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The temporal development of quantized fields, in its particle aspect,
is described by propagation functions, or Green’s functions. The con-
struction of these functions for coupled fields is usually considered from the
viewpoint of perturbation theory. Although the latter may be resorted
to for detailed calculations, it is desirable to avoid founding the formal
theory of the Green’s functions on the restricted basis provided by the
assumption of expandability in powers of coupling constants. These
notes are a preliminary account of a general theory of Green’s functions,
in which the defining property is taken to be the representation of the fields
of prescribed sources.

We employ a quantum dynamical principle for fields which has been
described elsewhere.! This principle is a differential characterization of
the function that produces a transformation from eigenvalues of a com-
plete set of commuting operators on one space-like surface to eigenvalues
of another set on a different surface,?

3¢y, ai| 62"y 00) = i, 1| 8 L07(dx) 2] 2"y ). (1)

Here & is the Lagrange function operator of the system. For the example
of coupled Dirac and Maxwell fields, with external sources for each field,
the Lagrange function may be taken as

& = =4[, vu(—u — eAu)¥ + my] + /2[¥, 1] +
Herm. COIlj. + l/ngvz b l/‘{va, auAv - van} + JuAp, (2)

which implies the equations of motion

Yu(—10u — eAw)Y + my = 19,
Fuv = bp.Av - van, b;va = Jn +jn, (3)

where
Ju = /o[, v¥]. 4

With regard to commutation relations, we need only note the anticom-
mutativity of the source spinors with the Dirac field components.

We shall restrict our attention to changes in the transformation function
that arise from variations of the external sources. In terms of the nota-
tion

(&1, o1| 52", 02) = exp 4w,
@y o1l F@)| 62", a0)/ (1 1| 1", 03) = (F()), (5)
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the dynamical principle can then be written
W = v:l (dx)<8£(x)>r (6)

where _
(e(x) = @E)Non(x) + M) P(x) + (Au(®))dTu(x).  (7)
The effect of a second, independent variation is described by
3@e(x)) =+ Jo;" (dx")((B2(x)0"£(x")) +) — (d2(x))d’e(x")], (8)-

in which the notation ( ), indicates temporal ordering of the operators.
As examples we have

5(¥(x)) = 1 S (dx") ((Y()P()dn(x")) 1) — (P@)XP(x)n(x"))], (9)
and
(W) =1 S, ([@x") [ (x)Au(x")) 1) — ($(x)){4u(x"))]6Tu(x"). (10)

The latter result can be expressed in the notation

—1(8/8Ju(x")) (¥ (%)) = ((Y(x)Au(x")+) — PE)INAu(x)), (11)

although one may supplement the right side with an arbitrary gradient.
This consequence of the charge conservation condition, 0.Jx = 0, cor-
responds to the gauge invariance of the theory.

A Green’s function for the Dirac field, in the absence of an actual spinor
souree, is defined by

8@ ]= s = St (@x")G(x, x")on(x"). (2
According to (9), and the anticommutativity of én(x’) with ¥(x), we have
Gx, x") = ((Yx)P(x")) +)elx, x7), (13)

where e(x, ') = (x0 — %0')/ ]xo — x | On combining the differential
equation for (Y(x)) with (11), we obtain the functional differential equation

[vu(—10u — &{Au(x)) + e8/6]u(x)) + m]G(x, x") = 8(x — x7). (14)
An accompanying equation for (4(x)) is obtained by noting that
<j“(x)> = tetr ‘YI‘G(x: x,)x’ — x (15)

in which the trace refers to the spinor indices, and an average is to be taken
of the forms obtained with x," — x9 £ 0. Thus, with the special choice
of gauge, 0{4-(x)) = 0, we have

— 0¥ Au(x)) = Ju(x) + te tr vuG(x, x). (16)

The simultaneous equations (14) and (16) provide a rigorous description
of G(x, x’) and (Au(x)).
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A Maxwell field Green’s function is defined by

Gur(x, x') = (8/8J5(x"))(Au(x)) = (8/8]u(x))(4s(x")) =
i[((Au(x)4x(x") 4) — (Au(x)X4xx")]. (17)

The differential equations obtained from (16) and the gauge condition are

—02Gu(x, x') = bwd(x — x') + ie tr vu(8/6T4(x"))G(x, %),
BuGu(x, &) = 0 (= 0wx). Cas)

More complicated Green’s functions can be discussed in an analogous
manner. The Dirac field Green’s function defined by

5, X (Y(x)¥(x2)) 1) e(xr, %2)y =0 =
CE @) S @)G e 2 20, 2 in(e o), (19)

may be called a “‘two-particle” Green’s function, as distinguished from
the “‘one-particle” G(x, x"). It is given explicitly by

G(x1, %25 %1, %) = (Y)Y ()P (01 )P (x2")) 4) €

€ = e(o1, X2) (w1, x2")e(x1, %1") €(e1, x2") €(x2, 21") (02, x2"). (20)

This function is antisymmetrical with respect to the interchange of x; and
%y, and of x;” and x,’ (including the suppressed spinor indices). It obeys
the differential equation

TG (x1, %25 %1/, %2") = 8(x1 — %1")G (%3, %2") — 6(x1 — %2")G (22, %17), (21)

where § is the functional differential operator of (14). More symmetri-
cally written, this equation reads

F1F oG (%1, x2; 21", %2") = 8(2c1 — 2%1")8(2c2 — x2") —
8(x1 — %)8(x2 — x17), (22)

in which the two differential operators are commutative.

The replacement of the Dirac field by a Kemmer field involves altera-
tions beyond those implied by the change in statistics. Not all components
of the Kemmer field are dynamically independent. Thus, if O refers to
some arbitrary time-like direction, we have

m(l — B)Y = (1 — Bo2)n — Bi(—i0x — eAs) By,
k=12 3? (23)

which is an equation of constraint expressing (1 — Bo?)¢ in terms of the
independent field components By, and of the external source. Accord-
ingly, in computing §,(¥(x)) we must take into account the change in-
duced in (1 — B?)¢¥(x), whence

Gx, x") = {WEP())+) + U/m)(1 — BHo(x — x').  (24)

The temporal ordering is with respect to the arbitrary time-like direction.
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The Green’s function is independent of this direction, however, and
satisfies equations which are of the same form as (14) and (16), save for a
sign change in the last term of the latter equation which arises from the
different statistics associated with the integral spin field.

1 Schwinger, J., Phys. Rev., June 15, 1951 issue.
2 We employ units in which i = ¢ = 1.
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In all of the work of the preceding note there has been no explicit refer-
ence to the particular states on ¢, and o that enter in the definitions of the
Green’s functions. This information must be contained in boundary
conditions that supplement the differential equations. We shall deter-
mine these boundary conditions for the Green’s functions associated with
vacuum states on both ¢; and g.. The vacuum, as the lowest energy state
of the system, can be defined only if, in the neighborhood of o, and o,
the actual external electromagnetic field is constant in some time-like
direction (which need not be the same for ¢; and ¢;). In the Dirac one-
particle Green’s function, for example,

G(x, &) = {PEP(x)), %0 > 2,
=P (x") ¥(*)), %0 < %0, (25)

the temporal variation of ¥(x) in the vicinity of o, can then be represented
by

[

Y(x) = exp [tPo(xo — Xo)]¥(X) exp [—iPo(x0 — Xo)],  (26)
where P, is the energy operator and X is some fixed point. Therefore,
x ~ 011 G(x, x) = {Y(X) exp [—i(Po — Po"*) (x0 — Xo)¥(x)), (27)

in which P,"*° is the vacuum energy eigenvalue. Now P, — Py"*° has no
negative eigenvalues, and accordingly G(x, x’), as a function of x, in the
vicinity of oy, contains only positive frequencies, which are energy values
for states of unit positive charge. The statement is true of every time-
like direction, if the external field vanishes in this neighborhood.

A representation similar to (26) for the vicinity of o yields

x~ a3: G(x,x") = —i((x") exp [i(Po — Po"*) (%0 — Xo)J¢¥(X)), (28)



