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Perturbations of the p53 pathway are associated with more ag-
gressive and therapeutically refractory tumors. However, molecu-
lar assessment of p53 status, by using sequence analysis and
immunohistochemistry, are incomplete assessors of p53 functional
effects. We posited that the transcriptional fingerprint is a more
definitive downstream indicator of p53 function. Herein, we ana-
lyzed transcript profiles of 251 p53-sequenced primary breast
tumors and identified a clinically embedded 32-gene expression
signature that distinguishes p53-mutant and wild-type tumors of
different histologies and outperforms sequence-based assess-
ments of p53 in predicting prognosis and therapeutic response.
Moreover, the p53 signature identified a subset of aggressive
tumors absent of sequence mutations in p53 yet exhibiting ex-
pression characteristics consistent with p53 deficiency because of
attenuated p53 transcript levels. Our results show the primary
importance of p53 functional status in predicting clinical breast
cancer behavior.

microarray � expression analysis � tumor profiling � class prediction

The p53 tumor suppressor is a critical regulator of tissue
homeostasis, and its inactivation at the gene or protein level

confers cellular properties conducive for oncogenesis and cancer
progression. Mutations in p53 occur in �50% of human cancers
(1, 2), and the mutational status of p53 is prognostic in many
malignancies (3). In breast cancer, p53 mutations are associated
with worse overall and disease-free survival, independent of
other risk factors (4), and have been implicated in resistance to
anticancer therapies (5–11). These observations, however, have
been inconsistent (12, 13), owing, in part, to the variable
accuracy of the methods to ascertain p53 status, variation in
disease severity attributable to the different forms of p53
mutation, and studies of insufficient size (8, 11, 14). Further
confounding the association between p53 status and patient risk
is the growing number of alternative molecular mechanisms
(e.g., MDM2) that compromise p53 function.

In this study, we explored the possibility that a gene-expression
signature, derived from differences between p53 mutant (mt)
and wild-type (wt) breast tumors, could provide a more accurate
measure of the functional configuration of p53, thereby improv-
ing its prognostic utility. Using oligonucleotide microarrays
covering �30,000 genes, we analyzed the global transcript levels
of 251 primary invasive breast tumors for which we have detailed
information on p53 status, as determined by cDNA sequencing
(6) and pursued a validation strategy of intersecting alternative
array data sets. We found that, in most cases, tumors with mt and
wt p53 can readily be distinguished by their expression profiles
and that a 32-gene p53 signature is consistently associated with
patient survival in different patient subsets, independent of
other risk factors, and is a superior prognostic and predictive
indicator, compared with p53 mutation status alone.

Methods
Patients and Specimens. Frozen tissue was collected from 315
consecutively presented primary breast cancers representing
65% of all those resected in Uppsala County, Sweden, from
January 1, 1987 to December 31, 1989 (6). Of these tissues, 251
were comprised predominantly of diseased tissue, were se-
quenced for p53 (6), and yielded sufficient RNA for array
analysis. Clinicopathological variables measured at diagnosis
were obtained from patient records and are described in detail
in Supporting Materials and Methods, which is published as
supporting information on the PNAS web site. This microarray
study was approved by the ethical committee at the Karolinska
Institute, Stockholm, Sweden.

Expression Profiling. Total RNA was extracted from samples by
using RNEasy Mini kit (Qiagen, Hilden, Germany) and evalu-
ated on a 2100 Bioanalyzer (Agilent Technologies). In vitro
transcription products were prepared from 2–5 �g of total RNA,
hybridized to the Affymetrix U133 A and B arrays and washed
and scanned according to the manufacturer’s instructions.

Microarray Data Processing. Raw data were normalized by using
the global mean method. Probe-set signal values were natural log
transformed and scaled by adjusting the mean intensity to a
target signal value of log 500. Samples with suboptimal average
signal intensities (i.e., scaling factors �3.5) or GAPDH 3��5�
ratios �3.5 were relabeled and rehybridized on new arrays. If
visible artifacts were observed, the same cRNA was rehybridized
on new chips.

Class Prediction. For gene selection, we fit a linear model to the
expression data with expression level as the response and p53
status, estrogen-receptor (ER) status, and grade status as the
predictor variables. As an initial filter, we excluded genes with a
P value for model fit �0.001 and ranked genes in decreasing
order of the absolute value of the p53 status coefficient. For class
prediction, we evaluated several supervised learning methods,
including diagonal linear discriminant analysis (15), k nearest
neighbors (16), and support vector machines (17), as described
in Supporting Materials and Methods.

Data Analysis. For all hierarchical cluster analyses, log expres-
sion values of each gene were mean centered, and genes and
tumors were clustered by using Pearson correlation and aver-
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age linkage (CLUSTER and TREEVIEW software, http:��rana.
lbl.gov�EisenSoftware.htm).

The Kaplan–Meier estimate was used to compute survival
curves, and the P value of the likelihood-ratio test was used to
assess statistical significance of the hazard ratios. All patients
with contralateral or bilateral cancers were omitted, and patients
who died of their cancer 10 years after diagnosis were system-
atically censored.

For association tests, the �2 test was used, unless the number
of events was �5 in any category, in which case Fisher’s exact test
was used.

Cox regression was used to confirm the prognostic significance
of the p53 classifier in multivariate analyses. The initial model,
comprising all conventional predictors, and p53 mutation status
and the p53 signature as competing measures of p53 activity, was
simplified by using a stepwise model-selection procedure based
on the Akaike information criterion. Remaining predictors were
assessed by likelihood-ratio test.

Independent Datasets. The Sørlie et al. (18) and Chen et al. (19)
data and clinical annotations were obtained from the Stanford
microarray database by using filtering parameters as described
by the authors. The Ma et al. (20) ‘‘whole tumor’’ data set was
downloaded from the Gene Expression Omnibus with accession
no. GSE1379, and each array was mean centered. The van’t Veer
et al. (21) data and survival annotation were accessed through
the Rosetta Inpharmatics publications archive. All IMAGE clone
IDs or GenBank accession nos. of array probes were mapped to
UniGene build no. 167.

Results
P53 Mutant and WT Tumors Are Molecularly Distinct. Transcript
profiles of 251 primary breast tumors were assessed by using
Affymetrix U133 oligonucleotide microarrays. Previously,
cDNA sequence analysis revealed that 58 of these tumors had
p53 mutations resulting in protein-level changes, whereas the
remaining 193 tumors were p53 wt (6). By unsupervised hier-
archical cluster analysis, we found that p53 mt and wt tumors are
distinguished by pervasive molecular differences. With the top
2,000 most variably expressed genes (selected independent of
p53 status), �80% of the p53 mt tumors clustered into one
branch and �70% of the p53 wts into the other (P � 5.6 � 10�13;
see Fig. 5, which is published as supporting information on the
PNAS web site). Importantly, this separation remained highly
significant (P � 2 � 10�12) across a range of gene panels from
the top 5,000 genes with highest variance to the top 125 (see
Table 1, which is published as supporting information on the
PNAS web site). This separation was most heavily influenced by
three predominant gene clusters comprising genes involved in
immune response, proliferation, and estrogen response (Fig. 5).
Univariate analysis by statistical analysis of microarrays (SAM)
(22) identified 6,545 Affymetrix probe sets representing �5,290
distinct genes whose expression patterns distinguished p53 mt
and wt tumors with a false discovery rate (q value) �1% and d
score (modified t statistic) �2.0 (see Table 2, which is published
as supporting information on the PNAS web site), further
illuminating the extensive nature of the molecular variation
underlying p53 status. Topping the list of genes most highly
expressed in p53 mt tumors were those with roles in cell cycle and
proliferation, consistent with the observation that wt p53 has a
negative regulatory effect on cell-cycle genes. The genes more
highly expressed in the p53 wt tumors included uncharacterized
genes, signaling molecules and transcription factors, transcrip-
tional targets of p53, and estrogen-inducible genes.

The p53 status was also correlated with two other clinical
parameters, ER status and tumor grade (Fig. 5). Within the p53
mt-rich cluster, we observed 89% of ER-negative tumors (P �
1.9 � 10�10), 79% of grade III tumors (P � 3.8 � 10�11), and only

14% of grade I tumors (P � 2.5 � 10�7). The finding that p53
mutant tumors are correlated with ER negativity and grade III
status is consistent with previous reports that p53 mutations
associate with ER negativity and high tumor grade (23).

A Gene Expression Classifier Predicts p53 Status in Independent Breast
and Liver Cancer Data Sets. We considered the possibility that the
differential expression observed between p53 mt and wt tumors
might, to some extent, reflect changes in the operational con-
figuration of the p53 pathway. We reasoned that some p53 wt
tumors would be p53 deficient through mechanisms other than
p53 mutation, such as MDM2 amplification or p14�ARF dele-
tion and, thus, possess expression profiles more akin to p53 mt
tumors with dysfunctional p53. To explore this possibility, we
fitted a multivariate linear regression model (i.e., linear model-
fit) (24) that allowed us to rank genes by their correlation with
p53 status, while controlling for histologic grade and ER status.
As a result, many cell-cycle genes correlated with p53 status by
univariate analysis were no longer well associated (see Fig. 6,
which is published as supporting information on the PNAS web
site), suggesting that the transcriptional profiles of most cell-
cycle genes are more related to histologic grade than to p53
status.

For class discrimination, we evaluated several linear learn-
ing methods including: diagonal linear discriminant analysis
(DLDA) (15), k-nearest neighbors (kNN) (16), and support
vector machines (SVM) (17). In each case, the optimal gene
classifier was obtained by leave-one-out cross validation,
where the linear model-fit procedure was iteratively applied to
all samples minus the left-out sample. The resulting prediction
accuracies were highly similar, ranging from 84.9% to 85.7%
(see Supporting Materials and Methods). Interestingly, 20 tu-
mors were consistently ‘‘misclassified’’ by all three methods (8
wt and 12 mt), indicating a surprising degree of concordance
among misclassified tumors. DLDA showed the highest sen-
sitivity for detecting p53 mutants (i.e., 79% sensitivity com-
pared with 53% for both kNN and SVM) and was therefore
selected for further analysis. By DLDA, the optimal classifier
was comprised of 32 genes, whereby 26 of the wt tumors were
misclassified as mutant-like, and 12 mutants were misclassified
as wt-like (Fig. 1A).

To evaluate the performance of the classifier genes (referred
to hereafter as the p53 signature genes) as a clinical discrimi-
nator of p53 status, we accessed two publicly available cDNA
microarray data sets where p53 mutational status was known: a
breast cancer study by Sørlie et al. (18) and a liver cancer study
by Chen et al. (19). In the Sørlie data set, 69 breast tumors had
been sequenced for p53 mutations. Of our p53 signature genes,
28 mapped to established UniGene IDs, and more than half of
these 28 genes were represented on the Sørlie et al. microarray.
However, only nine were found to correspond to cDNA probes
having expression measurements present in �50% of tumors,
where the tumors possessed measurements for �50% of genes
(resulting in a subset of 44 well sampled tumors). Because the
classification rules could not be directly applied, we used this
9-gene subset of the p53 signature to hierarchically cluster the
tumors in an unsupervised manner. Fig. 1B shows a significant
separation of p53 mt and wt tumors: 77% of mutants clustered
into one branch, and 77% of wts clustered into the other (P �
0.0003). By Monte Carlo simulations, we estimated the proba-
bility that a randomly selected nine-gene subset could cluster the
samples with equivalent or better significance was P � 0.008,
thus reaffirming the robust discriminative power of the p53
signature genes.

In the Chen et al. liver cancer data set (38), p53 protein levels
had been ascertained by immunohistochemistry (IHC). Eight of
our signature genes could be mapped to all 59 tumors assayed for
p53, with each gene having data present in �90% of all tumors
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and where each tumor contained data for �50% of the genes.
We observed that even this eight-gene subset was able to cluster
the liver cancers into two primary clusters significantly corre-
lated with p53 levels: 87% of the IHC-positive (predicted mts)
in one cluster, and 61% of the predicted wts in the other (P �
0.00035) (Fig. 1C). Again, the probability of this clustering
occurring by random chance was P � 0.009 by Monte Carlo P
value estimation. Taken together, these observations suggest
that the genes comprising the p53 signature are robust in their
ability to classify not only breast tumors but also liver cancers

according to their p53 mutational status and, therefore, may
have generalizable utility in predicting p53 status in a range of
cancer types.

Transcript Analysis of p53 Pathway Genes Corroborates Tumor Clas-
sifications. We hypothesized that the p53 expression signature
may better reflect the relative intactness of p53 function in the
tumor than sequence mutation status alone, implying that p53
sequence-wt tumors ‘‘misclassified’’ as mt-like may, in fact, be
p53 deficient by other means. First, we considered the possibility
that p53 deficiency could result from reduced p53 transcript
levels. We compared the transcript levels of p53 among the
different tumor classes (Fig. 2). We observed that the overall
expression level of p53 was significantly reduced in the 26 wt
tumors with mt-like signatures (referred to henceforth as the ‘‘26
mt-like’’ tumors), compared with the remaining 167 wt tumors
classified as wt-like (P � 1.8 � 10�4), strongly suggesting that
reduced p53 transcripts can result in biological consequences
in vivo.

We further hypothesized that known transcriptional targets of
p53 would show altered transcription in p53-deficient tumors.
Indeed, a number of p53 target genes demonstrated expression
patterns consistent with a mutant p53 status (Fig. 2). The
TP53-inducible genes TP53INP1, SEMA3B, PMAIP1 (NOXA),
FDXR, CCNG1, and LRDD, which all contain functional p53-
binding sites in their promoters, showed significantly lower
expression in the 26 mt-like tumors, compared with the other wt
(all at P � 0.05). In a consistent manner, all but one of these
genes were also significantly reduced in the p53 mt tumors,
compared with all wt tumors. Furthermore, in all but two cases,
these genes showed significantly higher expression in the set of
12 sequence-mt tumors classified as wt-like when compared with
the other mts, suggesting that the p53 mutations in these 12
tumors may have a more benign effect, with respect to p53
functionality. CHEK1 and CHEK2 are both upstream effectors
of p53 function known to be transcriptionally repressed by p53.
Significantly, their mRNA levels were elevated in both the p53
mt and p53 mt-like classes. Again, the 12 mts classified as wt-like
showed a reversed pattern, i.e., displaying significantly lower
expression of these genes, compared with the other 46 p53
mutants. Together, these observations suggest that the ‘‘misclas-
sified’’ tumors more correctly reflect the active�inactive status of
the p53 pathway and are consistent with the notion that reduced
p53 levels in breast tumors result in downstream transcriptional
changes similar to those found in p53 mutations.

Of note, the canonical marker of p53 activity, CDKN1A

Fig. 1. The p53 signature is associated with p53 status in independent data
sets. Clustergrams are oriented as outlined in Fig. 5. (A) Expression profiles of
the Uppsala tumors segregated by the 32-gene signature. Unigene symbols
and GenBank IDs are listed to the right. (B) P53 mt and wt breast tumors from
Sørlie et al. (18) were clustered by using a nine-gene subset of the p53
signature. (C) P53 mt and wt liver tumors (predicted by immunohistochemis-
try) from Chen et al. (19) were clustered by using an eight-gene subset of the
p53 signature. Green dendrogram branches denote tumors with the wt-like
configuration; red branches indicate those with mt-like profiles. Probe IMAGE
clone IDs from the original studies are listed. Black bars denote mt p53 status.

Fig. 2. Transcript levels of p53 and its transcriptional targets are consistent with classification results. Expression levels of p53-pathway-relevant genes were
examined in different tumor subgroups. The four tumor subgroups are defined as follows: (i) p53 mt tumors classified as mt-like (n � 46), (ii) p53 wt tumors
classified as mt-like (n � 26), (iii) p53 wt tumors classified as wt-like (n � 167), and (iv) p53 mt tumors classified as wt-like (n � 12). Differences in transcript levels
were determine by t test and are shown in a summary table to the right; P values �0.05 are shown in gray.
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(p21�WAF1), was only moderately higher in p53 wt tumors,
compared with those with sequence mutations (P � 0.02), and
not significantly lower in the 26 mt-like tumors, compared with
the other wts (P � 0.09; data not shown). Furthermore, the
known p53-inducible genes PERP, BAX, and SFN (14–3-3 sigma)
were, paradoxically, all expressed at higher levels in the p53
mutants and the 26 mt-like tumors rather than the expected
lower levels (Fig. 2). These observations may reflect cross-talk
among different transcriptional regulators in the consensus of
primary tissues, as compared with dynamic changes in single cell
lines. For example, the p53 target genes p21 and BAX are also
directly regulated by the breast cancer oncogene, c-Myc, in a
manner independent of, and antagonistic to, p53 (25, 26). The
regulation of p53 target genes by alternative transcriptional
modifiers acting independently of p53 or in the context of p53
deficiency (e.g., PERP, BAX, and SFN) may have implications for
p53 tumor-suppressor activity.

We next asked whether the mutational spectrum of p53 in our
tumors could explain the different functional consequences, as
measured by the expression profiles. Of the 46 p53 mt tumors
correctly classified as mts, 43% (20 of 46) possessed ‘‘severe’’
mutations, defined as insertions (n � 2), deletions (n � 11), and
stop codons (n � 7) resulting in frame shifts and truncations,
whereas in the 12 p53 mutants classified as wt-like by the
expression signature, only 1 contained a severe mutation, a 3-bp
insertion in the DNA-binding domain, resulting in the in-frame
addition of a glycine residue. Notably, this difference was
statistically significant at P � 0.02. Using the IARC TP53
mutation database (ITMD) (27), we cross-compared the mis-
sense point mutations (mpms) in each tumor group with the
ITMD’s index of 418 mutants previously analyzed for dominant-
negative function. Only 1 of the 11 mpms among the 12 wt-like
mutants had been demonstrated previously to have dominant-
negative activity, compared with 12 of 27 within the mt-like
group (P � 0.039). Together, these data suggest that, at the
sequence level, the 12 p53 mutants classified as wt-like may, in
fact, represent p53 mutant forms that have less biological effect.

The p53 Signature Predicts Outcome Better Than p53 Mutation Status
Alone. We next asked whether the p53 signature could predict
disease-specific survival in the patients of the Uppsala cohort.
The classifier separated patients into low and high risk groups
with a much higher statistical significance than the sequence-
based p53 status alone (P � 0.0006 versus P � 0.01, respectively)
(Fig. 3 A and B). More interestingly, when the classifier was
tested on the subset of women with wt p53 by sequence, we again
observed a significant separation of patients by survival (P �
0.02; Fig. 3C), indicating that women with p53 sequence-wt
tumors, yet exhibiting the mt-like expression signature, have a
greater likelihood of dying from their cancer. Fig. 3D shows that
the survival curve for this tumor type is highly similar to that of
p53 mt tumors classified as mt-like (blue and green curves,
respectively), whereas the 12 individuals with p53 mt tumors
classified as wt-like do not have significantly unique outcomes.

To further test the clinical utility of the p53 signature, we
analyzed its prognostic performance on therapy-specific treat-
ment groups. In a subpopulation of the Uppsala cohort consist-
ing of 67 ER� patients who received only adjuvant hormonal
therapy after surgery, the signature was a significant predictor of
disease-specific survival (P � 0.05), whereas p53 mutation status
alone was not (P � 0.4) (Fig. 3 E and F). Importantly, by
multivariate Cox regression analysis, the p53 classifier remained
significantly associated with survival in the hormone-treated
group (P � 0.02), the complete cohort (P � 0.02), and the p53
wt group (P � 0.002), even when controlling for the classical
predictors (ER and progesterone receptor) and prognostic fac-
tors (lymph node status, Elston grade, tumor size, and patient
age), whereas the p53 mutation status, as determined by se-

quencing, did not. This demonstrates that the expression clas-
sifier is more directly prognostic of patient survival than is p53
mutation status alone.

The p53 Signature Predicts Outcome in Independent Therapy-Specific
Data Sets. We next assessed the prognostic capability of the p53
signature genes in therapy-specific cohorts by using independent
microarray data sets from the public domain (Fig. 4; and see Fig.
7, which is published as supporting information on the PNAS
web site). First, we evaluated whether the signature genes were
prognostic of tumor recurrence in the Ma et al. (20) data set of
60 breast tumors derived from patients treated with postoper-
ative radiation and adjuvant tamoxifen monotherapy. In this
cohort, patients with and without recurrent disease were
matched with respect to tumor grade and tumor node metastasis
stage. Twenty-two of the p53 signature genes mapped to 27
probes on the Ma et al. spotted oligonucleotide array. Hierar-
chical cluster analysis with these genes revealed two to three
primary tumor clusters with expression profiles that resembled
the mt-like and wt-like configurations (Fig. 4A). Using these
tumor clusters to define patient survival groups, we analyzed
disease-free survival (DFS) by the Kaplan–Meier estimate. As
shown in Fig. 4 B and C, the clusters were significantly associated
with tumor recurrence [P � 0.01 (two clusters, C1 and C2) and
P � 0.005 (three clusters, C1, C2, and C3)]. Thus, concordant
results in two independent studies suggest that functional p53

Fig. 3. The p53 classifier has greater prognostic significance than p53
mutation status alone. Kaplan–Meier survival plots for disease-specific sur-
vival are shown for patients classified according to p53 mutation status (A and
E), the p53 classifier (B, C, and F), or both (D). All patients were assessed in A,
B, and D. Only the patients with p53 wt tumors were assessed in C. Sixty-seven
ER�, hormone-treated (TAM) patients were assessed in E and F.
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deficiency, as assessed by an expression readout, is predictive of
outcome to hormonal therapy.

To examine the prognostic performance of the p53 signature
genes in patients treated with systemic chemotherapy, we used
the Sørlie et al. cDNA microarray data set. The majority of
patients (�80%) in the Sørlie study received weekly doxorubicin
or 5FU and mitomycin and were comprised mostly of late-stage
patients (10, 11). Here, the nine-gene partial signature that could
distinguish mt and wt tumors with 77% accuracy, was used to

hierarchically cluster 76 well sampled tumors with corresponding
treatment and survival data (Fig. 4D). Again, we observed the
tumors cluster into two primary branches with expression pat-
terns characteristic of the wt-like and mt-like configurations.
Survival analysis resulted in a highly significant difference in
outcome between patients with mt-like and wt-like tumors [P �
7.5 � 10�5 (disease-specific survival) and P � 5.0 � 10�5 (DFS)];
Fig. 4 E and F) despite the small number of genes used. Notably,
Fig. 4E predicts a remarkable 5-year 90% survival rate for the 31
p53 wt-like patients, compared with a 35% probability of 5-year
survival for the 44 p53 mt-like patients.

Next, we tested the performance of the signature genes on a
set of 97 early stage tumors (T1�T2, N0), from patients �55
years of age at diagnosis and treated by radiotherapy alone (21).
From our 32-gene signature, we were able to map 25 probes
corresponding to 21 signature genes to all 97 tumors with
outcome information. Unsupervised clustering revealed two
primary and four secondary tumor clusters (Fig. 4G) that could
significantly discern patients based on time to distant metastasis
within a 5-year period [Fig. 4 H and I; P � 0.0006 (two clusters,
C1 and C2) and P � 0.001 (four clusters, C1, C2, C3, and C4)].
Notably, of the 24 tumors in cluster 1 (C1) that bear the
molecular configuration of p53 mt-like tumors, 75% belonged to
patients who developed a distant metastasis within 5 years,
compared with 26% of 34 patients with tumors comprising C4
(which most closely resemble the p53 wt-like signature). These
findings indicate that the p53 signature is also prognostic of
recurrence in early stage, locally treated breast cancer.

The p53 Signature Genes Are Not Canonical p53 Targets. To gain
some mechanistic insights, we examined the functional annota-
tions of the signature genes for clues to explain their correlations
with p53 status and patient outcome. We found that none of the
signature genes are known transcriptional targets of p53, nor
have they been previously implicated in the p53 pathway.
Moreover, promoter analysis revealed no evidence of p53-
binding sites. Of the characterized genes, a number are associ-
ated with cell growth and proliferation (MYBL2, TFF1, BRRN1,
CHAD, SCGB3A1, DACH, and CDCA8), transcription (LAF4,
NY-BR-1, DACH, and MYBL2), ion transport (CACNG4, CY-
BRD1, and LRP2), and breast cancer biology (SCGB3A1, TFF1,
STC2, NY-BR-1, and AGR2). Interestingly, MYBL2, which was
transcriptionally up-regulated in the p53 mt-like tumors, is a
growth-promoting transcription factor structurally related to the
c-MYB oncogene. MYBL2 maps to a chromosomal region fre-
quently amplified in breast cancer (20q13) and has previously
been reported to be overexpressed in breast cancer cell lines and
sporadic ovarian carcinomas (28, 29). SCGB3A1 (HIN1), which
we observed to be down-regulated in the p53 mt-like tumors, is
a putative tumor-suppressor gene that can inhibit breast cancer
cell growth when overexpressed and has been found to be
transcriptionally silenced by promoter hypermethylation in early
stages of breast tumorigenesis (30). Thus, some of the p53
signature genes may contribute mechanistically to the poor
prognosis associated with the p53 mt-like tumors.

Discussion
Breast cancers are characterized by multiple genetic alterations
that, together, comprise the genotype that dictates tumor be-
havior. It is therefore reasonable that the compilation of genetic
changes is a better indicator of clinical behavior than a single
gene. Herein, we show that an expression signature, deduced
from differences in the molecular configurations of p53 wt and
mt tumors, predicts for p53 functional inactivation in primary
breast cancers and provides a more accurate and useful measure
of p53 clinical functionality than p53 mutation status alone. We
show that, in independent data sets of both breast and liver
cancers and regardless of other clinical features, subsets of the

Fig. 4. The p53 signature predicts survival in independent clinically diverse
data sets. (A) Tumor dendrogram from clustering 60 tumors and 22 genes (27
probes) from Ma et al. (20). (B and C) Patient subgroups determined by the
primary tumor branches (C1–C4) were analyzed for correlations with DFS. (D)
Tumor dendrogram from clustering 76 tumors and 9 genes from Sørlie et al.
(18). Patient subgroups defined by the primary tumor branches (C1 and C2)
were analyzed for correlations with disease-specific survival (DSS) (E) and DFS
(F). (G) Tumor dendrogram from clustering 97 tumors and 21 genes (25 probes)
from van’t Veer et al. (21). (H and I) Primary tumor clusters (C1–C5) defined
patient subgroups for DFS analysis. Red branches denote tumors with the p53
mt-like signature; black branches identify those with the wt-like signature.
Black triangles indicate patients who relapsed within 5 years. See Fig. 7 for
gene heat maps and probe IDs.
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p53 signature can predict p53 status with significant accuracy. As
a predictor of disease-specific survival, we found that the
signature significantly outperformed p53 mutation status in a
large patient cohort with heterogeneous treatment. Importantly,
the p53 signature could significantly distinguish patients having
more or less benefit from specific systemic adjuvant therapies
and locoregional radiotherapy. Recently, Ma et al. identified by
microarray analysis two genes (HOXB13 and IL17RB) whose
expression ratio was predictive of tamoxifen response. Notably,
we found that these genes were also predictive of disease-specific
survival in the 67 Uppsala patients treated with tamoxifen
monotherapy (P � 0.01; data not shown). However, these genes
were not prognostic of recurrence in the van’t Veer data set, nor
were the van’t Veer 70 genes prognostic of recurrence in the Ma
data set (20), suggesting that tumor stage and�or therapeutic
context is an important determinant of the prognostic capacity
of some genes. In contrast, we demonstrate that the p53 signa-
ture genes are robustly prognostic of survival and recurrence in
both early and late stage disease and in different therapeutic
settings.

Although the p53 pathway may be compromised at some
level in most human cancers, our analysis of genes involved in
the p53 pathway suggests that the p53 expression signature
defines some operational configuration of this pathway in
breast tumors (more so than p53 mutation status alone) that
impacts patient survival and therapeutic response. Recent
evidence suggests that tumor sensitivity to some anti-cancer
agents may depend largely on the relative intactness of p53-
dependent mechanisms of apoptosis (7, 8, 10, 11) and that
taxols (microtubule stabilizers), in particular, may have greater
efficacy against p53-mt breast tumors than anthracycline-
based (genotoxic) compounds (9). Whether the p53 classifier
genes identified here are involved in some aspect of this p53
function or will have robust clinically utility as a predictor of
therapeutic response warrants further investigation.

Other studies have elucidated gene expression signatures
prognostic of breast cancer outcomes (21, 31). Although a
21-gene subset of our p53 signature could significantly distin-
guish patients with recurrent and nonrecurrent disease in the
van’t Veer study (21), none of these genes were found to overlap
with the 231 genes identified as prognostic discriminators in the
van’t Veer set; and only one of the classifier genes, MYBL2, was
found in the Sotiriou 485 survival-correlated genes (31). Simi-
larly, none of the p53 signature genes were found in the top 25
relapse-associated genes reported by Ma et al. Thus, the p53
signature genes identified here represent a previously unrecog-
nized prognostic cassette.

In cancer, it is clear that not all p53 mutations have equal
effects; some simply confer loss of function, whereas others have
a dominant-negative effect (such as transdominant suppression
of wt p53 or oncogenic gain of function), whereas still others
show only a partial loss of function where, for example, only a
fraction of p53 target genes are dysregulated (32, 33). For these
reasons, no single molecular assessment of p53 status appears to
provide an absolute indication of the complete p53 function.
Although the p53 classification method developed here seeks to
categorize all tumors as either p53-deficient or not, it is likely
that intermediate types exist with partial p53 functionality,
distinguished by expression patterns that fall between those of
the predominant mt-like and wt-like classes. Further investiga-
tion will be required to resolve the biological and clinical
implications of such intermediate tumor classes.
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