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ABSTRACT A theory of electron transfer between two
fixed sites by tunneling is developed. Vibronic coupling in
the individual molecules produces an activation energy to
transfer at high temperatures, and temperature-inde-
pendent tunneling (when energetically allowed) at low
temperature. The model is compared with known results
on electron transfer in Chromatium and in Rhodopseudo-
monas spheroides. It quantitatively interprets these
results, with parameters whose scale is verified by com-
parison with optical absorption spectra. According to this
description, the separation between linking sites. for
electron transfer is 8-10 A in Chromatium, far smaller
than earlier estimates.

We bypass possible Winfield-like complications, and assume
that there are no other electron states available at low enough
energies to be thermally accessible. Section I shows that
transfer between two fixed sites, in suitable approximation, is
mathematically isomorphic with the conceptually simpler
problem of excitation transfer by the F6rster (7, 8) (dipolar)
mechanism. In Section II, the simplest possible model of the
coupling of electronic states to molecular thermal motions
is developed and used to calculate the temperature-dependent
electron transfer rate. The model is compared with experi-
mental results in Section III.

The transfer of an electron from one molecule to another is an
essential part of oxidative phosphorylation and photosyn-
thesis. The reversible oxidation of the heme of cytochrome c
by cytochrome oxidase is a specific example of such a process,
one of several electron transfers in the sequence of reactions
resulting in oxidative phosphorylation. The overall effective-
ness of such processes as photosynthesis or oxidative phos-
phorylation depends both on there being a large electron
transfer rate for desired transfers and a small rate for in-
appropriate transfers. A particular cytochrome (or iron-sulfur
protein) seems to have, as its sole chemical function, the
ability to exchange electrons with two other molecules A and
B, which (apparently) cannot directly exchange electrons.
The absence of direct exchange may be due either to spatial
localization or stereochemical constraints.

Since electron-transfer proteins play a specific chemical
role, one should be able to explain in quantitative physical
terms how the observed functional properties are related to
aspects of molecular structure. There are two major obstacles
to attempting such an explanation at present. First, very little
is known about the relative geometry of the donor and accep-
tor during the electron transfer process. Second, even when a
geometry is known or surmised, the mechanism of electron
transfer is unsure. A wide variety of transfer descriptions
have been utilized for particular systems. Hodges, Holwerda,
and Gray (1) have described the electron transfer between
cytochrome c and Fe(EDTA) in terms of the "outer sphere
electron transfer" of solution electrochemistry (2, 3). In the
Winfield mechanism (4) of electron transfer in cytochrome c,
the electron is visualized as being passed along a chain of
binding sites with a thermally activated transfer between
these sites. Thermal activation of an electron to a "conduc-
tion band" and, thence, free motion to a second site has been
suggested (5). Quantum mechanical tunneling of the electron
between two sites has also been invoked (5, 6).

In this paper, we bypass the first problem by assuming the
electron to be transferred between two sites in fixed geometry.

I. The two-site tunneling description of electron transfer

We consider the problem of the transfer of an electron be-
tween two sites a and b, with the electron initially in a wave
function p0a localized around site a. The final state will have
the electron in (pb, localized around b. spa and ptb weakly over-
lap, as sketched in Fig. 1. Because of the overlap between
these wave functions, there is a matrix element Tab of the
Hamiltonian between these two one-particle states. The
meaning of Tab can be seen from the special case of sites a
and b being equivalent, in which case the overlap generates a
splitting 2Tab between the bonding and anti-bonding states
(<Pa i (pb)1V2. The smallness of Tab results from the ex-

ponential decrease of wave functions in the barrier penetra-
tion region between the sites. The transfer process thus in-
volves tunneling, and Tab will be called the tunneling matrix
elemrent.
To develop a simple analog with excitation transfer, con-

sider two atoms a and b. Let the product 'a'7b be the wave
function for the electrons on a and b when atom a is excited
and b is in its ground state, and Lab' be the wave function
for all electrons when atom b is excited and a is in its ground
state. Define for convenience 'a = 'a'Vtb and "'b = VaPb'-
There is an excitation transfer matrix element Uab between
states "ia and *'b. In the F6rster (7, 8) description, excitation
transfer arises from the coupling of the transition dipoles on
atoms a and b, and is proportional to each transition dipole
and to the inverse cube of their separation. If atoms a and b
are identical, the symmetric and anti-symmetric excitation
states are split by 2Uab. Thus, while the mechanisms of
generating Uab and Tab are totally different, the identifications

Uab Tab, "a f'a, "'b* (Pb

makes the mathematical descriptions of transfer identical.
In the calculation of the rate of excitation transfer inter-

and intramolecular vibrations of the atoms play an essential
role by giving an energy width to states that would otherwise
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FIG. 1. The wave functions <P and SPb, well separated by a

distance R, with exponentially decaying tails overlapping weakly.
Irrelevant detail near the wave function centers is omitted.

be infinitely sharp. The single atom state characterizing an ex-
citation on atom a is given a spectral shape Sa (E) characterized
by a weighted optical emission spectrum at energy E of the
transition )a/ i*&a, with an appropriate normalization. This
emission spectrum includes all effects of the interaction of
the electronic excitation on atom a with its environment.
Similarly, the excitation of b is characterized by its ab-
sorption spectrum Sb'(E), including all effects of the motions
of atoms in the transition Vb - b. The rate of excitation
transfer from a to b by the F6rster mechanism can then be
written (7, 8)

Wab = (2T/h)JUabI2f Sa(E)Sb'(E)dE. [1]

While Uab is essentially temperature-independent, Wab and
Wba are both temperature-dependent due to the temperature
dependences of the spectra involved in the overlap integral.
A precise parallel exists for the transfer of an electron

from site a to b, including the effects of vibronic coupling.
The analog to the emission spectrum Sa(E) of fa' i/ia is
the electron removal spectral distribution Da(E). In the
presence of the coupling between the electronic state S0a and
the nuclear motions, the removal of an electron (which can
be thought of as being destroyed or transferred to a fictional
state of zero energy) is characterized by a distribution of
energies Da(E). Da(E) is broad for exactly the same reasons
of atomic position readjustment that make Sa(E) broad.
Similarly, there is an electron insertion spectrum Db'(E)
that describes the distribution of energy changes that result
from the insertion of an electron (from the fictional state at
zero energy) into electronic state 'pb. The rate of electron
transfer can then be written in exact analogy to Eq. 1 as

Wab = (2Tr/h)ITabj2 Da(E)Db'(E)dE. [2]

This equation can also be directly calculated from the usual
quantum mechanical expression for first-order transition
rates. Wab is in this problem always due to tunneling, although
the usual temperature dependence of Da(E) and Db'(E) will
make this tunneling rate temperature-dependent.

Eq. 2, with D(E) approximated by a high temperature
form of Eq. 4, represents a special case of the general theory
(9) of electron transfer in solution electrochemistry. The
suppositions (a) of fixed, well-separated sites, (b) of inde-
pendent atomic motions interacting with the electron at
each site, and (c) no important effect of atomic motions on
TabI are particularly appropriate to transfer between distant
sites embedded in a more or less rigid matrix. These approxi-
mations are relevant to many cases of transfer in biological

x-O

FIG. 2. The description of an electron removal process by a
configuration-coordinate diagram. The two curves represent the
total energy of the system as a function of the coordinate for the
two states with and without the electron. Da(E) is the thermal
probability distribution of the vertical separation between these
states.

systems, and lack some of the complexity of the electro-
chemical problem. At the same time, Eq. 2 will permit exten-
sions beyond Gaussian and high-temperature spectral func-
tions. The treatment of our simpler problem is modeled on the
usual description of tunneling through an insulating barrier
between two metals (10).

II. Results from a symmetric model of D(E)
We next describe the simplest available model of D(E),
which can be based on the analog to a symmetric configura-
tion-coordinate description (11) of optical emission spectra.
Fig. 2 gives the essence of the physical description of this
configuration-coordinate description. The upper curve de-
scribes the energy as a function of a vibrational coordinate x
with the electron in state (pa, and the lower curve the energy
as a function of the same coordinate in the absence of an
electron in Spa. In the symmetric model, the curvature ka of the
ground and excited states are the same, and there is no
entropy of electron transfer. At temperature T, the classical
probability distribution of being at x if the electron is present
is

/ ka 1/2
P x) = I )exp(-ka(X - Xa)2/2KT).

2TrKT/ [3]

The electronic removal is a vertical transition between the
two energy curves. Given P(x), the energy distribution
Da(E) is

Da(E) = (2TK~a 12 (E Ea +1:2kaxa 2)2 [4]

Eq. 4 is based on a classical probability distribution, valid
when KT is greater than the vibrational energies hw = KTa
of the relevant vibrational coordinates. The single most
important effect of quantum mechanical corrections is to
product a zero-point width (11) to the distribution Eq. 3.
The modification of Eq. 4 valid (with restrictions-see next
paragraph) to lower temperatures is

Da(E) = (1/2T0a2)1/2 exp -((E - Ea + 1/2kaxa2)2/2aa2) {5]

Ca2 = kaxa2(KTa/2) coth Ta/2T
which reduces to Eq. 4 at high temperature.
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FIG. 3. The rate of photolysis-initiated transfer of an electron from cytochrome in Chromatium as a function of temperature. The
experimental points are from deVault and Chance (5). The solid line is a plot of Eq. 8 with Ta = Tb = 350'K, E. - Eb = 0.05 eV,
1/2k4.2 = '/2kbXb2 = 0.5 eV, and ITab = 4 X 10-4 eV.

The form of Db'(E) follows from an exactly parallel model,
except that P(x) is replaced by

(kb/2wrKT) /2 exp(-kbx2/2KT) [6]

and the transition is in the opposite direction, whence

Db'(E) = (1/2-rob2) /2 exp(-(E + Eb - l/2kb4b2)2/2c-b2)
[7]

ab2 = kbXb2(KTb/2) coth Tb/2T.

From Eqs. 2,5, and 7

Wab =

22r/hITabI2(1/2Xra2)'/2 exp(-(Ea - Eb- A)2/2cT2) [8]

where

02 = (kaXa2/2)KTa coth Ta/2T + (kbXb2/2)KTb coth Tb/2T
and

A = '/2kaxa2 + 1/2kbxb2 Wba = Wab exp(- (Ea - Eb)/KT).

At high temperatures, quantum effects are unimportant, and
the approximations involved in calculating Eq. 8 are valid.
The process appears thermally activated, for at high tem-
peratures, u2 cx T. At low temperatures, the use of this
expression is limited at best to the case Ea > Eb + KTa or b,
with further possible restrictions depending on the size of a.
Eq. 8 is a strong coupling result, also requiring '/2kaxa2/KTa
>>.

III. The scale of parameters
The general scale of parameters for electron transfer can be
established by making a fit to an appropriate experiment.
The transfer of an electron from a cytochrome to fill a hole
made available by a flash of light (the earliest stages of photo-
synthesis) has been studied in Chromatium by deVault and
Chance (5). This transfer seems likely to come close to the
idealized problem the theory describes. It has simple kinetics,
has been studied over a wide range of temperatures, persists
to very low temperatures, and does not appear closely coupled

to water and its phases. Figure 3 shows the experimental
electron transfer rate and an approximate fit to the experi-
mental data by use of Eq. 8. In our ignorance of the two sites
of transfer, it is pointless to differentiate between the two
sites, a and b, as far as vibronic parameters are concerned.
We pick kaxa2 = kixb2 and Ta = Tb. Eq. 8, thus reduced,
contains four effective parameters, namely Ta, kaxa2 Tabf,
and (Ea - Eb).
The characteristic temperature Ta is 3500 4± 70°. (About

1500 marks the turning point of the data between two regions
of temperature behavior, and the characteristic turning
point involves Ta/2 in Eq. 5.) The other three parameters
are not uniquely determined. Fortunately, Ea - Eb is well
limited by usual constraints on electron transfer. Ea is greater
than Eb, for the electron transfer takes place even at zero
temperatures. But successive steps in electron transfer chains
normally have their standard redox potentials within about
0.05 V (unless energy is being usefully extracted in the step).
(Ea - Eb) occurs only in the exponential of Eq. 8. If it is
given a "typical" value of 0.05 V (1.18 keal), then A is so
large in order to fit the data that the values of both A and
Tab are insensitive to whether (Ea - Eb) is in error by a
factor of five. We thus obtain 1/2kaxa2 = 0.5 ± 0.1 eV (11.5
kcal) and ITabI = 4 X 10-4 ± 0-6 eV (9.6 cal). The value of
1/2kaxa2 is sharply constrained by the high temperature
activation energy. ITa1,| is much less definitely determined
because it occurs only as a prefactor.
The magnitude of Ta and '/2kaxa2 can be directly checked

on a semiquantitative basis by comparing the parameters
just determined, appropriate to adding (or removing) an
electron to a cytochrome, to the parameters relevant to opti-
cally exciting a similar heme electron without removing it.
The general considerations that were used to generate the
shape of Da(E) in Section II are identical with those of the
configuration-coordinate description of the broadening of
optical spectral lines. The only important difference between
optical excitation of electrons and the removal of electrons
is that the removal of an electron is a somewhat larger per-
turbation, so the effective '/2kaXa2 for an optical transition of
the heme is expected to be comparable to, but smaller than,

3642 Biophysics: Hopfield



Electron Transfer between Biological Molecules 3643

that for electron removal. Similar vibrations will be involved,
so Ta should be essentially the same for the two cases. The
full width at half maximum for an optical transition with a
distortion parameter (1/2kaxa2)optical is

width(T) = 2.34[(KTa) (1/2kaXa2)optical coth (Ta/2T) ]'/2.

If we use the value of 1l2kaXa2 deduced from tunneling, the
predicted linewidth as a function of temperature is 0.290 eV
at 1000K and below, 0.337 eV at 200'K, and 0.388 eV at
3000K. For a typical Soret transition at 430 nm, the cor-
responding full widths at half maximum are 43, 50, and 58 nm,
respectively. For comparison, the full width at half maximum
of the Soret band of typical six-coordinated iron in oxyhemo-
globin at room temperature (12) is about -32 nm, and it
sharpens (13) about 10% on going to 210'K. As anticipated,
the scale of the temperature variation is similar to that inter-
preted from the electron transfer data. The optical linewidth
is similar in scale but somewhat smaller than the electron
transfer linewidth, also as expected. The optical transition
has been calculated for a typical Soret TrT* transition, while
the electron to be added is placed in an "iron" orbital. How-
ever, the nuclear magnetic resonance spectra (14) show that
the highest energy orbital on ferric iron, the orbital from
which the electron is being transferred, is widely delocalized
on the heme, and the 7r-T* optical transition is strongly
mixed with iron d-states. Since the orbitals involved in elec-
tron transfer and in the optical excitation are similar mixtures,
there is no need to distinguish between them in their general
properties.
The magnitude of the tunneling matrix element can be

used to construct an approximate distance between the donor
and acceptor. Tab will fall approximately exponentially with
separation R, with a characteristic length determined by the
barrier height. An upper limits to the barrier height is about
half the a a* band-gap of the surrounding material, yield-
ing a height of about 3 eV. That hemes in hemoglobin are not
readily photooxidized in the Soret band suggests that the
barrier is not unusually small. A 2-eV barrier height is taken
as a reasonable estimate. For two carbon atoms in a r-
bonding configuration, then

Tab - 2.7 exp(-0.72 R)

where Tab is in electron volts and R in Angstroms. The pre-
factor is evaluated by getting the correct r resonance integral
(15) at a normal bond length.* If two large aromatic groups
of Na and Nb atoms are in contact through one "edge" atom
on each, Tab will be multiplied by a normalization factor
(NaNb) - 1/2, and R then measures the separation between the
edge atoms. Based on such an edge-to-edge contact between
two such r-systems with Na - Nb 20, the Tab of 4 X 10-4
eV corresponds to a separation of 8.0 A between the two atoms
through which the transfer takes place.
The scale of parameters shows that within a fixed geome-

try, the rate of electron transfer will be greatly enhanced in
transfer from an excited state. In the example just examined,
the rate of electron transfer Wab at low temperatures is 260
sec1-. In an excited state higher by 1.0 eV instead of by 0.05
eV but with no other factor changed, the argument of the
exponential in Eq. 8 would vanish. For the excited state, the

rate of transfer would be almost temperature independent,
and enhanced from the low-temperature ground state result
(above) by a factor of 1.7 X 107. In addition, the excited
state is less well bound, and the tunneling barrier appears
less high. With the parameters previously used, the tunneling
barrier would now be only 1 eV high, and the matrix element
Tab would be raised a factor of 6 from its ground-state value.
The total increase in the rate of transfer from the excited
state compared to the ground state is a factor of 6 X 108, with
the dominant factor arising from the change in the exponen-
tial of Eq. 8, which eliminates the usual Stokes shift sup-
pression of the transfer rate. This general effect in Marcus
theory has recently been noted (16).
Experiments perhaps related to his calculation have been

carried out on the bacterium Rhodopseudomonas spheroides
and on photosynthetic reaction centers taken from them.
The rate of electron transfer from an excited state of molecule
a to molecule b is >1.4 X 1011 sec-' (17). The rate of electron
transfer from b back to the ground state of a below 80°K is
30 sec-' (6). This -enormous difference in rates may be an
indication of the strong effect of the energy difference on the
transfer rate. [The failure of the reaction b -o a to be ther-
mally activated (18) can be accommodated within the general
tunneling framework, but involves details too complicated to
treat here.]
IV. Discussion

Our conclusions on the nature and range of the electron
transfer process are totally different from the interpretations
that have previously been used in analyzing the same experi-
ments. We believe that previous errors of principle and of
emphasis are responsible for the divergent conclusions. These
models and their problems are summarized for comparison.

(a) "Low Temperature" Tunneling Description. These
calculations (Eq. 1 of ref. 5 or Eq. 4 of ref. 6) are based
on the penetration of a square barrier by a particle that is
otherwise free. In order to make a comparison with a problem
of transfer between two localized sites, an effective collision
frequency was introduced in an ad hoc fashion. It was guessed
that this frequency factor should be constant and about
1015 sec1-. No discussion of the physics of how that frequency
factor came about was given (5, 6). The approach omits the
Franck-Condon factors that must always be present. The
present paper is equivalent to constructing a detailed quan-
tum mechanical description of this frequency factor. Because
of vibronic coupling and Stokes shifts, this frequency factor
is many orders of magnitude smaller than previously assumed,
and is temperature dependent. The estimates of 30 X for the
transfer distance (5, 6), therefore, lack a legitimate theoretical
basis.

(b) "Barrier Fluctuation" Description of Temperature-
Dependent Tunneling. Two descriptions of temperature-
dependent transfer rates have been given (5). In these descrip-
tions, the effective distance an electron must tunnel is modu-
lated by thermal fluctuations, and tunneling is easier at high
temperatures. One of these descriptions was rejected by its
authors on the basis of unreasonable parameters required,
while the other seemed to its authors reasonable. Both de-
scriptions make the same error as in (a) of completely failing
to come to terms with the frequency factor.

Extensive studies have been made of tunneling through an
insulating barrier between two metals. In this case, the tun-

* We have used a resonance integral of 1.0 eV as a compromise
between various views.
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neling current is closely related to Eq. 2, with the functions
Da(E) and Db'(E) replaced by their appropriate counterparts
in metals. The tunneling matrix element is generally not
appreciably temperature dependent. Though the analog is
not exact, it suggests that the temperature dependence of the
barrier is not the most likely source of temperature depen-
dence.

(c) Transfer by Thermal Excitation to a Free Electron State.
The idea of this transfer description (5) is that the 3.3 kcal
(0.14 eV) activation energy observed for electron transfer
from cytochrome c represents the binding energy of an elec-
tron in cytochrome c with respect to the conduction band of
the surrounding material, and that thermally freed electrons
react rapidly with the hole generated by the photon initiating
the transient process. The cytochrome then acts like a donor
in silicon. This description is unfortunately not internally
consistent. Donors of a depth of only 0.14 eV will be largely
ionized (18) at room temperature, with their electrons in the
conduction band (unless the cytochrome c concentration is
greater than 1 mM). This model has also been used to suggest
that the barrier height for tunneling is only 0.14 eV (with
concomitant huge distances possible in electron transfer), an
interpretation we believe to be erroneous.
The experiments in Chromatium on which these various

interpretations of electron transfer have been based are all
consistent with a single model containing four parameters, of
which one is insensitively involved, and Qf which two others
can be semiquantitatively verified in optical absorption
studies. Enough information is available to evaluate the tun-
neling parameter Tab of the theory and to estimate the separa-
tion between the linking sites on the donor and acceptor as
8 A. (A barrier height of 1 eV would have increased this esti-
mate by 2.5 A.) This distance is so much smaller than previous
estimates (5, 6) (30-80 A) for such transfers that, if correct,
it must profoundly affect the view of the structural require-
ments for electron transfer.
A relatively short range of electron transfer is probably

imperative to the operation of electron transport molecules.
They seem to be used to exchange electrons with another
molecule of similar standard redox potential. If they could
also exchange electrons with molecules with a very different
redox potential, this would short-circuit the useful paths of
the oxidative phosphorylation or photosynthetic electron
transport chains. The transfer mechanism described here has
a propensity toward such short-circuits. It was shown in
Section III that, other things being equal, electron transfer
between levels differing by one volt in redox is about 109

times faster at room temperature than electron transfer be-
tween equivalent levels. These short-circuiting transfers must
be prevented (i.e., other things kept from being equal, as by
preventing approach) by structural and stereochemical con-
siderations. When the range of electron transfer is too great,
it would be impossible to prevent these short-circuiting
transfers. (This rapid transfer between levels of considerably
different redox potentials may, however, be functionally use-
ful in photosynthesis for separating electrons and holes in
spite of its free energy cost.)

This description of electron transfer by tunneling can
provide a framework for interpreting the function of struc-
tural features of electron transport molecules. To apply the
model more generally and quantitatively it will be necessary
to extend descriptions of D(E) to include the case in which
there is an entropy change on electron transfer, a feature
not included in the present description.
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