tus, the trans-acting gene required for termination of DNA replication in Escherichia coli, encodes a DNA-binding protein

(replication termination/T1 and T2 terminator signals)

Thomas M. Hill*, Marianne L. Tecklenburg, Anthony J. Pelletier, and Peter L. Kuempel
Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309-0347

Communicated by David M. Prescott, November 21, 1988 (received for review September 19, 1988)

Abstract

The components for termination of DNA replication in Escherichia coli include the terminator signals T1 and $T 2$ and the trans-acting gene tus. We have shown previously that tus maps in a 4-kilobase region of the chromosomal terminus near T2. Through the use of deletion and insertion mutants, the location of the tus gene has now been precisely identified. We sequenced 2416 nucleotides in this region and identified a 927-base-pair open reading frame which encodes Tus. Insertion of a kanamycin-resistance gene in this open reading frame abolished tus activity. We also demonstrated that crude extracts of tus ${ }^{+}$cells contain a protein which binds to the $\boldsymbol{T} 2$ terminator sequence.

Two polar terminator signals which inhibit the progress of replication forks, designated $T 1$ and $T 2$, have been identified in the terminus region the Escherichia coli chromosome (1, 2). $T 1$ is located at $\min 28.1$ (3) or kilobase (kb) 90 on the Bouché terminus map (4), and it halts only counterclockwisetraveling replication forks, whereas 72 maps at min 35.6 (3, 5) or kb 442 , and it halts only clockwise-traveling replication forks. In addition to $T 1$ and $T 2$, terminator signals have also been identified in the E. coli chromosome near min $34,{ }^{\dagger}$ at $\min 27$ (J.-M. Louarn, personal communication; T.M.H. and P.L.K., unpublished results), and in the plasmids R6K, R1, and R100 $(6,7)$.
In addition to the terminator signals, a trans-acting gene called tus (termination utilization substance) has been identified that maps near $T 2$ and that is required for function of the terminator signal T1 (5). In this paper, we present further characterization of tus. Complementation of tus mutants was used to locate the tus gene and the nucleotide sequence of the tus coding region was determined, \ddagger identifying an open reading frame (ORF) which encodes the tus gene product. We demonstrate the physical location of the tus gene in relationship to the terminator signal $T 2$ and show that tus is also required for $T 2$ function. Finally, we show that the tus gene encodes a DNA-binding protein which associates with the terminator signal sequences.

MATERIALS AND METHODS

Bacterial Strains and Plasmids. A list of strains used in these studies is presented in Table 1. $\Delta 2474$ was constructed in vitro by replacing the 0.35 - and $1.3-\mathrm{kb}$ EcoRV fragments (Fig. 1) in plasmid pPK1014 (see below) with a Kan ${ }^{\text {r }}$ gene cassette (Pharmacia) and crossing the plasmid into the E. coli chromosome by using previously described techniques (5). The tus::Kan insertion was constructed in the same manner. Strain PK2544 was constructed by transducing the tus::Kan insert into PK457 first and then transducing in the recA56 allele.

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. $\S 1734$ solely to indicate this fact.

Plasmids pPK1009 and pPK1007 (5) contain the $4.8-\mathrm{kb}$ EcoRI fragment (kb 439-443.8) inserted into either pRI40 (8) or pUC19 (9), respectively. pPK1007 also contains a Kan ${ }^{\text {r }}$ gene and an additional 4 kb of terminus DNA from kb 428 432. Plasmid pPK1010 was constructed by digesting pPK1009 with HindIII and rejoining the fragment containing the vector and the 2.1-kb EcoRI/HindIII fragment. Plasmid pPK1013 was constructed by isolating the $2.7-\mathrm{kb}$ HindIII/EcoRI fragment from pPK1007 and inserting it into pRI40. Plasmid pPK1014 was constructed by inserting the entire $4.8-\mathrm{kb}$ EcoRI fragment into pUC19. The 1.3-kb EcoRV fragment (Fig. 1) was isolated from pPK1014 and inserted by blunt-end ligation into pRI40 to produce pPK1023. pPK1024 was constructed by partially digesting pPK1014 with EcoRV and inserting a Kan ${ }^{\mathrm{r}}$ gene cassette into the resulting mix of partial digests. pPK1018, one isolate from the cloning, contained the Kan $^{\mathrm{r}}$ cassette inserted between the 1.3- and 1.15-kb EcoRV fragments. The $4.8-\mathrm{kb}$ EcoRI fragment containing the Kan ${ }^{\text {r }}$ gene insert was then isolated from pPK1018 and reinserted into the EcoRI site of pRI40 to produce pPK1024.
Assay for tus Complementation. All plasmids were transformed into PK2340, which is a P2sigs (min 47) strain containing $\Delta 2337$ ($\Delta t u s$). Determination of $T 1$ activity by using a Southern blot assay has been described (3). Studies for determining if tus was required for $T 2$ activity were performed in derivatives of PK457. In this case, replication forks arrested at $\mathbf{T 2}$ originated from oriC, rather than from a P 2 sig $_{5}$ prophage.

Sequencing Strategy and Technique. The 1.3- and $1.15-\mathrm{kb}$ EcoRV fragments were inserted into the Sma I site of m13-mp18 (9), and deletions were generated by using the technique of Henikoff (10). The sequences were determined by using the dideoxynucleotide chain termination method of Sanger et al. (11). Sequenase (United States Biochemical) was used in place of the Klenow fragment of DNA polymerase. In places where overlapping deletions could not be obtained, synthetic oligomers were used as primers to determine the sequence.

DNA-Protein Binding Assay. Crude extracts of cultures were prepared by the following procedure: Exponentially growing cells in LB broth were harvested at an OD_{600} of 1.0 and centrifuged, and the cell pellet was washed once in binding buffer [10 mM Tris $\cdot \mathrm{HCl}, \mathrm{pH} 7.5 / 50 \mathrm{mM} \mathrm{KCl} / 1 \mathrm{mM}$ EDTA/5\% (vol/vol) glycerol/ 1 mM dithiothreitol $/ 50 \mu \mathrm{~g}$ of bovine serum albumin per $\mathrm{ml} / 16 \mu \mathrm{~g}$ of phenylmethylsulfonyl fluoride per ml (12)]. After centrifugation, the cell pellet was resuspended in binding buffer in $1 / 50$ th of the original volume

Abbreviations: Kanr, kanamycin resistance; ORF, open reading frame.
*Present address: Department of Biosciences and Biotechnology, Drexel University, Philadelphia, PA 19104.
${ }^{\dagger}$ Louarn, J. M., American Society for Microbiology Conference on the Organization of the Bacterial Chromosome, May 22-25, 1988, Pine Mountain, GA.
\#The sequence reported in this paper is being deposited in the EMBL/GenBank data base (accession no. J04507).

Table 1. List of strains

Strain	Genotype	Ref.
PK457	trpR, trpA9605am, his-29am, ilv, pro-2, arg-427, thyA, deoB, tsx	6
PK998	dnaAts, rac, his, thr, leu, arg, thi-1, thyA, deoB or deoC, lac, xyl, mal, mtl, ara, rpsL, tonA, P2sigs (min 16)	1
PK1012	dnaAts, rac, his, thr, leu, arg, thi-1, thyA, deoB or deoC, lac, xyl, mal, mtl, ara, rpsL, tonA, P2sigs (min 47)	1
PK2340	PK1012 plus 42337 (Δ tus), Kan ${ }^{\text {r }}$	5
PK2359	hsdS20, ara-14, leu, proA2, lacY1, galK2, rpsL20, xyl-5, mtl-1, supE44, $\mathbf{\Delta 2 0 3 8}$ ($\Delta t u s$) nth::Kan plus pPK1007	This paper
PK2374	PK2340 plus pPK1009 ($\mathbf{S p c}^{\mathbf{\prime}}$)	5
PK2400	PK2340 plus pPK1010 ($\mathbf{S p c}^{+}$)	This paper
PK2417	PK2340 plus pPK1013 (Spc')	This paper
PK2476	PK1012 plus 42474 (Kan')	This paper
PK2512	PK2340 plus pPK1023 (Spcr)	This paper
PK2514	PK2340 plus pPK1024 ($\mathrm{Kan}^{\text {r }}$)	This paper
PK2540	PK998 tus::Kan	This paper
PK2544	PK457 recA56, tus::Kan	This paper
PK2553	PK2544 plus pPK1013	This paper
PK2636	PK457 recA56	6

Kan ${ }^{\boldsymbol{r}}$, kanamycin resistance; $\mathbf{S p c}^{\Gamma}$, spectinomycin resistance.
and sonicated. Cell debris was removed by a $20-\mathrm{min}$ centrifugation in a Beckman Microfuge at $4^{\circ} \mathrm{C}$. Protein concentrations were determined by using the assay of Bradford (13). A given amount of extract was incubated in binding buffer with 130 pg of the double-stranded synthetic oligomer (5'-AAT-TCATAAAATAAGTATGTTGTAACTAAAGTGGATC-3' and its complementary strand) which had been end labeled with ${ }^{32} \mathrm{P}$. In the experiments shown here, 155 ng of pBR 322 DNA was added as a nonspecific competitor for DNAbinding proteins. Substitution of poly(dI•dC) ($2 \mu \mathrm{~g}$ per reaction) in place of pBR322 DNA as the nonspecific competitor gave identical results. The incubation was carried out for 20 \min at room temperature in a final volume of $20 \mu \mathrm{l}$. Electrophoresis in 5% polyacrylamide gels ($20: 1$ crosslinking) was performed according to Fried and Crothers (14). The gel was then dried and exposed to Kodak X-Omat film.

RESULTS

We have previously demonstrated that a 4.8-kb EcoRI fragment from the E. coli terminus region contains the necessary information to complement tus deletion mutants (5). We isolated smaller fragments of the $4.8-\mathrm{kb}$ fragment, inserted them into a low-copy-number vector, and tested the resulting plasmid constructions for complementation of tus
mutants (Fig. 1). Plasmid pPK1010, which contains a 2.1-kb insert, and plasmid pPK1013, which contains a $2.7-\mathrm{kb}$ insert, were used to transform strain PK2340. This strain is a derivative of PK1012 that contains $\Delta 2337$, which removes tus (5). Counterclockwise replication forks are not inhibited at T1 in strains containing $\Delta 2337$ (Fig. 2) unless tus is supplied on a plasmid, such as with pPK1009 (5). When pPK1010 was tested in strain PK2340, it did not complement the Tus ${ }^{-}$ phenotype (data not shown), whereas a similar experiment with pPK1013 clearly demonstrated reactivation of the T1 terminator signal (Fig. 2). Consequently, the tus gene must be located on the $2.7-\mathrm{kb}$ HindIII/EcoRI fragment. We then tested pPK1023, which contains the 1.3-kb EcoRV fragment. This plasmid was not capable of reactivating $T 1$ (data not shown), suggesting that the tus gene was either entirely contained in the region to the right of the 1.3-kb EcoRV fragment or spanned the junction between the 1.3- and 1.15-kb EcoRV fragments. That tus spans the junction was confirmed by testing $\Delta 2474$, which removes the 0.35 - and 1.3-kb EcoRV fragments and eliminates tus function (data not shown).

We sequenced the 1.3 - and the $1.15-\mathrm{kb}$ EcoRV fragments. The sequence of 2416 nucleotides covering the two fragments is presented in Fig. 3. We find two ORFs of significant length within the sequenced region. A partial ORF, designated

REGION CONTAINING TZ AND TUS

COMPLEMENTS
HES
+
-
+
-
-

Fig. 1. Restriction map of the 4.8 kb EcoRI fragment containing 12 and tus (kb 439-443.8). The locations of EcoRV and HindIII sites within the fragment are shown. The direction of replication forks inhibited at $\mathbf{T 2}$ and the location of $T 2$ and $t u s$ are marked below the map. The DNA inserted into various plasmids is indicated along with the plasmid number. Complementation of $t u s$ strains by presence of the plasmid is also indicated.

Fig. 2. Inactivation of $t u s$ by insertion of a $\mathrm{Kan}^{\mathrm{r}}$ gene. Presence of tus was determined by T1 activity. Strains containing a P2sigs prophage at min 47 were induced as described, and samples were taken at 0 and 100 min after induction. DNA from induced cells was digested with HindIII and blotted after electrophoresis. A linear band of $\mathbf{2 4} \mathbf{~ k b}$ should be visible after probing with a fragment from pAP203 (3). If inhibition of replication at T1 occurs, an additional band of 9 kb should also be visible (PK1012, $100-\mathrm{min}$ sample). $\mathbf{\Delta 2 3 3 7}$, which removes tus, causes loss of T1 function and, hence, loss of the 9-kb band. Providing pPK1013 restores T1 function. However, insertion of a Kan ${ }^{r}$ gene between the 1.3- and 1.15-kb EcoRV fragments in pPK1024 prevents reactivation of T1 function. MW, molecular weight markers, labeled in terms of $\mathbf{k b}$.

ORF-1, starts upstream of the beginning of the sequence and ends at nucleotide 549, whereas a complete ORF of 927 base pairs, designated ORF-2, extends from nucleotide 628 through nucleotide 1554, spanning the junction of the two EcoRV fragments at nucleotide 1279. Expression of ORF-2 would produce a protein of 35,800 daltons with a calculated pI of 10.1. To test if ORF-2 encoded Tus, a plasmid (pPK1024) was constructed which contained a Kan ${ }^{\text {r }}$ gene inserted between the 1.3- and 1.15-kb fragments (Fig. 1). This plasmid was used to transform PK2340, and the resulting strain, PK2514, was tested for function of T1. In contrast to pPK1013, the Kan ${ }^{\text {r }}$ gene insert in pPK1024 prevented $T 1$ function, indicating that tus had been inactivated (Fig. 2).

Although it seemed likely, it had not been demonstrated that $\boldsymbol{T 2}$ function in the chromosome required tus, nor had we been able to physically separate $\boldsymbol{T 2}$ and tus. We therefore crossed the tus::Kan insert in pPK1024 into the chromosome of PK998 (P2sigs at min 16) and tested this strain (PK2540) for T2 activity. The insert in tus eliminated $T 2$ activity (Fig. 4). However, it was still possible that the kanamycin gene had inserted into the $T 2$ sequence as well as interrupting the tus gene. tus was therefore provided in trans in a tus::Kan strain to determine if it reactivated $T 2$. These experiments were performed in strains where replication forks were initiated from oriC rather than from a P2sigs prophage origin; consequently, the intensity of the hybridization signal is weaker (3). Fig. 4 demonstrates that the presence of pPK1013 caused replication inhibition at $T 2$ in a tus::Kan strain, indicating that only the tus gene had been inactivated. The recent identification of the sequence which acts as the terminator signal $T 2$
(6), which is located at nucleotides 595-617 in the sequence (Fig. 3), confirms our results that $T 2$ and tus are separate.
We have previously postulated that Tus may act as a DNA-binding protein that binds at the terminator signals $T 1$ and 72 (5). To test this hypothesis, crude cellular extracts were prepared from strains containing the tus::Kan insert, a normal chromosomal copy of tus, or a plasmid carrying the tus gene. The extracts were incubated with a synthetic oligomer containing the 23-base-pair terminator signal from $T 2$ (6). When the products of the incubation were electrophoresed, a slower-migrating band was observed in the extract from the tus ${ }^{+}$strain but not in the tus::Kan extract (Fig. 5), indicating that the tus gene produced a protein which bound to the $\boldsymbol{T 2}$ sequence. Increasing the amount of expression of the tus gene with either pPK1013 (low copy number) or pPK1007 (high copy number) gave increasing amounts of the retarded band. These results indicate that the tus gene product bound to the $\boldsymbol{T 2}$ sequence and retarded the oligomer. A very faint band migrating at a position between the $T 2$ oligomer and the Tus/ $T 2$ complex was also observed in lane B (tus::Kan) of Fig. 5. This band was repeatedly observed in extracts from all strains tested, suggesting that a cell protein other than Tus can bind to the terminator sequences with a low affinity.

* DISCUSSION

The presently identified components for termination of DNA replication in E. coli consist of the terminator loci, which include T1 and T2, and the trans-acting factor Tus. We mapped the tus gene to a specific region of a $4.8-\mathrm{kb}$ EcoRI fragment, determined the nucleotide sequence of this region, and identified the ORF which encodes Tus. We also showed that crude extracts from tus ${ }^{+}$cells contained a protein that bound specifically to a small DNA fragment containing the $T 2$ terminator signal. We propose that the Tus protein prevents passage of replication forks by binding to the chromosomal terminator sequences.
Although the mechanism of replication termination is not known, we predict that the affinity of the Tus protein for different terminator sequences will determine the efficiency of replication fork inhibition at a particular termination site. Terminator sequences which bind Tus weakly will function poorly compared to sequences which bind Tus strongly. Determining the dissociation constant of Tus from various terminator sequences will test the validity of this hypothesis.

Analysis of the predicted amino acid sequence for Tus indicates that the mass of the protein is approximately 35,800 daltons. We confirmed the size of the tus gene product by constructing a plasmid which overproduces the Tus protein and identifying the overproduced product by electrophoresis on a sodium dodecyl sulfate/polyacrylamide gel. The size of the overproduced protein was approximately 36,000 daltons (T.M.H., M.L.T., and P.L.K., unpublished results). The predicted Tus protein also does not contain any of the consensus amino acid sequences for DNA-binding protein motifs such as the helix-turn-helix (15), "zinc finger" (16), or "leucine zipper" (17). Comparison of the protein sequence for Tus with the Protein Identification Resource data bank on Nov. 1, 1988, by using the Eugene sequence analysis programs (mbir, Baylor College of Medicine) did not reveal other proteins with significant homology. Also, comparison with the Tus-like protein which has recently been identified for Bacillus subtilis $(18,19)$ did not show regions of homology.
Preliminary data indicate that the promoter for the tus gene is located at least 1200 base pairs upstream of the tus gene. We synthesized an oligomer complementary to nucleotides 640-657 and performed a primer extension to determine the location of the 5^{\prime} end of the tus message. A band of greater

EcoRy Hind III
GAT ATC AGT GAN CTT GA1 GCT tTA ATt GAN GAG CTG CTG aCt tat goc con ctc gat coc oca can hac gac

73 CTT Cat ctt agc gan can gac ctg cog ttg tge cta tan acg cat ctg oca gat att cac oca gia acg coc

145 gat ana acg gta cog ata ana aco ctc otg can goc cat tat ocg occ ttg gat atg coc tit atg gac coc

217 GTG CTG GAT AAT TTG OTC AAT MAC OCC CTG COG TAC TOC CAT TCA ACO GTT GAN ACC AOC CTG CTA CTG TOG

361 ana COT TTT GTT COC CTC GAT OOC ACC COC GAT COC TCA ACC OOC OOC TOC OOG OTG OOG CTG OCA ATT GTC

505 TTT AGC TGG COG TTA TGG CAT AAC ATC COG GAN TTT ACC TCT GCC TGA CAC TAC GCG CAC GAT GGT GAN GTC

577 acc acg act gTg cta tan ant ang tat git gia act ana gat git ant att atg gog cot tac gat ctc gin
40 gac oga ctc anc act acc tit coc gag atg gna can gag ctg get ata tit goc oct cat ctt gag gan cac

721 ang CTA TTG GTT GOC CGC GTG TTC TCT TTG COG GAG GTA AAN ANA GAG GAT GAG GAT AAT COG CTT AAT CGT

703 ATT GAG GTA AAA GAA GAT CTC GGC ANC GAC GCG GAG TCG CTG OCG TTG CGT GAT TTC CGC GAT TTA TTT ATT

037 AAC CTT TCG GAA GCA GCG TTG GTC AGT GAT ATT GAG GAC ATC MAT ANA CTC AAG ACC ACG TTC GAG GAT ATC

1009 GTC ACG GTT GAA TCA GAA CTC COC ACC GCG GCA OGT TTT GAA TGG GTG GAT CGT CAT TTG COG GGG CTG ATC

1081 ACC CTT AAT GCT TAC COC ACG CTC ACC GTT CTG GAC GAC COC GCC ACT TTA COC TTT GGT TGG GCT AAT AAA

1153 Cat atc att ang ant tia cat cet gat gan gic ctg oca gag ctg gan ana agc ctg ann tan oca cac agt

1297 GAG AAC OCG AAG TTA AAA ATC AAN COT CCG GTG AAG GTG GAG COG ATT GOC COC GTC TGG TAC AAA GGA GAT

1369 CAA AAN CAA GTC CAA CAC GCC TGC CCT AGA CCA CTG ATT GGA CTG ATT AAT COG GAT AAT GGC GCG GGC GTG

1441 COG Gac git get gag tig tia hat tac gat goc anc ant gig cag cac cat tat ana cot cag gog cag cog

1513 CTT CGT TTG ATC ATT OCA CGG CTG GAC CTG TAT GTT GGA GAT TAN CGCCOGOCTTTGATACTGCOGACCATCTGTTCTGG leu erg lou ile ile proarg lou hit leu tyr val ala asp ochre

CCGTACCCAGCTGTCAACTCGGCTTCGCTAAGATACCCCAGCGCAAGGGCCGCAGCTTTTAAGGTGAGCCCTTCTTTATGCGCTTTTTTTGGCGA 1688 TCTCGGCGGCTTTGTGATAACGATGTGGGTGTTAAGCGCAGTCACCAGCATCAGCGATTGATTGAGTAATTGATTGATTCGCTCACGATTCGGT

 2258 CACCGCTGTACGGCGAAGAGCGAGTTCCGCTACGTGAGGCAGGCTGTATTCGATATGTTTGAGATTATGCTCGAGCATCGCTACCAGCOGGAMA 2353 TCTCCTGCCOCAGCGTTAACGGCGTGGGATCCTGGAAGTGAGTACGACCAATTTTGAOGATATC

> ECORY

Fig. 3. Nucleotide sequence of the $1.3-$ and $1.15-\mathrm{kb}$ EcoRV fragments containing $T 2$ and tus. The predicted amino acid sequence of open reading frame 1 (ORF-1) (nucleotides 1-549) and open reading frame 2 (ORF-2) or tus (nucleotides 628-1554) are indicated below the nucleotide sequence. The locations of a putative promoter $(-35,-10)$ and the ribosomal binding site (S-D) are underlined and labeled. The location of certain restriction sites is also presented. The tus::Kan insert used in this study occurs at the EcoRV site that starts at nucleotide 1279. The location of the terminator signal $T 2$ (6) is indicated by the boxed sequence.
than 1200 nucleotides was consistently observed (A. M. Flower, C. S. McHenry, T.M.H., and P.L.K., unpublished results), indicating that the primary promoter for tus expression is probably located in front of ORF-1. In addition to the primary promoter, we identified a weak promoter immediately upstream of the tus gene sequences. A " -35 box" is located at nucleotides 567-572 and a "-10 box" at 590-595, just upstream of a Shine-Delgarno sequence (20) positioned between nucleotides 612 and 620 . The presumed low activity of this promoter is based on a comparison of promoter sequences with known promoter activities (21).

The proximity of the tus gene to ORF-1 and the length of the tus mRNA suggests that tus is part of an operon. Since operons often contain genes of related function, we con-
structed a strain which contained an ORF-1::Kan insertion and tested for both $T 1$ and $T 2$ activity. The results indicated that loss of function of ORF-1 had no effect on replication inhibition (T.M.H., M.L.T., and P.L.K., unpublished results).

We have recently identified the DNA sequence which acts as the terminator signal at $T 2$ (6). A 23-base-pair sequence 5^{\prime}-AATNAGTATGTTGTAACTAAAGT-3' was found which is common to $T 1$ and $T 2$ and which causes replication forks to halt in a ColE1-derived plasmid. Function of the terminator signals was dependent upon the presence of tus and the orientation of the sequence with respect to the plasmid origin. The sequence for $T 2$ is located immediately upstream of the tus gene, at positions 595-617 in Fig. 3, suggesting that $T 2$ may act as a regulator of tus expression.

Fig. 4. Evidence that $t u s$ and $T 2$ are separate. Inhibition of replication forks originating from oriC was used to determine if $\boldsymbol{T 2}$ could be reactivated in a tus::Kan strain when a tus ${ }^{+}$plasmid was provided. DNA was harvested from either amino-acid starved cultures (-a), which should not show a termination band, or exponentially growing cultures (\log). The DNA was then digested with EcoRI, electrophoresed and blotted, and hybridized to the $1.7-\mathrm{kb}$ EcoRI/EcoRV fragment upstream of 72 (see Fig. 1). The probe should hybridize to a 4.8 -kb EcoRI fragment in wild-type DNA and a $6.1-\mathrm{kb}$ fragment in DNA containing the tus::Kan insertion. If inhibition of replication at $T 2$ occurs, a band of 2.7 kb (open triangle) should also be visible in addition to the linear band. The termination band is present in PK457 (wild type), absent in PK2554 (which contains tus::Kan), and regained in PK2553 (pPK1013 + tus::Kan).

Binding of the Tus protein to the $T 2$ sequence would prevent function of the putative promoter just upstream of the tus gene, since the -10 box is directly in front of the $T 2$ sequence. Although this is not the primary promoter for tus expression, this promoter may be used when levels of Tus protein are diminished. Under these circumstances, the $T 2$ site may be unoccupied, allowing use of this promoter.

Horiuchi and Hikada (7) have recently reported unpublished results that suggest that a host protein binds to the R6K plasmid terminus. Since the R6K terminus contains two terminator sequences with high homology to the chromosomal terminator signals of E. coli $(6,7)$, we conclude that the tus gene encodes the host protein binding to the R6K terminus region.

Note Added in Proof. Hidaka et al. (22) have recently reported the nucleotide sequence for four termination sites.

We thank Ann Flower and Peter Fürste for critical reading of this manuscript and Gary Stormo for helpful discussions and information on promoter and translational initiation sequences. This work was supported by Grant GM32968 from the National Institutes of Health to P.L.K. and National Institutes of Health Postdoctoral Fellowship GM11418 to T.M.H.

Fig. 5. Binding of Tus to a 37 -base-pair oligomer containing the 72 terminator signal. A double-stranded oligomer (37 base pairs) containing the 23-base-pair 12 terminator sequence was end-labeled and mixed with 10 mg of total protein from crude cellular extracts. Incubation was carried out at room temperature for 20 min . Samples were then loaded onto a 5% polyacrylamide gel and electrophoresed for 1 hr at 180 V . Lane A, no protein added. Lane b, extract from PK2544, containing a tus::Kan insert. Lane C, extract from PK2636, containing a single chromosomal copy of the tus gene. Lane D, extract from PK2553, containing pPK1013, a tus ${ }^{+}$plasmid with a low-copy-number vector. Lane E, extract from PK2359, containing pPK1007, a tus ${ }^{+}$plasmid with a high-copy-number vector. 4 indicates the position of the free oligomer, whereas \triangleleft indicates the position of the retarded oligomer.

1. Hill, T. M., Henson, J. M. \& Kuempel, P. L. (1987) Proc. Natl. Acad. Sci. USA 84, 1754-1758.
2. de Massy, B., Béjar, S., Louarn, J., Louarn, J.-M. \& Bouché, J.-P. (1987) Proc. Natl. Acad. Sci. USA 84, 1759-1763.
3. Pelletier, A. J., Hill, T. M. \& Kuempel, P. L. (1988) J. Bacteriol. 170, 4293-4298.
4. Bouché, J. P. (1982) J. Mol. Biol. 154, 1-20.
5. Hill, T. M., Kopp, B. J. \& Kuempel, P. L. (1988) J. Bacteriol. 170, 662-668.
6. Hill, T. M., Pelletier, A. J., Tecklenburg, M. L. \& Kuempel, P. L. (1988) Cell 55, 459-466.
7. Horiuchi, T. \& Hikada, M. (1988) Cell 54, 515-523.
8. Innes, R. W., Hirose, M. A. \& Kuempel, P. L. (1988) J. Bacteriol. 170, 3793-3802.
9. Norrander, J., Kempe, T. \& Messing, J. (1983) Gene 26, 101106.
10. Henikoff, S. (1984) Gene 28, 351-359.
11. Sanger, F., Nicklen, S. \& Coulson, A. R. (1977) Proc. Natl. Acad. Sci. USA 74, 5463-5467.
12. Hendrickson, W. \& Schleif, R. (1985) Proc. Natl. Acad. Sci. USA 82, 3129-3133.
13. Bradford, M. M. (1976) Anal. Biochem. 72, 248-254.
14. Fried, M. \& Crothers, D. M. (1981) Nucleic Acids Res. 9, 65066525.
15. Steitz, T. A., Ohlendorf, D. H., McKay, D. B., Anderson, W. F. \& Mathews, B. W. (1982) Proc. Natl. Acad. Sci. USA 79, 3097-3100.
16. Berg, J. M. (1986) Science 232, 485-487.
17. Landschulz, W. H., Johnson, P. F. \& McKnight, S. L. (1988) Science 240, 1759-1763.
18. Carrigan, C. M., Haarsma, J. A., Smith, M. T. \& Wake, R. G. (1987) Nucleic Acids Res. 15, 8501-8509.
19. Smith, M. T. \& Wake, R. G. (1988) J. Bacteriol. 170, 40834090.
20. Shine, J. \& Delgarno, L. (1974) Proc. Natl. Acad. Sci. USA 71, 1342-1346.
21. Mulligan, M. E., Hawley, D. K., Entriken, R. \& McClure, W. R. (1984) Nucleic Acids Res. 12, 789-800.
22. Hidaka, M., Akiyama, M. \& Horiuchi, T. (1988) Cell 55, 467-475.
