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ABSTRACT Protein database searches frequently can re-
veal biologically significant sequence relationships useful in
understanding structure and function. Weak but meaningful
sequence patterns can be obscured, however, by other simi-
larities due only to chance. By searching a database for multiple
as opposed to pairwise alignments, distant relationships are
much more easily distinguished from background noise. Recent
statistical results permit the power of this approach to be
analyzed. Given a typical query sequence, an algorithm de-
scribed here permits the current protein database to be
searched for three-sequence alignments in less than 4 min. Such
searches have revealed a variety of subtle relationships that
pairwise search methods would be unable to detect.

Protein and nucleic acid sequence comparison has become an
important tool for molecular biologists. Frequently the first
clues to the structure or function of a newly sequenced
protein come from similarities it exhibits to other proteins
that have already been studied. Protein database searches
can draw the researcher's attention to unsuspected relation-
ships and suggest future lines for investigation (1, 2). One
problem is that while close relationships are easy to discover
with existing tools, weaker ones may be indistinguishable
from chance similarities that would be found between even
random sequences. As the size of the protein database
increases, the "noise" from chance similarities found in
database searches grows as well, making weak relationships
ever harder to detect.
One strategy for distinguishing a chance sequence pattern

from a biologically relevant one is to search the database for
several instances of it among otherwise dissimilar proteins.
The basic principle is that while an unusual event may be due
to chance, recurrence ofthe same event requires explanation:
lightning striking twice in the same place probably indicates
a lightning rod. In this paper, we discuss how recent statis-
tical results (3, 4) allow us to clothe this intuition in numbers,
so that a multiple alignment is seen to be statistically signif-
icant while none of the pairwise alignments that comprise it
are. We also describe a simple computational strategy that
allows a database to be searched for multiple alignments in
reasonable time.

This approach is distinct from "profile analysis" (5) and
related methods (6-8), which search for pairwise similarities
to a sequence "profile" derived from a predefined multiple
alignment. In contrast, our method takes a single query
sequence and searches a standard database of individual
protein sequences for segments with which it can form
statistically significant multiple alignments. An obvious gen-
eralization would be to use a profile as the query. Using our
method to search the National Biomedical Research Foun-
dation Protein Identification Resource (PIR) protein database
with a variety of query sequences, we have found many

relationships that could not have been distinguished from
chance by pairwise database search methods.

Measuring Local Similarity

To find patterns among protein sequences, it is useful to have
some measure of sequence similarity. The usual approach is
to assign scores to aligned pairs of amino acids and, if gaps
are to be allowed, to amino acids aligned with nulls (missing
residues). The similarity of a particular alignment is then the
sum of these scores. Such similarity measures may be
described as global or local, depending upon whether every
residue of a sequence is required to participate (9, 10), or
whether an alignment may be confined to segments of the
proteins compared (11, 12). Generally, local measures such
as the ones we will discuss are preferred for database
searches, where cDNAs may be compared with partially
sequenced genes, and where distantly related proteins may
share only isolated regions of similarity (e.g., in the vicinity
of an active site). In this paper we will consider only local
alignments that lack gaps; the mathematical, conceptual, and
algorithmic tractability that this buys will be found to repay
the sacrifice in alignment generality.
We define a segment of a protein sequence to be a set of

contiguous residues. A subalignment (or for simplicity align-
ment) of two sequences can be specified by choosing an
equal-length segment from each; the alignment's score is then
determined, as described above, by a matrix of amino acid
substitution scores. The most widely used substitution scores
are variations ofthe PAM matrix (13); we will use such scores
in the applications that follow. An optimal alignment is
simply the subalignment, of any length, with the highest
possible score.
While it is obvious how to extend the above definition of

alignment to three or more sequences, the score of such a
multiple alignment may be defined in a variety of ways (14).
For simplicity, we will take the score of a multiple alignment
to be the sum of the scores of all the pairwise alignments it
imposes; we call these SP scores, for "sum of the pairs." The
discussion that follows applies as well to many other possible
choices for multiple alignment scores.

Statistical Significance of Pairwise and Multiple
Sequence Alignments

To decide whether a given alignment can reasonably be
explained by chance, one needs to have a model of chance.
A protein can be modeled most simply as a random sequence
ofindependently chosen amino acids, with the different types
of residue occurring with certain underlying frequencies.
Given two such "random protein sequences," what is the
probability P that the optimal alignment score (as defined
above) will be at least S? Recent mathematical results answer
this question (3, 4). The theory involves two parameters, A
and K, for which explicit formulas are given, that are depen-
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dent upon the scoring scheme and the underlying amino acid
frequencies. The probability P is then well approximated by
the formula

1 - exp(-KNe-AS), [1]

where N is the product of the lengths of the two sequences.
For the comparison of three random protein sequences, the
chance that a three-way alignment (3-alignment) will have
score at least S is given by the same formula, except that
different parameters A and K must be used, and N is the
product of the three sequences' lengths. The results gener-
alize to an arbitrary number of sequences.
There are several limits to the applicability of formula 1;

one is that the lengths of the sequences compared should not
be too dissimilar. In this instance, however, the formula
overestimates P, yielding a conservative estimate of statis-
tical significance. The formula is useful primarily for provid-
ing a rough benchmark for assessing the significance of
sequence alignments, since the random protein model is only
an approximation.
Formula 1 can be used to get some idea of the power to be

gained from searching a database for multiple as opposed to
pairwise alignments. For pairwise alignments, the N of the
formula is just the product of the length m of the query
sequence and the length n of the database, i.e., the number
of residues it contains. (Because of the redundancy found in
many databases, taking n at a fraction-about one-half-of its
true value often yields a better estimate of statistical signif-
icance.) When a database is searched for two segments to
align with a segment of the query, N = mn2/2. One divides
by 2 because the segments chosen from the database may be
ordered in two ways. For a 4-alignment, where three seg-
ments are chosen from the database, N = mn3/6. If one
assumes a specific random protein model and SP scores
based on a PAM-120 version ofthe DayhoffPAM matrix (13),
Table 1 shows the parameters A and K derived for two-,
three-, four-, five-, and six-sequence comparison (3, 4). Also
shown are the smallest scores significant at the 95% level
when a 4,000,000-residue protein database is searched with a
150-residue query. Since each multiple alignment score is the
sum of the imposed pairwise scores, we can compare the
average pairwise score required to achieve significance. As
expected, this number decreases as the number of segments
in the alignment increases. Thus, for example, the database
search described is expected to turn up about 15 pairwise
alignments with score at least 47 purely by chance. (The
expected number of distinct random alignments with score at
least S is well approximated by the formula KNe-AS.) It is
surprising, however, to find two segments that each can pair
with the same query segment to yield a score of 47, and
likewise with one another. This is the rationale for seeking
multiple alignments.

Searching for Multiple Alignments

Given a query sequence, suppose we have somehow man-
aged to find a 3-alignment (involving it and two sequences

Table 1. Statistically significant multiple alignment scores for
searching a 4,000,000-residue protein database with a 150-
residue query

Segments in Parameters 95% significance Average score per
alignment A K level segment pair

2 0.336 0.179 64 64
3 0.255 0.177 141 47
4 0.202 0.137 246 41
5 0.165 0.096 384 38
6 0.137 0.068 577 37

from a database) with a highly significant score. This does not
necessarily constitute evidence that all the segments in the
alignment are related. The high score may be due primarily
to the similarity ofjust two related segments, while the third
may bear only a chance resemblance to both. One way to
gauge whether this is the case is to compare the P value
(calculated as described above) of each implicit pairwise
alignment with the P value of the 3-alignment. Only if the
3-alignment appears more significant than all the pairwise
alignments it includes does the alignment provide real evi-
dence for a three-sequence relationship. In practice this
means that for discovering new relationships, 3-alignments
are useful only when they comprise segments that are roughly
equidistant; this provides the basis ofthe following algorithm.
For purposes of discussion, we will assume the algorithm is
applied to the database search described in Table 1; for
different-sized searches, the numbers change but the princi-
ples do not.
A pairwise alignment with score over 63 can be considered

significant in its own right. A pairwise alignment with score
much less than 47 is unlikely to participate usefully (as
described above) in a significant 3-alignment. It is on pairwise
alignments with scores between these bounds (from, say, 35
to 63) that we will concentrate. These alignments have
sometimes been said to inhabit a "twilight zone": perhaps
meaningful, but not clearly distinguishable from chance.
Theory predicts that about 850 such alignments should be
found in a search of a "random" database. Locating these
alignments is the first step of our strategy. A brute-force
algorithm for this purpose requires time proportional to the
product of the lengths of the query sequence and the data-
base. Running on a Sun 4, this requires approximately 1 ,usec
per residue squared, which translates into about 10 min for
the search described. Parallel-architecture computers or spe-
cial-purpose chips can reduce the search time by 2 orders of
magnitude (15). Alternatively, fast heuristic search strategies
can achieve over an order of magnitude greater speed on
standard machines, but at the price of missing an occasional
low-scoring alignment. For example, an implementation of
the BLAST algorithm (2) can search a database at about 20
times the rate of a brute-force algorithm, while missing only
about 3% ofalignments with score 40, 1% of those with score
47, and an even smaller percentage of higher-scoring align-
ments.
Each of the saved pairwise alignments implies a specific

phase for aligning the query and a database sequence. For
example, residue 1 of the query may align with residue 8 of
the database sequence, residue 2 with residue 9, etc. Two
different pairwise alignments imply a phase for aligning the
query with two different database sequences. These three
sequences, locked into a specific phase, can be searched
straightforwardly for a high-scoring 3-alignment in time linear
in the length of the query sequence. The approximately 850
saved pairwise alignments imply approximately 350,000 such
three-sequence sets. The second step ofour strategy involves
searching all these sets for high-scoring 3-alignments; the
time is proportional to the square of the number of pairwise
alignments saved. The example we have been discussing
requires approximately 2 min on a Sun 4. Therefore, using the
BLAST search strategy (2) for the first step, the complete
algorithm can be executed in under 4 min on a Sun 4 for
typical-length protein sequences and the current PIR data-
base.

Preprocessing can reduce the time for the second step of
the algorithm to about halfa minute. By comparing the entire
database against itself, and recording for every pair of
sequences the highest pairwise similarity found, most pairs of
alignments examined in the second step can be discarded as

uninteresting after a single lookup. Usually this reduces the
time for the complete algorithm to under 2 min.
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Table 2. High-scoring pairwise alignments from a PIR database search with human aB-glycoprotein (OMHU1B)
PIR code Protein description Score P value
S00474 Kinase-related transforming protein (kit) precursor - Mouse 58 0.52
K3HUVH Ig kappa chain precursor V-III region - Human Vh 57 0.65
WGSMHH Hygromycin B phosphotransferase - Streptomyces hygroscopicus 56 0.77
A25399 Antennapedia homeotic protein - Fruit fly 56 0.77
A25400 Antennapedia homeotic protein - Fruit fly 56 0.77
A23450 Antennapedia homeotic protein - Fruit fly 56 0.77
GNWVY Genome polyprotein - Yellow fever virus (strain 17D) 54 0.95
XFSMF Plasminostreptin (PSTI-type protease inhibitor) - Streptomyces sp. 53 0.98
QQBE21 Probable membrane antigen gp350 - Epstein-Barr virus 52 1.00
QQBE22 Probable membrane antigen gp220 - Epstein-Barr virus 52 1.00

Since a single "twilight" alignment can participate in many
3-alignments, the output from the program as described can
be voluminous. It is possible to summarize the 3-alignments
found, however, by reporting each twilight sequence that
participates in a high-scoring 3-alignment only once. In this
way, many 3-alignments can be output in the form of a single
multiple-sequence alignment, aiding comprehension and
analysis. Our general strategy for finding statistically signif-
icant 3-alignments clearly can be extended to 4-alignments,
etc. However, Table 1 shows that beyond 4-alignments the
power one can hope to gain is not much enhanced. Further-
more, as the number of segments in an alignment increases,
the problem of whether an alignment's significance is due to
only a subset of its segments becomes ever more thorny.

Biological Examples

We focus here on cases where a database search for three-
way alignments reveals biologically significant sequence re-
lationships that are not detected by the analogous pairwise
database search. In two of the examples, alignments with a
low degree of sequence similarity extending over 20-30

residues are found, while in one instance a short but well
conserved motif is located that corresponds to an active site.
Example 1. We searched the PIR amino acid sequence

database (release 22.0) with human a1B-glycoprotein (16)
(PIR code OMHU1B), a plasma glycoprotein of unknown
function and member of the immunoglobulin superfamily.
The immunoglobulin superfamily includes the heavy and light
chains of antibodies, the histocompatibility antigens, and a
wide range of receptor proteins (17). While the 2 highest-
scoring database sequences from a pairwise search (Table 2)
have immunoglobulin domains, the remainder of the 10
highest-scoring sequences are not members of this superfam-
ily. Furthermore, the P values alone of the highest-scoring
alignments are not sufficiently low to engender confidence in
their biological significance. In contrast, 10 of the 11 highest-
scoring similarities determined through three-way compari-
son are from members of the immunoglobulin superfamily, as
shown in Table 3. (This table presents many distinct three-
way alignments in a condensed form. Each segment shown
belongs to the sequence whose PIR code appears in the
second column ofthe table. One ofthe other segments in each
three-way alignment belongs to the query sequence; the final

Table 3. High-scoring three-way alignments from a PIR database search with human aB-glycoprotein (OMHU1B)
3rd Sequence PIR code Start Sequence End Score P value
[KVMS7S 1] B25521 21 EIVLTQSPATLSLSPGERATLSCGASQS 48 146 0.02
[B25521 21] KVMS7S 1 DIVMTQTAPSALVTPGESVSISCRSSKS 28 146 0.02
[KVRBAH 1] K3HUGO 2 IVLTQSPGTLSLSPGERATLSCRAAL 27 145 0.03
[K3HUGO 2] KVRBAH 1 IVMTQTPSSKSVPVGDTVTINCQAAQ 26 145 0.03
[LVHU2 15] S00474 31 PGEPSPPSIHPAQSELIVEAGDTLSLTCIDP 61 144 0.04
[S00474 31] LVHU2 15 PGGSNSQTVVTQEPSLTVSPGGTVTLTCASS 45 144 0.04
[K3HUGO 1] KVMS7A 1 DIVMTQSPTFLAVTASKKVTISCTAS 26 143 0.05
[K3HUGO 2] KVRB29 1 IVMTQTPSSKSVPVGDTVTINCQASQ 26 143 0.05
[KVMS7S 1] K1HUMV 1 DVQMTQSPSSLSASVGDRVIITCRASQSSVD 31 140 0.10
[K3HUVH 22] XFSMF 10 LTMGHGNSAATVNPERAVTLNCAPTASGT 38 140 0.10
[XFSMF 10] K3HUVH 22 IVMTQSPPTLSLSPGERVTLSCRASQSVS 50 140 0.10

Query: OMHUlB 184 AAPPPPVLMHHGESSQVLHPGNKVTLTCVAPLSGVD 219

PIR code Protein description

B25521 Ig kappa chain V region 305 precursor - Human
KVMS7S Ig kappa chain V region - Mouse
K3HUGO Ig kappa chain V-III region - Human Gol
KVRBAH Ig kappa chain V region - Rabbit
S00474 Kinase-related transforming protein (kit) precursor - Mouse
LVHU2 Ig lambda chain V region - Human
KVMS7A Ig kappa chain V region - Mouse
KVRB29 Ig kappa chain V region - Rabbit
K1HUMV Ig kappa chain V-I region - Human Mev
XFSMF Plasminostreptin (PSTI-type protease inhibitor) - Streptomyces sp.
K3HUVH Ig kappa chain precursor V-III region - Human Vh

Evolution: Altschul and Lipman
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Table 4. A specific three-way alignment found in a PIR database search with human
a1B-glycoprotein (OMHU1B)
PIR code Start Sequence End

OMHU1B 184 AAPPPPVLMHHGESSQVLHPGNKVTLTCVAP 214
S00474 31 PGEPSPPSIHPAQSELIVEAGDTLSLTCIDP 61
LVHU2 15 PGGSNSQTVVTQEPSLTVSPGGTVTLTCASS 45

Three-way alignment score, 144; P value, 0.04

Sequences in Optimal Score in
pairwise alignment score P value 3-alignment

OMHU1B, S00474 58 0.52 58
OMHU1B, LVHU2 49 1.00 31
S00474, LVHU2 55 (0.88) 55

segment belongs to the sequence whose PIR code appears in
the first column, along with that segment's starting position.)
The eight similarities having P values less than 0.05 are all
from sequences in the immunoglobulin superfamily. Plasmi-
nostreptin (PIR code XFSMF), which does not appear to be
related to human a1B-glycoprotein, participates in a 3-
alignment with the not statistically significant P value 0.10.

Table 4 illustrates how three-way comparison increases the
power of a database search. (Although the third pairwise
alignment does not involve the query sequence, the P value
shown is calculated using the same value ofN used for the
other two pairwise alignments.) The c-Kit sequence S00474
yielded the highest scoring pairwise alignment, with aP value
0.52; the other pairwise similarities that constitute this three-
way alignment are even weaker. However, the optimal
regions of pairwise similarity are in very good agreement,
i.e., all three sequences can be aligned simultaneously with
little reduction in the resulting pairwise scores. The proba-
bility of this happening is much lower than that for any of the
pairwise alignments occurring by chance and consequently
the P value of the three-way alignment is 0.04.
Example 2. The database was searched with the EbgR

protein of Escherichia coli (18) (PIR code RPECEG); Table
5 is part ofthe output generated. The ebgR gene codes for the
repressor of the EBG system of E. coli (evolved ,B-galac-
tosidase); this operon is thought to be homologous to the lac
operon (19). The E. coli cyt repressor (20, 21) (PIR code
RPECCT) would have been found by a pairwise search, due
to extensive similarity to the query. The pairwise similarity
of the query to each of the two other sequences shown,
however, is well within the realm of chance. Three-way
comparison focuses attention on these sequences; in each
case, the aligned region corresponds with the helix-turn-
helix type ofDNA-binding domain (20, 21). While the degree
of sequence conservation is occasionally strong enough in the
helix-turn-helix class of DNA-binding domains (22, 23) to
allow detection by pairwise database searches, this example
illustrates that in some cases more powerful methods are

needed to detect functional domains in distantly related
proteins.
Example 3. Table 6 shows the results of a database search

with the protease sequence from simian AIDS retrovirus
SRV-1 (24) (PIR code PRLJSA). Although a number of the
relationships indicated in this alignment would be detected
through a pairwise search method, this table illustrates the
power of the multiple alignment approach in focusing atten-
tion on very short but highly conserved subsequences that
may be critical for function, i.e., active sites. The conserved
"DTG" (aspartic acid-threonine-glycine) pattern in this set of
retroviral Pol proteins is the active site in aspartyl proteases.
A detailed analysis of viral polymerases led to the observa-
tion of this pattern (25), yet it is apparent in a single three-way
database search.
Discussion

Existing sequence database search methods have been re-
markably effective in detecting biologically significant rela-
tionships. High-scoring similarities to unrelated sequences,
however, can cause a researcher who uses only pairwise
comparison methods to miss some biologically significant
relationships. Consider the following two scenarios for eval-
uating the significance of a pairwise similarity.
Suppose a researcher believes a query sequence to be

related to the cytochrome c family, and therefore performs a

pairwise comparison of the query to a particular cytochrome
sequence. To assess the significance of the similarity, he
compares the query to 200 randomly chosen non-cytochrome
sequences from the database and discovers that the query/
cytochrome pair scores higher than all but one of the non-
cytochrome comparisons. It is reasonable to conclude that
the probability is less than 1% that the query/cytochrome
relationship is random.
Suppose instead the researcher compares the query to a

database of 10,000 sequences. Because of the size of the
search, he might now find as many as 50 non-cytochrome
sequences with scores greater than the query/cytochrome
pair. Absent the prior suspicion that the query is related to

Table 5. High-scoring three-way alignments from a PIR database search with E. coli EbgR protein (RPECEG)
3rd Sequence PIR code Start Sequence End Score P value

[BVECPB 167] RPECCT 11 TMUDVALKAKVSTATVSRAL 30 139 0.15
(RPECCT 11] BVECPB 167 SQKDIAAKEGLSQAKVTRAL 186 139 0.15
[RPECCT 10] ZBBPU2 19 TTFKQIALESGLSTGTISSFIND 41 138 0.19

Query: RPECEG 2 ATLKDIAIEAGVSLATVSRVLND 24

PIR code Protein description

RPECCT cyt repressor - Escherichia coli
BVECPB parB protein - Escherichia coli plasmid P1
ZBBPU2 Gene B protein - Bacteriophage mu
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Table 6. High-scoring three-way alignments from a PIR database search with the protease sequence from simian AIDS
retrovirus SRV-1 (PRLJSA)
3rd Sequence PIR code Start Sequence End Score P value

[GNLJG4 132] GNFF42 61 LLDTGADISILKENS 75 142 0.07
[GNFF42 61] GNLJG4 132 LLDTGADDTIIKEND 146 142 0.07
[GNVWA2 63] GNLJEV 87 KRPTTIVLINDTPLNVLLDTGADTSVL 113 135 0.33
(GNLJEV 87] GNVWA2 63 QRPLVTIRIGGQLKEALLDTGADDTVL 89 135 0.33
(GNVWA2 63] GNLJEW 87 KRPTTIVLINDTPLNVLLDTGADTSVL 113 135 0.33
(GNLJEV 87] GNVWLV 63 QRPLVTIKIGGQLKEALLDTGADDTVL 89 129 0.84
(GNLJEV 87] GNVWH3 75 QRPLVTIKIGGQLKEALLDTGADDTVL 101 129 0.84
[GNLJEV 87] GNVWVL 72 QRPLVTIKIGGQLKEALLDTGADDTVL 98 129 0.84
[GNLJG4 131] PNLJH2 51 ALLDTGADLTVIP 63 129 0.84
[GNFF42 61] PNLJH1 62 LLDTGADMTVLP 73 121 1.00
[GNFF42 61] PNLJCN 130 LLDTGADMTVLP 141 121 1.00

Query: PRLJSA 70 QKPSLTLWLDDKMFTGLIDTGADVTIIKLED 200

PIR code Protein description

GNFF42 Retrovirus-related pol polyprotein (transposon 412) - Fruit fly
GNLJG4 pol polyprotein - Simian immunodeficiency virus (SIV)
GNLJEV pol polyprotein - Equine infectious anemia virus
GNVWA2 pol polyprotein - AIDS virus ARV-2 (AIDS-associated retrovirus)
GNLJEW pol polyprotein - Equine infectious anemia virus (clone 1369)
GNVWLV pol polyprotein - AIDS virus LAV-la (lymphadenopathy-associated virus)
GNVWH3 pol polyprotein - AIDS virus HTLV-III (T-cell leukemia virus, BH10)
GNVWVL pol polyprotein - AIDS virus LV (lymphadenopathy virus)
PNLJH2 Probable protease - T-cell leukemia virus (HTLV-II)
PNLJH1 Protease - T-cell leukemia virus (HTLV-I)
PNLJCN Protease - T-cell leukemia virus I (HTLV-I, Caribbean isolate)

cytochromes, his attention might not be drawn to this par-
ticular match on the basis of pairwise sequence similarity. A
scientist with substantial experience in database searching
might notice, however, several distantly related cytochromes
appearing among the high-scoring sequences and investigate
whether the region of similarity between the query and these
cytochromes shows substantial overlap.

It is this latter approach to finding homologies that we have
put into a more powerful statistical and algorithmic frame-
work, permitting the detection of biologically significant
relationships among several sequences when none of the
constituent pairwise similarities are themselves statistically
significant. We believe this will allow scientists who only
occasionally perform protein sequence analyses to detect
homologies they otherwise would have missed, and will
speed and enhance studies done by more experienced re-
searchers.
An implementation in the C programming language of the

strategy described here is available from the authors upon
request. The program BLAST3, which utilizes the heuristic
BLAST search strategy, requires less than 4 min for a typical
search of the current PIR database. It runs under either the
4.2 BSD or the AT&T System V UNIX operating system.
We appreciate valuable programming assistance from Dr. Warren

Gish and helpful comments on the manuscript from Dr. David
Landsman.
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