Nucleotide sequence of the S-2 mitochondrial DNA from the S cytoplasm of maize

(plasmid-like DNA/terminal inverted repeats/linear DNA replication/cytoplasmic male sterility)

Charles S. Levings III and Ronald R. Sederoff
Department of Genetics, North Carolina State University, Raleigh, North Carolina 27650

Communicated by C. Clark Cockerham, March 28, 1983

Abstract

Mitochondria from the S male-sterile cytoplasm (cms-S) of maize contain two plasmid-like DNAs, S-1 and S-2, that appear to be prominently involved with the cytoplasmic male sterility trait. The complete nucleotide sequence of the S-2 DNA molecule was determined by the chain termination method. The linear S-2 DNA molecule contains 5,452 base pairs and is terminated by exact 208 -base-pair inverted repetitions. Two large open reading frames were identified in the S-2 DNA, suggesting the possibility of protein-encoding genes. The nucleotide sequence of the S-2 termini are discussed with regard to models proposed for the replication of linear DNA molecules.

In the S cytoplasm of maize, mitochondria contain plasmid-like DNAs that are distinct from the usual mtDNAs (1). These unusual DNAs, designated S-1 and S-2, are uniquely associated with the S type of cytoplasmic male sterility ($\mathrm{cms}-\mathrm{S}$). The S group, which includes about 20 members, is characteristically restored to pollen fertility by the nuclear gene, Rf3, located on chromosome 2 (2). The S-1 and S-2 DNAs are 6.4 and 5.4 kilobases (kb) long, respectively, and are commonly isolated as doublestranded linear DNA molecules with defined ends. The molecules are structurally unique in that they contain terminal inverted repeats of about 0.2 kb . Normally, S-1 and S-2 are present in equimolar quantities but are about 5 -fold more abundant than the mtDNA. However, it is known that nuclear background affects the content of S-1 and S-2 (2). Although the informational content of these DNAs is unknown, it is interesting that sequences homologous with S-1 and S-2 are found integrated into the mtDNAs of all maize cytoplasms (3, 4).

Additional plasmid-like DNAs were discovered among 12 male-fertile Latin American races of maize that are distinguishable from those of cms -S (5). These DNA species, called R-1 and R-2, are 7.4 and 5.4 kb long. Like the S plasmids, the R plasmids are isolated as double-stranded linear DNAs that are terminated by $0.2-\mathrm{kb}$ inverted repeats. The R and S plasmidlike DNAs have substantial sequence homology even though R1 contains about 2 kb of sequence not found in S plasmids. This fact has led to speculation that S-1 may have arisen by a recombination event between R-1 and R-2 (6).

In the S male-sterile cytoplasm, spontaneous mutations to pollen fertility occur, sometimes at unusually high frequencies (2,7). Most often the male-fertile revertants are due to cytoplasmic changes, which are maternally transmitted to subsequent generations. In these newly arisen revertant strains, free forms of S-1 and S-2 are no longer found, and rearrangements are observed that often involve sequences homologous with the S elements (8). Based upon these findings, it was suggested that S-1 or S-2 DNA or both may carry factors responsible for male

[^0]

Fig. 1. Restriction map of the S-2 DNA (5,452 base pairs). Restriction sites are indicated by vertical lines: B, BamHI; Bc, Bcl I; E, EcoRI; H, HindIII; P, Pst I; X, Xho I.
fertility and behave like transposable elements. The apparent association of the S plasmids with male sterility and transpositional activity makes these molecules interesting for study.

In this report, we present the nucleotide sequence of the S 2 DNA molecule.

MATERIALS AND METHODS

S-2 DNA was obtained from maize strains carrying the S (U.S. Department of Agriculture) maize cytoplasm, designated cmsS. mtDNA was isolated from dark-grown seedlings as described (9). S-2 DNA was fractionated by electrophoresis on 0.9% agarose gels and purified by electroelution (10).
Cloning was carried out by using M13 bacteriophage vectors $\mathrm{mp} 7, \mathrm{mp} 8$, and mp 9 (11). Double-stranded replicative form was cleaved at the appropriate restriction sites and ligated to DNA preparations of S-2 digested with $\mathrm{BamHI}, \mathrm{Bcl} \mathrm{I}, \mathrm{Bgl} \mathrm{II}, E c o \mathrm{RI}$, Hae III, Mbo I, Pst I, Taq I, and Xho I. Ligation and transformation procedures generally followed protocols provided by New England BioLabs (Fig. 1). In some cases, recloning was done to invert a cloned fragment or to subclone an internal fragment from an existing clone. To do this, double-stranded preparations were made from $1-\mathrm{ml}$ cultures by a plasmid preparation technique that included LiCl precipitation to remove singlestranded DNA before recloning (12).
The DNA nucleotide sequence was determined by the chain termination method of Sanger et al. (13) with a universal primer furnished by New England BioLabs or P-L Biochemicals. Sequencing gels were either 6% or 8% polyacrylamide and 0.4 mm thick. The sequence was analyzed by the computer programs of Intelligenetics.

[^1]| 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AAAAGTATAC | AAGCACATGT | CCAATCTACA | taAagatacc | AACCAGGTAT | ctacttcana | gACAGGGCGT | CGGCGATCCT | ctactattaa | gacagata |
| 110 | 120 | 130 | 140 | 150 | 160 | 170 | 180 | 190 | 200 |
| ACAATGGTGC | CGACAGAGAT | GGACAGAACT | gCagagatata | CCTCTCCGGA | gangtcctia | Catctctcaa | actanatana | TCCAACCTGC | AAGAAGACAC |
| 210 | 220 | 230 | 240 | 250 | 260 | 270 | 280 | 290 | - | ACAAAAAAGA AAAATATGAA GTATCCTCCA CTGACAGCAA AAAAATTGGC CGAAGTGAAA AGACTCTTGA AAAAGAGTCA GATTCCTCAA TTGAAATATA

 atcagggagt cagttagget atcaacggat agagaccctg atttagagga tgaaanaiga gagcagctag gagagtctat gcagactgan ttgeagagac $\begin{array}{rlrrrrrr}510 & 520 & 530 & 540 & 550 & 560 & 570 & 580\end{array}$

 AgCAAAGGAT taccttcttg ataigttaga gaiaccagac gatctagata tcgttagagc tatgggcacc tatacactge antgtatagt tgtatttctc

1010	1020	1030	1040	1050	1060	1070	1080

 ACGGCCCACC GCAACCGCGG AAGTCTCGGA TCCATATATA ACGAATCTGA CCCCTCTATC GAGTTATAGA GGTGGTTACC TCACATCCCT ACAAAGGGAG agtggagata gtccgactct cttangtgan anagattatg gtgtatttga catacatatc gatcgcgaga gatctcaacc agtgttgact gctgtcanca
 agcttcagcg gcagccctat cganttanta anttagtcta tgattttata caanancatt ggagtgtatt agtgtccgtg gggcttctca ggccgangat TCTAGCTTTA TTTAAACGAA AGGAGGCGCT CAGGCTACTA TCTAGCCTTT TGTTTAAACA CGAGGAGCTT TCAACGATTT ATCGATATAG TGAGTTCAAA $1910 \quad 1920 \quad 1930 \quad 1940 \quad 1950 \quad 1960 \quad 1970 \quad 1980 \quad 1990 \quad 2000$ TCTGTATTGT TAAAAAATAT ACACGCGTCA ACCTTCGAAC TATATACTAT GAAAATAGCT GAGGCTTATC TAGATTATAA AATCTATTTT CCAATCTTTC

| 2010 | 2020 | 2030 | 2040 | 2050 | 2060 | 2070 | 2080 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | tgGacttcag ggggcgaiat taccgccatg gacccticca tttccacgan cgtgatttag tgagatcact catcatattt gatganagtc atgactcagc

 $\begin{array}{rrrrrrrrr}2310 & 2320 & 2330 & 2340 & 2350 & 2360 & 2370 & 2380 & 2390\end{array}$

 $2610 \quad 2620 \quad 2630 \quad 2640 \quad 2650 \quad 2660 \quad 2670 \quad 2680 \quad 2690$
 tGTTGAAGAT CTATTAAAGG GTAAGTCGGA TTCCGAGGGA ATAAACCTAA TTTCAAAACA TATTTCTACA TATTGGAAAG TGAATTTTGG AAAAATGAAA
 AGCGGCGTAA ACGCGTAAAA ATGAAAATAC AGTATGAAAC AACCAAAAAT AACGAAAAGG AGGTGAAAAC AACATCGGCT AAAATGCTTA TACCGTTAAA

3010	3020	3030	3040	3050	3060	3070	3080	3090	3100
CGATAACGAT	Attagataga	gCtCAACCTC	AACCTTTGCC	AACTTCATCC	ATCAAAAGGA	tGCATTTACT	gCtatccagc	tTGTTGACTT	tatcaitana
3110	3120	3130	3140	3150	3160	3170	3180	3190	3200
CTCGAGAATG	CtTCCTCAAT	tcctatatac	gCagtacatg	atanttttat	AACTATGCCT	gattatccta	gCattitecc	gaccetttat	AGGGATT
3210	3220	3230	3240	3250	3260	3270	3280	3290	3300
TCtTTCGTAT	gGgGCACCCA	Ctcatcatan	TAAACAAATT	tttatttcat	catatactta	TACCTGCAAT	ACAAAACGAA	CATCCTCAAA	ATAAACACTT
3310	3320	3330	3340	3350	3360	3370	3380	3390	340
Attctccgeg	GAAGAGCGCT	Ctatgttaga	tcgtatgatg	ATtGATtTAC	AGAATCCATT	GATTCCCGAT	TTTGGAAGTG	TTGATATTAC	CT
3410	3420	3430	3440	3450	3460	3470	3480	3490	350
ATCAAATCTA	tagtcattcc	GAAAGATCTT	CTTCTTAAGT	gctittcatg	tttatgeatg	AACTA	ATATC	TAGA	T
3510	3520	3530	3540	3550	3560	3570	3530	3590	300
GTCGTGATAA	aAtcatcaig	gTATACATGA	gGtatactga	TCTCT	TCAGATGAAG	GGGTTAGTAG	ATGGTTCGAA	TACAAGAATA	ATCTTGAGTt
3610	3620	3630	3640	3650	3660	3670	3080	3090	
tgctagtgat	CCTGTATGGA	GTAGTGATAA	TACTAATGGT	ACTCAGGCGG	ATTCGCTTGA	GGTGAG	CTACT	Catta	TtAAATG
3710	3720	3730	3740	3750	3760	3770	3780	3790	380
TtTTACTCAA	CtGATtCCCT	GCAGCTTTCT	Cagcatanas	catatttgat	ATCCCGGTTT	AGTAGGTATA	TACAAATACC	GAGGCCACCA	CTACCAA
3810	3820	3830	3840	3850	3860	3870	3880	0	
CTTGGTAGCC	GTGTGGGAAA	GAAGTGTGGG	AAAGTGGGCT	tctitcgetc	tGAATACAGA	TGTTTCTCCC	CCCTTGAGAC	AGGGAAAACA	ttcataca
3910	3920	3930	3940	3950	3960	3970	3980	3990	
atttcatta	rttccattt	tatttagtga	tGtataiag	gtatagccta	GATTTAGCGT	ttcattattt	Catagt ${ }^{\text {chan }}$	tgatattict	catGatc

4010	4020	4030	4040	4050	4060	4070	4080	4090	4100
ACATATCACT	AAAGATTGAG	tttttattan	CCtTtcgtta	TAACCCTATA	TTTTCCGGGT	GtaAGTtcag	GAAGAGAAGA	gctantctac	TAGCTGGAGG
4110	4120	4130	4140	4150	4160	4170	4180	4190	4200
TGAGTAGCGA	gTtGCAAAAT	AAAAGATCGA	TCAGTCCTCT	AAGAGCCGAG	TAGCATCATG	GTAGATATCT	TCTGCGAGGT	AGGCTTTCCT	ATCTGCCGAG
4210	4220	4230	4240	4250	4260	4270	4280	4290	4300
tagacctatc	TAGCTTTACC	TTCGCGGGTA	ttcttacait	AGGGATACCA	TGATCAAATG	tcttctgat	tccacacctc	AAGGCTGCCA	TCCTCATGAA
4310	4320	4330	4340	4350	4360	4370	4380	4390	4400
GGATAAGAGC	TTTGTCATTG	TTGTCGGCCA	ttantancce	ATCGGACGAC	Cagttantat	Ctacactata	TAGATCTAGT	actictanta	tGttatctat
4410	4420	4430	4440	4450	4460	4470	4480	4490	4500
GTCACAATCG	TCGATTGTGA	ATTCGTCAGT	TTGTTTACAA	AGAATAAATA	GTTCATGACC	GTATCGACTA	TAGGTGATCC	CCGGATACCG	AGACTCGAGC
4510	4520	4530	4540	4550	4560	4570	4580	4590	4600
AAGGAATCTA	Cagtattctg	atagatatta	TGCAATATAA	CGTGTGTTAT	Ttcacctata	GGTGTtatcc	CCGTGGAGGG	GAAAAAGCTG	tGattatgan
4610	4620	4630	4640	4650	4660	4670	4680	4690	4700
AGTCATAGAT	AGGGAGATCT	ATAATCCGTT	CAACCAGATT	GTAATATAGT	CCATATtGTt	TTGTAAATTT	CTGGGATGTT	AATATACGCG	AAGTAGGTAT
4710	4720	4730	4740	4750	4760	4770	4780	4790	4800
atantccata	CAATCACTCA	AATCAATACT	AACGACTTTA	acgacatttit	CTTGTCGATT	CAAGAATGCG	TAATGCATGG	CTTTCAGATC	TTTGAATTTA
4810	4820	4830	4840	4850	4860	4870	4880	4890	4900
GAAATGTTAG	GCTGAGCTTT	ATTAACTGTT	GTTAAAATAA	Cattagatan	CCCCTTCAAT	ACAAGTAGGT	CCATAGGAAC	TCTACACTTA	TACACTCCTA
4910	4920	4930	4940	4950	4960	4970	4980	4990	5000
TAAGACTATG	AGTATCCAGA	ttcctttcat	CCAACCATAA	ATAGCCCTTC	GATGCTTCCA	TACGAATCAC	ATCATAGATT	AAAGGCGGAA	TCTCCTTAAT
5010	5020	5030	5040	5050	5060	5070	5080	5090	5100
ATtTATtTGA	taAtaAaCAA	CGGGACCAAA	acgutattta	CCTGTtaAgt	tcaittgatt	tatganatca	TTAATCATGA	AAGGCAGCAC	acctchancc
5110	5120	5130	5140	5150	5160	5170	5180	5190	5200
CTCCAAGAAT	CGttatagat	AGATCGTACT	TCTAAAACCA	GCTTCTGCTT	TTCGCAATTA	ATTTGGGGAA	TATGTGCAAT	TTTACGAGGA	GATATAAACA
5210	5220	5230	5240	5250	5260	5270	5280	5290	5300
TCGAATGCCC	gGtaccetta	GTAGTATGTT	ttgCcatatt	TGTATTTTTT	GTCTGTCTTC	TTGCAGGTTG	GATtTATTTA	GTTTGAGACA	TGTAAGGACT
5310	5320	5330	5340	5350	5360	5370	5380	5390	5400
TCTCCGGAGA	GGTATTCTCT	GCAGTTCTGT	CCATCTCTGT	CGGCACCATT	GTTATCTGTC	TCTTAATAGT	AGAGGATCGC	CGACGCCCTG	TCTTTGAAGT
5410	5420	5430	5440	5450					
AGATACCTGG	TTGGTATCTT	TATGTAGATT	GGACATGTGC	TTGTATACTT	TT				

FIg. 2. Nucleotide sequence of the linear S-2 DNA molecule from the mitochondria of the Scytoplasm of maize. The 208-base-pair exact terminal inverted repeats are underlined. The sequence is presented in the $5^{\prime} \rightarrow 3^{\prime}$ direction.

RESULTS AND DISCUSSION

The DNA sequence was determined from S-2 restriction fragments cloned into the M13 vectors mp7, mp8, and mp9. BamHI, Bcl I, Bgl II, EcoRI, Hae III, Mbo I, Pst I, Taq I, and Xho I restriction fragments were "shotgun" cloned into the appropriate vector sites and subjected to sequence analysis. When cloned fragments were too long for sequence analysis, double digestion was used to prepare shorter fragments-e.g., with Pst I and Taq I, BamHI and Taq I, or Mbo I and Pst I. The locations of these restriction sites are shown on the map (Fig. 1). Sequences of both strands were determined from positions 1 through 5,378 . The remaining sequence, $5,379-5,452$, was determined from the same strand of several independent clones. In most instances, the sequence was further verified by overlapping clones.

The S-2 DNA molecule contains 5,452 base pairs (Fig. 2) and the strand shown has a base composition of 33.2% adenine, 17.3% cytosine, 20.2% guanine, and 29.3% thymidine. The molar G+C content of S-2 is 37.5%, which is substantially lower than that of mtDNA of maize, 47% (14).

S-2 DNA is isolated as a linear molecule with defined ends. It is terminated by exact 208-base-pair inverted repetitions (Fig. 2 , underlined sequences). These repeats are responsible for the stem-loop (panhandle) configurations observed by electron microscopy after denaturation and hybridization of S-2 DNA at low concentration (15). The S-1, R-1, and R-2 plasmid-like DNAs are also terminated by similar repeats as judged by hybridization or heteroduplexing studies (ref. 5; unpublished data). The occurrence of these repeats among the various plasmid-like DNAs may suggest a common origin. The function of the inverted repeats is unknown. It is possible that they play a role in replication, rearrangement, or transpositional activities. Sequences homologous with the inverted repeats have been confirmed in high molecular weight mtDNA by nucleotide sequence determination (data not shown).
Two large open reading frames were identified by computer analysis using the universal code (Fig. 3). A 3,294-nucleotidelong unidentified reading frame (1,098 amino acids) begins at
position 398 and ends at 3,691 . On the other strand, a $1,017-$ nucleotide-long reading frame (339 amino acids) starts at position 5,273 and ends at 4,257 . Although genes have not yet been assigned to the S-2 DNA molecule, the occurrence of long reading frames suggests the possibility of protein-encoding genes. Codon usage by plant mitochondria is not well established. Analysis of the cytochrome oxidase subunit II gene moxl in maize has indicated two possible departures from the universal code (16): the UGA codon, which in mitochondria of mammals and fungi codes for tryptophan, may not be read in plant mitochondria, and the CGG codon may code for tryptophan rather than arginine.

Kemble and Thompson (17) recently reported that the 5^{\prime} termini of S-1 and S-2 are covalently linked to proteins, which they suggest may be involved in priming replication of the DNAs. Similar DNA-protein associations have been demonstrated in adenovirus $(18,19)$ and in Bacillus phages ($20-24$); these DNA terminal proteins are thought to play a role in DNA replication. Both of these viral DNAs initiate replication at or close to either DNA end and proceed by a mechanism of strand displacement (25-29). In adenovirus and $\phi 29$ it has been proposed that the protein linked to 5^{\prime} termini of the linear DNA strand may serve as a primer for DNA synthesis ($18,25,28-30$).

Adenovirus DNA contains terminally inverted repeated sequences that are approximately 100 nucleotides long (31-33). Short terminal inverted repeats have been found in Bacillus

Fig. 3. Schematic map of S-2 DNA showing the location of two large unidentified reading frames (URF). Codon usage was that of the universal code. On one strand, URF-1 begins at nucleotide 398 and ends at 3,691 . On the other strand, URF-2 begins at nucleotide 5,273 and ends at 4,257 . IR, position of terminal inverted repeat; bp, base pairs.

Fig. 4. Alignment of nucleotides at the termini of S - 2 with five different Bacillus phages ($\phi, 29, \phi 15, \mathrm{M} 2, \mathrm{Nf}$, and GA-1) and adenovirus 2 (Ad-2) DNAs. Only 5^{\prime} end sequences are shown. L and R, left end and right end, respectively. Terminal inverted repeats are indicated in boxes; S-2 and Ad-2 inverted repeats are longer than the 15 nucleotides shown. Vertical lines indicate the S-2 sequence common to the Bacillus phages.
phages $\phi 29, \phi 15$, Nf, M2Y, and GA-1 (34-36). Alignment of the terminal nucleotides of S-2 and the five phages indicates a high degree of homology (Fig. 4). $\phi 29$ contains a six-base-pair inverted repeat sequence, A-A-A-G-T-A, which is found in the inverted repeat of $\mathrm{S}-2$ beginning at the second nucleotide from the 5^{\prime} ends.

The terminal sequences of $\phi 29$, adenovirus, and S-2 DNAs all are rich in A•T pairs. A+T-rich regions are needed at DNA sites where local melting of DNA is required; origins of replications of Escherichia coli, λ, and G4 DNAs contain such A+T rich regions (37-39).
The terminal sequences of S-2 DNA, like those of adenovirus and $\phi 29$ DNAs, do not contain extensive self-complementary regions that could generate perfect hairpin loops (31$33,35)$. Therefore, it seems unlikely that S-2 DNA would support a mechanism for initiation of synthesis that requires the formation of hairpin loops (40).
When adenovirus DNA replicates by the strand-displacement mechanism, daughter duplex DNA and parental singlestranded molecules are generated. The parental single-stranded DNA could hybridize to the self-complementary terminal sequences to form a "panhandle"-shaped intermediate (25). These panhandle-shaped single-stranded DNAs could initiate DNA synthesis by the same mechanism as occurs at the ends of dou-ble-stranded DNA. Because S-2 DNA contains a long terminal inverted repeat, it could form the panhandle intermediates as suggested for adenovirus DNA. Collectively, the chemical and structural similarities of S-2 termini to adenovirus and Bacillus phages strongly suggest that they may replicate their DNAs in an analogous fashion.

To determine the sequence of the termini, we have forcecloned S-2 terminal fragments, derived from Pst I digestion, into the Sma I and Pst I sites of M13mp8 and -mp9. By this procedure, clones were obtained in which the end of S-2 is bluntend ligated to the blunt end of Sma I-cut vector. It is not known if the blunt-end ligation occurred in vitro before transformation or if ligation took place after transformation inside the bacterial cell after repair. It was reported that, even after proteinase K treatment followed by phenol and chloroform extractions, the 5^{\prime} termini of S-2 DNA could not be end labeled (17). Apparently, the 3^{\prime} ends are not modified and are not sterically im-
paired by the 5^{\prime} attached protein because the 3^{\prime} ends are digested with exonuclease III and are labeled with terminal transferase. This is further indicated by the fact that full-length, linear S-2 DNA has been cloned by homopolymeric tailing (41). If termini lacking a nucleotide or so are preferentially cloned, then our terminal sequence could be incomplete. In any event, we have consistently obtained sequences ending in the same nucleotide order. Additional studies will be needed to determine the chemical structure of the ends.

The expert technical assistance of Jane Suddith, Annmarie Tuttle, and C. Farrell Lanier is gratefully acknowledged. We also thank Lois Miller for her assistance in manuscript preparation. This work was supported by grants from the National Science Foundation (PCM-8010933), U.S. Department of Agriculture, Competitive Research Grants Office (8200429), and Agrigenetics. This is paper no. 8798 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh.

1. Pring, D. R., Levings, C. S., III, Hu, W. W. L. \& Timothy, D. H. (1977) Proc. Natl. Acad. Sci. USA 74, 2904-2908.
2. Laughnan, J. R., Gabay-Laughnan, S. \& Carlson, J. E. (1981) Stadler Genet. Symp. 13, 93-114.
3. Thompson, R. D., Kemble, R. J. \& Flavell, R. B. (1980) Nucleic Acids Res. 8, 1999-2008.
4. Spruill, W. M., Levings, C. S., III, \& Sederoff, R. R. (1980) Dev. Genet. 1, 363-378.
5. Weissinger, A. K., Timothy, D. H., Levings, C. S., III, \& Goodman, M. M. (1982) Proc. Natl. Acad. Sci. USA 79, 1-5.
6. Levings, C. S., III, Sederoff, R. R., Hu, W. W. L. \& Timothy, D. H. (1982) in Structure and Function of Plant Genomes, eds. Ciferri, O. \& Dure, L. (Plenum, New York), pp. 363-372.
7. Laughnan, J. R. \& Gabay, S. J. (1978) in Maize Breeding and Genetics, ed. Walden, D. B. (Wiley, New York), pp. 427-446.
8. Levings, C. S., III, Kim, B. D., Pring, D. R., Conde, M. F., Mans, R. J., Laughnan, J. R. \& Gabay-Laughnan, S. J. (1980) Science 209, 1021-1023.
9. Pring, D. R. \& Levings, C. S., III (1978) Genetics 89, 121-136.
10. Smith, H. O. (1981) Methods Enzymol. 65, 371-380.
11. Messing, J. (1982) in Genetic Engineering-Principles and Methods, eds. Setlow, J. K. \& Hollaender, A. (Plenum, New York), pp. 19-35.
12. Birnboim, H. C. (1982) Methods Enzymol. 100, 243-255.
13. Sanger, F., Nicklen, S. \& Coulson, A. R. (1977) Proc. Natl. Acad. Sci. USA 74, 5463-5467.
14. Shah, D. M. \& Levings, C. S., III (1974) Crop Sci. 14, 852-853.
15. Levings, C. S., III, \& Pring, D. R. (1979) in Physiological Genetics, ed. Scandalios, J. G. (Academic, New York), pp. 171-193.
16. Fox, T. D. \& Leaver, C. J. (1981) Cell 26, 315-323.
17. Kemble, R. J. \& Thompson, R. D. (1982) Nucleic Acids Res. 10, 8181-8190.
18. Rekosh, D. M. K., Russell, W. C. \& Bellet, A. J. D. (1977) Cell 11, 283-295.
19. Carusi, E. A. (1977) Virology 76, 390-394.
20. Salas, M., Mellado, R. P., Vinuela, E. \& Sogo, J. M. (1978) J. Mol. Biol. 119, 269-291.
21. Harding, N., Ito, J. \& David, G. S. (1978) Virology 84, 279-292.
22. Ito, J. (1978) J. Virol. 28, 895-904.
23. Yehle, C. D. (1978) J. Virol. 27, 776-783.
24. Yoshikawa, H. \& Ito, J. (1981) Proc. Nath Acad. Sci. USA 78, 25962600.
25. Lechner, R. L. \& Kelly, T. J., Jr. (1977) Cell 12, 1007-1020.
26. Ariga, H. \& Shimojo, H. (1977) Virology 78, 415-424.
27. Sussenbach, J. S. \& Kuijk, M. G. (1977) Virology 77, 140-157.
28. Inciarte, M. R., Salas, M. \& Sogo, J. M. (1980) J. Virol. 34, 187199.
29. Harding, N. E. \& Ito, J. (1980) Virology 104, 323-338.
30. Winnacker, E. L. (1978) Cell 14, 761-773.
31. Steenbergh, P. H., Maat, J., Van Ormondt, H. \& Sussenbach, J. S. (1977) Nucleic Acids Res. 4, 4371-4389.
32. Arrand, J. R. \& Roberts, R. J. (1979) J. Mol. Biol. 128, 577-594.
33. Shinagama, M. \& Padmanabhan, R. (1979) Biochem. Biophys. Res. Commun. 87, 671-678.
34. Yoshikawa, H., Friedmann, T. \& Ito, J. (1981) Proc. Natl. Acad. Sci. USA 78, 1336-1340.
35. Escarmis, C. \& Salas, M. (1981) Proc. Natl Acad. Sci. USA 78, 14461450.
36. Yoshikawa, H. \& Ito, J. (1981) Proc. Natl Acad. Sci. USA 78, 25962600.
37. Messer, W., Meijer, M., Bergmans, H. E. N., Hansen, F. G., von Meyenburg, K., Beck, E. \& Schaller, H. (1978) Cold Spring Harbor Symp. Quant. Biol. 43, 139-145.
38. Moore, D. D., Denniston-Thompson, K., Kruger, K. E., Furth, M. E., Williams, B. G., Daniels, D. L. \& Blattner, F. R. (1978) Cold Spring Harbor Symp. Quant. Biol. 43, 155-163.
39. Hobom, G., Grosschell, R., Lusky, M., Scherer, G., Schwarz, E. \& Kossel, H. (1978) Cold Spring Harbor Symp. Quant. Biol 43, 165-178.
40. Cavalier-Smith, T. (1974) Nature (London) 250, 467-470.
41. Köncz, C., Sumegi, J., Udvardy, A., Racsmany, M. \& Dudits, D. (1981) Mol. Gen. Genet. 183, 449-458.

[^0]: The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. $\S 1734$ solely to indicate this fact.

[^1]: Abbreviation: kb, kilobase(s).

