other
points using this triplet. Specifically, let e0o, el0, e0l be an
ordered triplet of noncollinear points. These three points
define a plane. One may choose an orthogonal 3D coordinate
system centered at eoo such that the above mentioned plane
is the (x, y) plane, the x axis is in the direction of the vector
elo - e0o, the y axis is orthogonal to it in the counterclockwise
direction, and the z axis is orthogonal to the plane and its
direction is defined by the right hand rule. Since we are

dealing with rigid motion, the length of the unit vector can be
predefined. Let ex, ey, ez be the relevant unit vectors. Any
point v in the 3D space can be represented in the above
mentioned coordinate system; namely, there is a triple of
scalars (a, /3, fy) such that v = aex + hey + yez + ego.

In the sequel we refer to the ordered triplet (e00, el0, e0l) as

a reference set (RS). Application of a rigid motion T will
transform the point v to Tv = aTe, + B3Tey + yTe, + Teoo.

It is easy to see that the triplet (Te., Tey, Te,) is an

orthonormal 3D basis, which can be obtained from the RS
(Te~o, Te10, Teo,) as above. Hence, the coordinates (a, /3, fy)
of a 3D point (atom) are invariant under a rigid motion.
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Accordingly, we represent the m points of our model set by
their coordinates in the basis triplet associated with the RS
(e0o, elo, eol).
The above mentioned representation allows comparison of

partially identical objects. Assume that the observed object
has a substructure that is identical to a substructure of one of
the models in the data base. Then, the labels and the point
coordinates of the observed object will have a partial overlap
with the labels and corresponding coordinates of the stored
model, if both are represented in a coordinate frame that is
based on the same RS. Moreover, in our case one may

eliminate many unsuitable RSs before the coordinates of the
other points are computed. Two reference triplets have to be
compared only if the triangles that they form are congruent
and the corresponding vertices have matching labels.
The dependence of the representation on a specific RS

may, however, preclude recognition when at least one of the
RS points does not belong to the identical substructure.
Hence we represent the object points by their coordinates in
all basis triplets associated with all possible RSs. More
specifically, given a model object, consisting of rigidly con-

nected points, the labeling and geometric constraints describ-
ing the object are memorized in a hash table. The following
preprocessing is applied to each model object.
For each ordered noncollinear triplet (RS) of model points

(denoted by RS in the sequel) do the following operations: (i)
Compute the orthonormal 3D basis associated with the RS.
(ii) Compute the coordinates of all other m-3 model points in
the coordinate frame defined by the 3D basis. (iii) For each
such point define an address to a hash table with the labels
and measurements (say three sides) defining uniquely the RS
triangle and the label and coordinate (after a proper quanti-
zation) of the model point in the 3D basis. (iv) Use each such
address (index) to enter the hash table and record in the
appropriate entry the pair (model, RS), namely, the model
and the RS for which this address was computed.
The complexity ofthis preprocessing step is oforder m4 per

model. Each of the m points is represented in m3 RSs.
Although the dimensionality of the hash table (depending on

the address) might seem high, one should remember that each
new object can fill at most m4 entries, so the actual space

complexity of the hash table is O(N X M4), where N is the
number of the objects in the data base.

This somewhat redundant representation allows efficient
matching of objects having only partial (previously unknown)
equivalent substructures.
Note, that the preprocessing step is done without any

knowledge of the observed object that has to be compared
with the data base. Hence, it can be executed off-line, so that
its execution time does not add to the actual recognition time.
New models added to the data base can be processed
independently without recomputing the hash table. The hash
table preparation stage may be viewed as a learning stage of
the algorithm. In this stage relevant information of the models
is memorized in its various representations.

Matching. The matching stage of the algorithm uses the
hash table, prepared in the representation (learning) stage.
Given an observed object, one chooses a reference triplet,
computes the coordinates of other points in the basis asso-

ciated with this triplet, and tries to match their labels and
coordinates to those memorized in the hash table. Specifi-
cally, one does the following operations:

(i) Choose an RS and compute the 3D basis associated with
it. (One might, of course, try some "intelligent" choice of the
RS, rather than choosing it at random. This might be appro-
priate if there is biological evidence for the existence of
certain groups of atoms in typical motifs.)

(ii) Compute the coordinates of the other observed object
points in the 3D basis.

(iii) For each such point enter the hash table at the address
defined by the labels and measurements of the RS triangle
and the label and coordinate of the new point. For every pair
(model, RS) that appears in the entry of the hash table, tally
a vote for the model and the RS as corresponding to the pair
that was chosen on the observed object. (The accumulator of
the votes will have YNX1 m3 entries, where N is the number of
models and mi is the number of points on the ith model.)

(iv) If no pair (model, RS) in the hash table scores high, go
back to step i and begin the procedure with a different RS of
the observed object. If a certain pair (model, RS) scores a
large number of votes (according to some predefined thresh-
old), decide that this pair corresponds to the one chosen on
the observed object. The uniquely defined rigid motion
between the 3D coordinate frames, associated with the
corresponding RSs, is the transformation between the ap-
propriate model and the observed object.

(v) Consider all the model observed object point pairs that
voted for the rigid motion (translation and rotation) of step iv
and find the rigid motion giving the best least-squares match
between all these corresponding point pairs. Since the com-
putation of this transformation is based on more than three
point pairs, it will be more reliable.

(vi) Transform the model point set according to the trans-
formation of step v, align it with the new observed object, and
check consistency of all the available biological information,
such as relevant chemical links between atoms, etc. If this
final verification fails, go back to step i and begin the
procedure for a different observed object RS.

It is important to mention that in general we do not expect
the voting scheme to give only one candidate solution (for an
analysis in a more difficult computer vision application, see
ref. 36). The goal is to reduce significantly the number of
possible candidates for the verification step vi, which might
be quite tedious and time consuming.

Since the voting is done simultaneously for all models and
all possible RSs on a model, for the algorithm to be successful
it is enough to pick three points on the observed object,
belonging to some model. In such a case the model with the
appropriate RS gets a high score in the voting procedure. The
voting process, per RS, is linear in the number of points on
the observed object. Hence, the overall recognition time is
dependent on the "density" of model points in the observed
object. Although, in the worst case, we might have an order
of n4 operations (assuming constant processing in each hash
table bin), in most cases the recognition will be much faster,
due to the very powerful RS congruence and atom label
coincidence constraints. One may enhance the voting pro-
cedure by introducing a weighted voting scheme (see ref. 37).
Namely, instead of giving an equal vote to each hash table
bin, one may assign a high vote to bins with a small number
of candidates, and a low vote to bins with a large number of
candidates. In such a way rare configurations will get a higher
vote than frequent ones. The weighted voting approach can
also improve the efficiency of our algorithm. By assigning
zero weight to bins with candidates above a certain threshold,
we can save the time needed to process hash table entries
with a lot of candidates. These entries require much com-
puter time but contribute only a small amount of information.
Hence, we may assume constant processing in each hash
table bin.
The presented method can be parallelized in a straightfor-

ward manner. It has few serial steps, but most of the work can
be done in parallel. Several versions of it for computer vision
applications have been already implemented on the highly
parallel connection machine (27, 28). It should also be quite
easy to build special hardware for this purpose. As was
mentioned before, the learning (hash table preparation) stage
is independent of the actual recognition stage.

Biophysics: Nussinov and Wolfson
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Improvements of the Basic Paradigm. In the previous
section we have described the basic geometric hashing
scheme for 3D substructure detection. Various improve-
ments are possible. In particular, one can design an 0(n3)
worst case algorithm for that purpose, although the practical
run time ofthe previous version should also be much less than
its worst case estimate. This other version is also more space
efficient and requires a hash table of 0(n3) only. On the other
hand, we use somewhat weaker geometric and labeling
constraints. In this section we sketch this second more
efficient (in the worst case) algorithm.

In the scheme described above, we used full 3D bases that
were associated with three-point RSs. One may, however,
use somewhat weaker information; namely, two-point RSs.
Given a two-point RS, any other (noncollinear) point in the
3D space defines a plane with this RS. Compute the two-
dimensional (2D) coordinates of this point in the above
mentioned plane using a 2D orthonormal coordinate frame,
which is associated with the RS (the first point is the origin,
and the vector from it to the second point defines the x axis).
The address to the hash table this time will be the labels and
the length of the RS segment, and the label and the 2D
coordinates (in the appropriate plane) of the point. Since this
procedure is done for all reference pairs, the hash table will
take 0(n3) space.
The recognition stage will be similar to the previous

version, only this time one has to pick a reference pair on the
observed object instead of reference triplet. Hence the worst
case complexity reduces to 0(n3). Since weaker geometric
and labeling constraints are applied in this version, one may
expect somewhat more candidate solutions passing the first
voting stage. This ambiguity will be easily resolved in the
least squares and final verification steps of the algorithm.
Yet another way to reduce the computational load is to

apply the algorithm (in the first stage) to Cc atoms only.
Besides the reduction of computation, it also allows us to
base the comparisons on stable structures. Such an approach,
however, does not allow us to apply labeling constraints.
A significant improvement in the efficiency of the algo-

rithm can be achieved by taking groups of atoms rather than
single atoms as primitive building blocks ofthe substructures.
In such a case, a single group may serve as a natural RS (if
it has more than three noncollinear atoms), thus improving
both the space and run time worst case complexity to 0(n2),
where n is the number of groups. For example, in the DNA
natural primitive atom groups are adenine, cytosine, guanine,
and thymine. Obviously, a generalized version of our algo-
rithm can handle both atom groups and single atoms.

Experimental Results

A version of the proposed algorithm has been applied (35) to
proteins that have previously been compared using other
methods. In particular, we have implemented an improved
version of the algorithm that compared only Cc atoms and
used two-point RSs, as described in the previous subsection.
Specifically, our technique has been used in the following
experiments.

(i) To find nonpredefined similar domains in bacterial
ferredoxin from Peptococcus aerogenes. Excellent fit of our
results with those of Rossman and Argos (38) has been
obtained.

(ii) Two members from the phospholipase A2 proteins were
compared-phospholipase A2 from bovine pancreas and Cro-
talus atrox venom. These proteins have been previously
compared by Renetseder et al. (39) using standard techniques
(i.e., finding "by eye" a similar core and then aligning using
the least-square procedure). Again, our alignment corre-
sponds exactly to that reported by Renetseder et al. (39).

(iii) The HTH motif was located in several bacterial re-
pressor proteins just as noted in the annotated protein data
bank (PDB). In our experiments we have compared three
transcriptional regulatory proteins known to contain the
HTH motif: tryptophan repressor (PDB code, 2WRP), A Cro
(PDB code, iCRO), and phage 434 Cro (PDB code, 2CRO).
To give a flavor of our experimental results we describe this
example in more detail.

In 1CRO, there are four crystallographically unrelated
monomers in the asymmetric unit. These monomers have
been assigned chain identifiers 0, A, B, and C. The dimer of
iCRO that exists in solution is presumed to be the O-B dimer,
which is thought to be the one that actually binds DNA. We
use the B monomer in the comparisons shown below, but
comparisons using all four domains produce similar matches.
The sequence positions where the HTH motifs appear are

as follows:
Protein
2WRP
iCRO
2CRO

Positions
66-88
14-36
15-37

Sequence
MS QRELKNELGA GIATITRGSNS
FG QTKTAKDLGV YQSAINKAIHA
MT QTELATKAGV KQQSIQLIEAG

In the three pairwise comparisons below (see Table 1), our
method succeeds in matching the HTH motif from one
protein to the HTH motiffrom the other. Very few other atom
pairs are matched, showing that the only equivalent sub-
structure between the proteins is the HTH motif itself. The
atom pairs outside the HTH motif are 3D nonlinear matches.
For each pair of matching substructures Table 1 gives the

sequence numbers of the matching atoms, the transformation
between the substructures (translation parameters in ang-
stroms and rotation angles in radians), and the rms distance
between the matching substructures subject to the appropri-
ate transformation. In these examples one ofthe proteins was
taken as the data base (model) and the other protein was as
the unknown structure (scene).
Although theHTH motifdoes conserve the linear sequence

structure, our algorithm did not exploit this assumption but
rather tackled the problem as a 3D-matching problem. More-
over, it had no a priori information that it was the HTH motif
we were looking for.

(iv) Two proteins from the calmodium/calcium binding
protein group were compared-parvalbumin and intestinal
calcium binding protein. Several matches were obtained.
Two of these correspond to the alignment reported by Taylor
and Orengo (40).

(v) Bovine liver rhodanese contains two motifs, which have
been compared both by Taylor and Orengo (40) and by
Ploegman et al. (41), yielding similar results. Our matches are
almost identical to those obtained (40, 41).

(vi) Two lysozymes have been compared from hen egg
whites and T4 phage. Our matches compare favorably with
those of Rossman and Argos (38), Weaver et al. (42), and
Taylor and Orengo (40).

Details of the programming, results, and their comparisons
with the previously published results are presented elsewhere
(35). It should, be noted, however, that previously published
matches are based on linear sequence structural compari-
sons, where contiguous amino acids are matched. Our 3D
comparisons had no such prior assumptions and have also
unraveled some real 3D sequence-order-independent
matches. We expect that intensive applications ofthe method
to the crystallographic data base will yield additional recur-
ring spatial motifs.

Conclusion and Future Research

We have presented an algorithm for structural comparisons.
As the computational approaches and structural predictions
of DNA, RNA, and in particular, proteins improve (43), such

Proc. Natl. Acad Sci. USA 88 (1991)
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Table 1. Pairwise matchings of the HTH motif in three
proteins: 2CRO (phage 434), iCRO (A phage), and 2WRP
(tryptophan repressor)

Model Scene Model Scene
2CRO 2WRP 2WRP iCROB I

63-T 103-V

37-G 88-S
36-G 87-N
35-E 86-S
34-I 85-G
33-L 84-R
32-Q 83-T
31-I 82-I
30-S 81-T
29-Q 80-A
28-Q 79-I
27-K 78-G
26-V 77-A
25-G 76-G
24-A 75-L
23-K 74-E
22-T 73-N
21-A 72-K
20-L 71-L
19-E 70-E
18-T 69-R
17-Q 68-Q
16-T 67-S

66-M
13-L 65-E

64-G
9-R 63-R

62-L
61-L
60-E
59-E
58-V
57-I

44-F 53-T

43-R 50-A

88-S 36-A
87-N 35-H
86-S 34-I
85-G 33-A
84-R 32-K
83-T 31-N
82-I 30-I
81-T 29-A

28-S
79-I 27-Q
78-G 26-Y
77-A 25-V
76-G 24-G
75-L 23-L
74-E 22-D
73-N 21-K
72-K 20-A
71-L 19-T
70-E 18-K
69-R 17-T
68-Q 16-Q
67-S 15-G
66-M 14-F
65-E 13-R
64-G 12-M

11-A
60-E 10-Y
63-R 9-D
61-L 8-K

7-L
59-E 6-T

Model Scene
lCROB 2CRO

55-V 60-Q

44-1 53-N

51-Y 50-M
52-A 49-A

36-A 37-G
35-H 36-A
34-I 35-E
33-A 34-I
32-K 33-L
31-N 32-Q
30-I 31-I
29-A 30-S
28-S 29-Q
27-Q 28-Q
26-Y 27-K
25-V 26-V
24-G 25-G
23-L 24-A
22-D 23-K
21-K 22-T
20-A 21-A
19-T 20-L
18-K 19-E
17-T 18-T
16-Q 17-Q
15-G 16-T
14-F 15-M
13-R 14-K

13-L
12-A
11-I

10-Y 10-R
9-R
8-K

8-K 7-K
7-L 6-L

39-K 2-L

Columns 1 and 2: translation, 16.6, -7.7, -2.4; rotation, -0.11,
0.29, -2.53; rms, 0.90. Columns 3 and 4: translation, -16.6, -49.6,
-20.1; rotation, -2.34, 0.64, -0.90; rms, 1.29. Columns 5 and 6:
translation, -23.4, -45.2, -19.7; rotation, 1.91, -0.77, -2.59; rms,
0.97.

an algorithmic tool, borrowed and adapted from computer
vision, can be very extensively implemented. We have im-
plemented a preliminary version of the geometric hashing for
molecular biology applications on a serial computer. The
initial experiments show considerable promise.
We view the presented algorithms only as a basic para-

digm. Additional biological information can be incorporated
into this basic framework. In particular, one can consider the
chemical links between various atoms and groups of atoms.
Any such additional information adds additional matching
constraints and may speed up the algorithm.
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