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in the case of an external force F the coefficient cl = MF, where M is
called the mobility). The causes of the second type are called forces of
diffusion and produce an effect proportional to the negative gradient of
the density -c2bD/by. The accumulation of the elements in any point
is, therefore, determined by the (negative) divergence of the total effect.
This leads to the equation3

aD=-- a (c,D) + a C2 a) (14)
61 by b~y by

Comparing this with the form (8) we find

b =c2, a-db/dy = cl. (15)

The expression for ci is in agreement with the conclusions arrived at
above. It shows that the form (14) of the equation of diffusion is a good
guide to the physicist as it brings in evidence the quantities significant
from his point of view. On the other hand, Kolmogoroff's equations (3)
and (4) are more general since they include the case of transition proba-
bilities which are inhomogeneous in time.

1 A. Kolmogoroff, Mathematische Annalen, 104, 415 (1931).
2 The substitution of the general integral of equation (13) for Do in (9) and (10)

does not lead to the equation (12). Kolmogoroff claims the same results by imposing
upon Do the condition lim Do = 0 for y = >c. That this argument is unconvincing,
appears from the fact that it would exclude the uniform density. It is inconvenient
to restrict oneself to finite systems.

3 E.g., P. S. Epstein, Gerlands Beitr. Geophysik, 35, 154 (1932).
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G. I. Taylor' gave an important impetus to the statistical theory of
turbulence by introducing the concept of "isotropic" turbulence, defined
by the feature that the mean squares and mean products of the velocity
components and of their derivatives are invariant with respect to rotation
and reflection of the coordinate axes. Taylor found that under the as-
sumption of the isotropy, the squares and double products of the first de-
rivatives of the velocity components can be expressed by one single correla-

tion function R(y). This function is defined by the ratio =- where u, and
U2
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u2 are the simultaneous values of the x-components of the velocity fluctua-
tion at two points at a distance y perpendicular to the x-axis. Taylor de-
fines a characteristic length X by writing

R(y) 1-2 + higher terms iny. (1)

Obviously _ dy2 and Taylor shows that
y0

(u)2 U2 (2)

Taylor shows furthermore that the rate of decrease of the kinetic energy of

the unit volume by dissipation is equal to 15,u- (A = viscosity coefficient).

He applies this result to the calculation of the decrease of the mean energy
of the turbulent fluctuations downstream from a certain turbulence pro-
ducing device such as a grid or a mesh. Denoting the velocity of the main
stream by U, he obtains the equation

U-u - -lo (3)
dx X

where u2 and X2 are both unknown functions of the distance x from the
grid; v is the coefficient of kinematic viscosity. Taylor introduces a some-
what arbitrary hypothesis connecting u2 and X2 with the linear dimension

of the turbulence producing device, and tries to show that the reciprocay=j
of the root mean square of the velocity fluctuation is always propor-
tional to x.

In this paper a second equation is established connecting u2 and X2, and
it is shown that the decay of the turbulence is fully determined without
further assumption by the correlation function R(y). Taylor's result ap-
pears as a special case corresponding to a certain type of the correlation
function.
We write the hydrodynamic equations in the form:

-+ qVW-W.Vq =vV 2W. (4)

In this equation q is the velocity vector and w the vorticity vector. Mul-
tiplying the three-component equations by {, i, t (where {, , r are the
components of w), respectively, and adding, the equation
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-tJ (C.V)q = V@,V2 (5)

is readily obtained.
We consider a fluid without mean velocity enclosed in a very large vessel

and assume uniform, isotropic turbulence over the whole space considered.
It is assumed that the vessel is so large that the influence of the walls can
be neglected. Then taking mean values over time and the space consid-

ered, - will be replaced by - w2 and w.V 2w by (V X w)2. The second

term needs special consideration. Writing out the expression in coordi-
nates

@.@Vq = t2aU + V2 6v + r2 ha + Zq (au + av) + -r
ax by alz by ax

( + y+ + (6)

It will be seen that the expression is built up as the sum of the products of
the components of the tensor (w co) and of the components of the deforma-
tion tensor. Now it can be shown that because of the isotropic feature of
the correlations between the velocity components and their derivatives,
expression (6) vanishes in mean value. The proof will be given elsewhere.
As a matter of fact, any value of the expression (6) different from zero
would mean that the vortex filaments had a permanent tendency to be
stretched or compressed in the direction of the vorticity axis. With the
expression (6) vanishing, equation (5) leads to the simple result:

3 = - 3v( (7)

and two similar equations obtained from (7) by cyclic permutation. De-
fining a length X. by the relation

(bt)2 2 t.
which is analogous to (2), and computing the relations between squares and
products of the derivatives of {, 71, t, we obtain

di t2= lop
x

(8)

Because of the isotropic feature of the system considered, L2an be ex-

pressed by U2 and X2; namely t2 = 5 -. Hence, equation (8) togetherwith
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Taylor's equation (1) determines u2 as a function of the time, provided a
relation between X and X,, is known.

d d
We substitute in equation (3) for lJ-and write

d - 142
u2= -1OV .V (9)dt

Then we multiply (8) by u2 and (9) by t2 and subtract. Taking into ac-

count that X2 = 5 , we readily obtain
t2

d X2 = J°^(V - ) (= 1 ). ~~~~~~~(10)dt xc

Let us assume for the time being a constant value of the ratio X2. The

physical significance of this assumption is discussed later. Then it follows

that 2 iS increasing at a constant rate with the time. Denoting (X2-1

by ,B
2 = X2 + 0l't (11)

where X2 is the value of X2 at t = 0. Then from (9) we obtain

uO
U2 = ( oov1 + lO,BV t)(12)

denoting by u2 the initial value of u2 at t = 0.
Applying equation (12) to Taylor's problem, i.e., replacing t by x/U, we

obtain
1 11~~~0#X11,

1 + (13)
0

The symbols V\u2, Vu\ denote root mean squares. Taylor's result is

_ -1_ + const. -. (14)
2~~u2 A\/u0 U

Our equation (13) gives this result as the first term of a series develop-
ment. Obviously

1= -1+ , -+ higher terms in x. (15)
-X/V2 xU,V,0 0 U
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If the linear law is correct for arbitrary large values of x, ,B must be equal
to 1/2. Now j3 can be expressed by the coefficients of the development of
the correlation function R(y). We write

X2R(y = 1- + by4 +..

First it can be shown that = U2d 4) = 24bu2. Then going

through an analysis of the correlation between the various products of the
second derivatives of u, v, w, similar to that performed by Taylor for
the first derivatives,2 we obtain

_ __2U_2 (d4R\
X2_ 28 \ y2/ _ 28dy4)Y=
X2 45s[Cu)2]2 45 (d2R)2

LybJ dy2 Y=o

In order to estimate possible values of - the error function was first as-
,2

sumed as correlation function, substituting R(y) = e - ". This leads to
X2_
X2 = 28/15 and , = 13/15 = 0.87. Taylor gives an example of the corre-

X(l,~~~~~~~~~~~~~~~~~X
lation function (see loc. cit., p. 45). Estimating b from the diagram - =

1.63 and ,3 = 0.63. Plotting as a function of x with values of B>
vU2

1/2, we obtain curves similar to those observed by H. L. Dryden. Unfor-
tunately, no exact comparison between our theory and Dr. Dryden's ex-
perimental results is possible because apparently the decay of the inherent
turbulence of the wind tunnel and the decay of the turbulence produced by
the screens interfere with each other, and this interference modifies the
law of decay, especially in the region of small intensity of turbulence in
which the deviations from the linear law are significant.

Taylor found that the constant factor in the second term at the right side
of (14) is proportional to 1/M, where M is the linear dimension of the mesh
which produces the turbulence. Obviously, we obtain the same result by

assuming X0 UO proportional to M. Taylor made the arbitrary assump-
v

tion that X u remains constant and proportional to M along the whole
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stream. In this new theory, it is sufficient to connect the initial values X0
and u2 with the characteristic length of the turbulence producing device,
the values of X2 and u2 downstream are determined by differential equa-
tions. It is felt that this represents a progress from the theoretical point of
view.

Considering the problem from a general point of view, it seems to the
author that in an isotropic field the mean value of the turbulent fluctuations
and the correlation function R(y) being given at a certain instant t = 0,
both u2 and R are determined for all positive values of t. In other words
we must be able to obtain a partial differential equation for R(y) with t and
y as independent variables. As an illustration of such a general theory,
let us consider the case which can be described as "one-dimensional turbu-
lence." Let us assume that the fluid has only one degree of freedom corre-
sponding to a motion in the x-direction. We can imagine, for instance, that
sheets of fluid extending parallel to the x-z plane are oscillating irregularly
in the x-direction. The velocity is a function of y and t; however, it will be
assumed that the oscillations of the fluid sheets are so fast and the "wave
length" of the oscillations so small that the mean value of u2 can be con-
sidered as a slowly varying function of y and t. We consider the particular
case in which u2 is independent of y (homogeneous turbulence) and the
correlation between the instantaneous velocities ul and u2 of two sheets at
y = y, and y = y2 is a function of the time t and the relative distance
= Y2 - Yl. Let us now calculate the derivative of the product with re-

spect to the time. Obviously

at(uI2) = aatl U2 + Ul
bU2 . (16)

Now the hydrodynamic equations applied to the motion considered
lead to

u = v2U (17)
at a-y2

and consequently

(UlU2) =P( U2 +
a U) (18)

If the correlation function is denoted by R(O, t)

UiU2= R

and

b2U, a2U2 a2Ra22U l2=Ul a2.by2U --)2 R

i1U2
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Hence equation (18) can be written in the form

at (Ru2) = 2VU2 a (19)

Applying this equation when ti = 0 and taking into account that R(0) =

l and (K-) 0= 0, we obtain

d (2)= 2-U2 62R) (20)
dt 61)_

and eliminating u2 from (19) and (20)

R 2v{R - R (R2 )_} (21)
b7 712 =

The partial differential equation (21) is the fundamental equation of the
problem considered. If R is given for t = 0 as a function of 77, equation
(21) determines the whole further development of the correlation and the
mean value of the velocity fluctuation for all time.
The most interesting case is that in which the shape of the correlation

function does not change with time. If the shape of R remains similar,

R(t7, t) must be a function of the one dimensionless variable 7_ One of
2

these solutions is, for example, e 84. However, it is evident that in
order to obtain such solutions, the initial shape itself must satisfy a cer-
taini total differential equation. In general the shape of the correlation
curve will vary with the time. The practical consequence of this result
is the conclusion that simple rules like Taylor's linear law for the decay
of turbulence represent only approximations or special cases.

Using for R(7) the development

R(X) = 1 _ 2 + b,14 (22)
2

(a2RA 2
\e>712 /=0 X22

and equation (20) reads

-U2= -4v- (23)
dt X2

which is analogous to our former equation (8) for the three-dimensional
case. Substituting (22) in (21) and comparing the terms in X2, we

easily obtain

104 PROC. N. A. S.



PHYSICS: T. V. KIRMIAN

dX2d-t = 4v(6bX' - 1) (24)

which corresponds (putting 6bX2 = i:) to (10). From (23) and (24) it fol-

lows that

dQX2) = - U4 (25)

uu- u2
and introducing the vorticity fluctuation w = -a 2 = 2 -.

2 2~~~~~~~x
= -4v .2 (26)

Hence, the equation (23) for the dissipation of energy and the equation
(26) for the dissipation of vorticity appear as applications of the general
partial differential equation (21), to small values of -1, i.e., to the immediate
neighborhood of the point considered. In the special case that the corre-
lation function preserves its shape throughout the whole motion, i.e., R is

a function of - only, the ratio - remains constant; this was the assump-
vt XI.,

tion made earlier in this paper. Then the whole process of the decay of
turbulence is determined by the initial values of U2, X and X0, and we
obtain equations analogous to (11) and (12).
The equation corresponding to (21) for three-dimensional turbulence is

given elsewhere.
The author is indebted to C. B. Millikan and L. Howarth for discussions

on the subject and for their assistance in calculations.
1 Proc. Roy. Soc. A, 151, 421 (1935).
2 As a matter of fact, the analysis was carried out by means of a more general and more

direct method than that used by Taylor. The new method which uses the conception
of the "correlation tensor" will be published elsewhere.
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