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ABSTRACT  Secondary structure models of 54 55 RNA
species are constructed based on the comparative analyses of
their primary structure. All 55 RNAs examined have essentially
the same secondary structure. However, there are revealing
characteristic differences between eukaryotic and prokaryotic
types. The prokaryotic 5S RNAs may be further classified into
two types, one having 120 nucleotides (120-N type) and another
having 116 (116-N type). A possible mechanism for the conver-
sion of the prokaryotic 116-N to the 120-N type 5S RNAs (or
vice versa) is discussed on the basis of their nucleotide align-
ments. Finally, by comparing the nucleotide alignments, we
propose a phylogenic tree of the 54 55 RNA species.

Since the publication of phylogenic trees of 5S RNAs (1-4), 5S
RNA sequences from a considerable number of organisms have
been reported. A total of 54 are known to date. Comparative
studies of secondary structures deduced from these sequences
suggest that 55 RNA may be classified into three types: (i) eu-
karyotic type, (ii) prokaryotic 120 nucleotides (120-N) type,
and (4#ii) prokaryotic 116-N type. The nucleotide alignments
deduced from the juxtaposed 5S RNA secondary structure have
enabled us to construct a phylogenic tree that includes animals,
plants, yeasts, a blue-green alga, and a number of bacteria.

MATERIALS AND METHODS

Secondary Structure Models and Alignment of 55 RNAs,
The basic method [described by Tinoco et al. (5)] for con-
structing the 5S RNA secondary structure model is the same as
was previously used (4, 6). To obtain the alignments of 54 55
RNA sequences (Fig. 2), we first matched the structurally ho-
mologous base-paired regions, and then we obtained the “best
match alignment,” with minimal gap insertions (2), for most
of the non-base-paired regions. Two gaps each were inserted
into the 5" and 3’ ends of all Bacillus and Clostridium pas-
teurianum sequences. In eukaryotic sequences, one gap each
was inserted between positions 4 and 5 and between positions
114 and 115. For the alignment of position 63-77 of eukaryotic
vs. prokaryotic sequences, AGU of position 74-76 and GRY
(GGU or GAC) of 70-72 eukaryotic 5S RNAs were matched
with prokaryotic AGU and RRY (GAU or AAC), respectively,
in the corresponding regions. This was followed by manual
arrangement between positions 63 and 73. Y (or R) here rep-
resents U or C (A or G). The regions of eukaryotic loop (position
78-99) and the corresponding prokaryotic hairpin structure
(position 82-94 in Escherichia coli) were aligned to obtain the
best match. For convenience, the sequence was divided into 15
regions: A, A’, B, B’, C, C’, D, D/, aLb, bLc, cLc’, ¢'Lb’, b’Ld,
dLd’, and d’La’ (Fig. 2). Here, A and A’, Band B/, C and C’,
and D and D are respectively complementary with each other.
The region consisting of A and A’ was named “5’-3’ terminal

-~

helix.” The aLb is the loop region that connects the base-paired
region A with region B. '

Construction of Phylogenic Tree. First, the rate of nucleo-
tide substitution, Knuc, and the standard error of Knuc, oy,
between sequences i and j were calculated by Eq. 1 (7) and Eq.
2 (8), respectively.

. Knuc = —(3/4) In (1.0 — (4/3) \) (1]
a2 =X (1.0—\)/L[(1.0 — (4/3) N] (2]

where \ is the fraction of different sites and L is the number
of nucleotide sites to be compared. One gap (represented by
- in alignments in Fig. 2) vs. one base, and one blank (repre-
sented by blank space) vs. one base, were counted as equal to
one, and to one-half nucleotide substitution, respectively.
Second, by using the matrix method (2), we constructed a
phylogenic tree from Knuc values of all possible pairs of the 54
55 RNA sequences. Assuming that Knuc is proportional to the
number of years that have elapsed since the evolutionary di-
vergence of the two molecules from their common ancestor (7),
the value of %, Knuc was taken as the relative time scale in the
tree.

RESULTS AND DISCUSSION
Secondary structure models

The 54 55 RNA species studied here assumed basically the same
secondary structure, in accordance with that proposed previ-
ously (4). Examinations of these structures and alignments of
sequences inspired us to classify the known 5S RNAs into three
types. The first, to which all eukaryotic 55 RNAs belong, may
be called the eukaryotic type, having 120 nucleotides. The
eukaryotic 55 RNA differs from all the prokaryotic 5S RNAs
by having a well-conserved loop at position 83-94 and by
lacking the hairpin structure that exists in the prokaryotic 58
RNAs. This is a confirmation of the previous result (4), in which
only small numbers of 5S RNA species could be compared. An
apparent exception is seen in the 55 RNAs from plants, which
were reported to have 116-118 nucleotides. However, their
secondary structure and alignment clearly show that, qualita-
tively, they belong to the eukaryotic type. The second type is
the prokaryotic120-N type, possessing 120 nucleotides. The 5S
RNAs from Gram-negative bacteria belong to this type (nos.
22-40 in Fig. 2). The 55 RNAs from Gram-positive bacteria
(Bacillus species and C. pasteurianum) possess 116 (sometimes
117) nucleotides and form the third type, the prokaryotic 116-N
type (nos. 41-54 in Fig. 2). Characteristic differences between
the prokaryotic 120-N type and 116-N type may be seen in the
regions of A, A’, aLb, and d’La’. The representative secon-
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dary-structure models of these three types of 55 RNAs are
shown in Fig. 1.

Alignment of Sequences. For the construction of the phy-
logenic tree from 55 RNA sequences and the evaluation of re-
gional evolutionary stability of the molecule, it is indispensable
to have sequence alignments for all 55 RNA species. Indeed,
the success of the tree construction will depend largely upon
a proper alignment. Because, as mentioned before, all 55 RNAs
studied here revealed basically the same secondary structure,
it is reasonable first to juxtapose all the 55 RNA secondary
structures to obtain the alignments for most parts of the se-
quence. In this way, the alignments for B, bLc, C, cLc’, C’,
¢’Lb’, and B’ were easily completed. However, the secondary
structures are not exactly the same, revealing some minor
variations among 5S RNA species. Alignments for several re-
gions between different models were not possible by the simple
juxtaposition technique. Therefore, we aligned the sequences
manually for certain regions between 116-N type and 120-N
type sequences, and between prokaryotic and eukaryotic se-
quences. Some explanations for these alignments will be given
below together with evolutionary characteristics of these re-
gions.

Two gaps each were inserted into the 5 and 3’ ends of the
116-N type 5S RNA sequences (Fig. 2). This gave an excellent
result for total alignment. No further gap insertions into the
remaining regions were necessary both for the 120-N type and
116-N type sequences. Note the great similarity between 120-N
type and 116-N type of the “5’-3'-terminal helix” (A and A’)
when the gaps were inserted. This suggests that the terminal
helix is evolutionally rather stable. On the other hand, a simple
alignment (no gaps inserted) gave only 24% identity in the helix
of B. stearothermophilus, B. megaterium, Anacystis nidulans,
and Pseudomonas fluorescens when compared with that of E.
coli (12). Compare this value with 59% identity, on the average,
in this region among the above bacteria when aligned by our
method. The reasonableness of the two-gap insertion into the
5’ end of the 116-N type prokaryotic sequence is additionally
supported by the following fact: the 5’ end of the 55 RNA
precursor molecule has a short stretch (spacer) pAUU in E. coli
(120-N type) (13) and a spacer segment consisting of 21 nu-
cleotides in B. subtilis (116-N type) (14). Parts of these se-
quences are reproduced in Fig. 3. By comparing the 5’-terminal
regions of these two precursor molecules, one finds long se-
quences of great similarity—i.e., AUUUGCCUGGCGG in E.
coli and AUUUGUUUGGUGG in B. subtilis. (Italic letters

CAC

Proc. Natl. Acad. Sci. USA 76 (1979)

represent the precursor stretches; gothic letters show the base-
paired region in our alignment.) This strongly suggests that
these two segments are the homologous counterparts; UG at the
5’ end of the E. coli mature molecule corresponds to the B.
subtilis precursor UG which connects with the 5’ terminus of
the mature molecule. Thus, it is reasonable that, in place of UG,
two gaps are inserted into the mature 5’ end of B. subtilis 53
RNA.

The prokaryotic loop region, aLb, which connects the base-
paired region A with B, varies in length between the 116-N type
and 120-N type. The 120-N type is two (exceptionally, four)
bases longer than the 116-N type (see Fig. 2). Similarly, the loop
region, d’La’, which connects D’ with A’ is also two (excep-
tionally, three) bases longer in the 120-N type than in the 116-N
type. However, the sequences from positions 11 to 15 (in aLb)
or from 97 to 108 (in d’La’) are very similar throughout all
prokaryotic 5S RNAs (and also eukaryotic 55 RNAs to a lesser
extent). The sequences RUAGC in aLb and AGAGUAGGR in
d’La’, may be seen in both the 116-N type and the 120-N type.
Therefore, the alignments in the main parts of these two regions
posed no problem. The two pairs of nucleotides (positions 9-10
inaLb and 109-110 in d’La’) of the 120-N type, which are in-
cluded in the loop structures, would correspond to positions
9-10in A and 109-110 in A’, respectively, of the 116-N type
terminal helix.

The alignments of the sequences in the vicinity of the 5-3'-
terminal helix in E. coli and B. subtilis precursor 55 RNAs
immediately suggest a possible conversion mechanism of the
116-N type to the 120-N type (or vice versa) during evolution.
It has been known that during maturation enzymatic cleavages
occur at the points indicated by arrows in Fig. 3 at both the 5
and 3’ ends. Suppose that the cutting points of the 116-N type
are shifted further by the change in enzyme specificity so that
two bases of the spacer sequences are added to both ends and
then the complementarity of two pairs of nucleotides in the A
and A’ regions (positions 9-10 vs. 107-108) is lost by mutations.
Then the lengths of the aLb and d’La’ regions will become the
same as those of the 120-N type, keeping constant the length
of the terminal helix. Thus the 116-N type may easily be con-
verted to the 120-N type. Conversion in the other direction—
i.e., from the 120-N type to the 116-N type—is also possible by
the reverse process. Note that the 5’ and 3’ spacer regions of the
116-N type are complementary with each other and exhibit a
great homology with the corresponding regions of the 120-N
type. The order of appearance in these two types of 5§ RNA

ccc 3 cGe.
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FIG. 1. Models of the secondary structures of the three types of 5S RNA. (A) E. coli prokaryotic 116-N type; (B) B. subtilis prokaryotic

120-N type; (C) human KB cell eukaryotic type.
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1
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FIG. 3. Partial alignment of the E. coli and B. subtilis precursor 5S RNA sequences. Italic and gothic letters represent the precursor regions

and the base-paired regions, respectively.

cannot be decided with certainty, because no direct evidence
is available. We tentatively propose that the 116-N type is more
primitive, because C. pasteurianum, known as one of the
primitive bacteria, has this type of 55 RNA/

For the alignment of the A and A’ regions between prokar-
yotic and eukaryotic sequences, one gap each was inserted be-
tween positions 4 and 5 and between positions 114 and 115 in
eukaryotic sequences, because a greater similarity of these re-
gions was obtained in this way (41% identity, on the average).
The alignments of b’Ld, D, dLd’, D’, and d’La’ between
prokaryotes and eukaryotes were tentatively done simply to
obtain the best matching. It is difficult to give a concrete basis

for these alignments because of a considerable discontinuity in
these regions between the prokaryotic and eukaryotic secon-
dary-structure models.

Phylogenic tree

Fig. 4 shows a phylogenic tree derived from 54 55 RNA se-
quences of animals, plants, yeasts, a blue-green alga, and bac-
teria. The time of divergence of prokaryotes and eukaryotes
was 1.5 times as great as that of human and yeast. Assuming that
the human and yeast divergence occurred 1200 £ 75 million
years before (point A in Fig. 4; refs. 1 and 15), then the diver-
gence time of prokaryotes and eukaryotes goes back to about

A

1.2 x10§yrs.
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FIG. 4. Phylogenic tree. | —0—|, Range of standard error from [2]; |- - O - -|, range of ', Knuc values of all pairs at the branching point.
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1.8 X 10° yr. This value agrees well with that of Kimura and
Ohta (1). However, due to certain discontinuities between eu-
karyotic and prokaryotic sequences or between the prokaryotic
120-N type and 116-N type, some uncertainties could not be
avoided in constructing the tree and in determining the di-
vergence time of the early branches (e.g., points 1 and 2 in Fig.
4).
The tree shows that first the fungi diverged from the animals
and plants, and slightly after that, plants and animals separated.
However, plants could have first diverged from fungi and an-
imals as reported before (4), because (i) Knuc of animals/plants
and animals/fungi are practically the same (0.61 vs. 0.63, both
with a standard error of about 17%; Knuc of plants/fungi =
0.75); (i) all 5S RNAs of animals and fungi have a GAUC se-
quence at about position 41-44, whereas the corresponding
sequence in plants is GAAC, which is also common to all the
prokaryotic 55 RNAs; and (i) human 5.85 RNA reveals 75%
identity with yeast 5.85 RNA, whereas it is considerably less
similar to plant 5.85 RNA (16).

The branching point of Thermus aquaticus is not definite
at present. The sequence similarity of this species is greatest
with B. stearothermophilus (70% similarity) (17), while it is
about 64% with E. coli group. However, T. aquaticus is a
Gram-negative bacterium and its 55 RNA has 120 nucleotides
possessing AU at the 3’ end, which is a characteristic of the
120-N type. Thus this bacterium may be more related to the
120-N type than to the 116-N type, even though the homology
percentage revealed the reverse relationship.

All bacteria treated in this paper belong to one stem which
originated at point 1 in Fig. 4. However, recent studies on the
sequence of Halobacterium cutirubrum 58 RNA (18) indicate
that certain aspects of its secondary structure (19) and its Knuc
value would suggest that H. cutirubrum is more related to eu-
karyotes than to prokaryotes and that the emergence of this
organism occurred around the point indicated by the arrow in
Fig. 4. Furthermore, amino acid sequence data for the ribo-
somal protein HL20 (equivalent to L7/L12 from E. coli) and
the 55 RNA binding proteins, HL13 and HL19, from H. cu-
tirubrum indicate considerable sequence homology with the
equivalent proteins from eukaryotes (ref. 20; M. Yaguchi,
personal communication).
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