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We compute the autocorrelation function of the donor-acceptor
tunneling matrix element �TDA(t)TDA(0)� for six Ru-azurin derivatives.
Comparison of this decay time to the decay time of the time-
dependent Franck–Condon factor {computed by Rossky and cowork-
ers [Lockwood, D. M., Cheng, Y.-K. & Rossky, P. J. (2001) Chem. Phys.
Lett. 345, 159–165]} reveals the extent to which non-Condon effects
influence the electron-transfer rate. �TDA(t)TDA(0)� is studied as a
function of donor-acceptor distance, tunneling pathway structure,
tunneling energy, and temperature to explore the structural and
dynamical origins of non-Condon effects. For azurin, the correlation
function is remarkably insensitive to tunneling pathway structure.
The decay time is only slightly shorter than it is for solvent-mediated
electron transfer in small organic molecules and originates, largely,
from fluctuations of valence angles rather than bond lengths.

correlation functions � Franck–Condon breakdown � dephasing �
coupling pathways � redox reactions

The interplay among nuclear motion and electronic dynamics is
the subject of increasing focus in the field of electron transfer

(ET) processes (1–8). Recent research has focused on the effects of
bridge nuclear motion on ET, with chemical, biological, and elec-
tronic device applications (see refs. 9–11 for reviews). Early theo-
retical analysis indicates that tunneling matrix element modulation
by bridge dynamics can alter the free energy dependence of ET
reaction rates by causing the Born–Oppenheimer (12) and Franck–
Condon approximations to fail (13–15). More recently, theoretical
studies explored ET kinetics in systems with fluctuating donor–
acceptor matrix elements (16–24). Bridge motion can cause large
and rapid donor–acceptor matrix element fluctuations, affecting
the tunneling pathway structure and the interferences among
pathways (25–37). The coupling matrix element fluctuations may
have large contributions from solvent-polarization fluctuations
(23), and these fluctuations facilitate electronically forbidden and
gated ET (38–47). Finally, bridge–nuclear relaxation creates in-
elastic tunneling pathway channels (11, 20, 24, 47–49) that can
change the mechanism of ET from superexchange to resonant
tunneling to sequential hopping (11, 41–44, 50–62) and can lead to
breakdown of the Born–Oppenheimer approximation (63, 64).

The goal of this work is to characterize tunneling matrix element
fluctuations in azurin and, in particular, to examine their influence
on the ET rate and on the validity of the Franck–Condon approx-
imation. Franck–Condon breakdown can reduce the ET rate in the
case of activationless ET reactions and enhance the rate for
activated ET (18). ET in Ru-modified azurin is nearly activationless,
and the protein is often approximated as being a rigid medium for
tunneling because the tunneling pathways traverse a � sheet. In this
work, we compute the effects of tunneling matrix element fluctu-
ations on the rate as a function of distance, temperature, protein
structural fluctuations, and intervening pathway structure. Further,
we identify the types of motion that cause the coupling to fluctuate.

The general derivation of the nonadiabatic rate expression for
fluctuating donor–acceptor matrix elements cannot assume the
validity of the Franck–Condon separation. As explained below, the
Franck–Condon approximation is only applicable when matrix
element fluctuations are slower than the decay time of the thermally

weighted nuclear Franck–Condon overlap factor. This decay time,
�FC, measures the escape time of the system from regions of
Franck–Condon allowed transitions. �FC is roughly the time it takes
for two nuclear wavepackets to lose overlap when they are initially
placed at the crossing point between the donor and acceptor
diabatic energy surfaces and each is allowed to move on a separate
surface. �FC � –h��2�KBT, where � is the total reorganization
energy and T is the temperature (65, 66).

ET Rates and Correlation Functions
The argument above about the validity of the Franck–Condon
approximation can be derived from a time-dependent formulation
of the ET rate. In the vibronic state representation, the nonadia-
batic rate is a thermally weighted sum of energy-conserving tran-
sitions between initial �D; v, a� and final �A; w, b� Born–
Oppenheimer vibronic levels, i.e.,

kDA �
2�

–h
�
v

�
a

PDvPa�
w

�
b

��D ; v , a �T̂ �A ; w , b� �2

���ED � �v � �a 	 �EA � �w � �b�� , [1]

(1–7, 20, 24, 67), where �D� and �A� are the donor and acceptor
electronic states, and �v� and �w� are vibrational levels associated
with the donor and acceptor diabatic energy surfaces. These
vibrations modulate the energies of �D� and �A� but not the tunneling
barrier between them. �a� and �b� are vibrational levels associated
with vibrations that modulate only the tunneling barrier (domi-
nantly orientational modes for long-distance ET). The energies of
�D; v, a� and �A; w, b� are ED � �v � �a and EA � �w � �b,
respectively, where ED and EA denote the minimum electronic state
energies and �i denotes vibrational state energies. The thermal
probability of the initial vibronic state �D; v, a� is taken to be the
product PDvPa of the thermal probabilities of the vibrational levels
�v� and �a� (consistent with the assumption that motions affecting
the donor and acceptor energies are independent of those affect-
ing the tunneling barrier). The scattering operator T̂ in Eq. 1 is
given by

T̂ � V̂Ĝbr�E tun�V̂ , [2]

where V̂ is the donor-bridge�acceptor-bridge electronic coupling
operator and Ĝbr is the bridge electronic�vibrational Green’s
function. T̂ describes tunneling transitions between the electronic
�D� and �A� states that are accompanied by transitions between
bridge vibrational states, i.e., �D; v, a�T̂�A; w, b� 	 �v�w��a�T̂DA�b�
where T̂DA 
 �D�T̂�A� is an operator in the space of bridge
vibrational levels. This characteristic means that the tunneling
electron can interact with the bridge vibrations (e.g., refs. 14, 20, 47,
and 49).
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By using the Fourier representations of the �-function in Eq. 1
(68), the nonadiabatic rate is

kDA �
1
–h2 �

��

�

dtei�ED�EA�t/–h �T̂DA�t�T̂AD�0��B�ei–hDt/–he�i–hAt/–h�D, [3]

where

�T̂DA�t�T̂AD�0��B � �
a

Pa�a�T̂DA�t�T̂AD�0��a�, [4]

is the thermal correlation function of the tunneling operator in Eq.
2. T̂DA(0) 	 �D�T̂�A� and T̂DA(t) 	 eiĥBt/–h T̂DA(0) e�iĥBt/–h, where ĥB 	
¥a�a�a��a� is the bridge vibrational Hamiltonian. The term

�eiĥDt/–he�iĥAt/–h�D	�
v

PDv�v�eiĥ Dt/–he�iĥAt/–h�v�, [5]

is the thermally weighted time-dependent Franck–Condon factor
(ĥD 	 ¥v�v�v��v� and ĥA 	 ¥w�w�w��w� are the vibrational Hamilto-
nians for the donor and acceptor energy surfaces).

Eq. 3 is a time-domain expression for the rate, equivalent to the
energy-domain expression in Eq. 1 (its Fourier transform). It
provides a time-dependent view of the Condon approximation
breakdown. The time integral in Eq. 3 is the Fourier transform of
the product of two decaying functions, CTDA

(t) 	 �T̂DA(t)T̂AD(0)�B

and CFC(t) 	 �eiĥDt/–he�iĥAt/–h�D, evaluated at the D–A energy gap
frequency. To recover the standard expression for the Franck–
Condon rate, we replace CTDA

(t) in Eq. 3 by CTDA
(0) 	 �T̂DA

2 (0)� and
factor it out of the integral, i.e.,

kDA �
1
–h2

�T̂DA
2 �0���

��

�

dt ei�ED�EA�t/–h�eiĥDt/–he�iĥAt/–h�D. [6]

A necessary condition for the validity of this approximation is that
CFC(t) decays much more rapidly than CTDA

(t). The time integral in
Eq. 3 is equal to the convolution integral (2�)�1��

� d
C̃TDA
([ED �

EA]�–h � 
) � C̃FC(
) of the Fourier transforms of CFC(t) and
CTDA

(t). If CFC(t) decays much faster than CTDA
(t), then the width of

C̃FC(
) is much greater than the width of C̃TDA
([ED � EA]�–h � 
)

(assuming roughly Lorentzian or Gaussian envelopes for both
functions). Therefore, in the frequency region around 
DA 	 [ED

� EA]�–h, where C̃TDA
([ED � EA]�–h � 
) is nonzero, C̃FC(
) is a

slowly varying function. Substituting C̃FC(
) � C̃FC(
DA) � (
 �

DA) � dC̃FC(
DA)�d
 in the convolution integral, and keeping
only C̃FC(
DA), gives C̃FC(
DA) � (2�)�1��

� d
�C̃TDA
(
�) (where


� 	 
DA � 
). This zeroth-order expression is equivalent to Eq.
6, because (2�)�1��

� d
�C̃TDA
(
�) 	 CTDA

(t 	 0) 	 �T̂DA
2 (0)�, and

C̃FC(
DA) is the time integral of Eq. 6. Corrections to the Franck–
Condon rate can be derived by retaining higher-order terms in the
Taylor expansion of C̃FC(
). Non-Condon corrections generally
depend on ED � EA, in addition to the decay times of CFC(t) and
CTDA

(t) (17–19, 22, 24), because the energy gap determines a third
time scale in Eq. 3, the oscillation period of the exponential.

The advantage of the time-domain description (Eq. 3) is that the
decay times of CFC(t) and CTDA

(t) can be associated readily with
structural fluctuations of the molecule and its solvent, by using
molecular dynamics (MD) simulations and semiclassical approxi-
mations of the correlation functions. In the classical limit for bridge
motion, the T̂DA(t) matrix elements averaged over bridge vibra-
tional states (Eq. 4) are replaced by a superexchange matrix element
that is modulated by the classical bridge trajectories R(t) {i.e.,
TDA(t) 	 TDA[R(t)]}. In this case, the averages in Eqs. 4 and 5
become averages over classical trajectories.

Correlation Functions in Azurin
To our knowledge, the only computation of the short-time decay of
CFC(t) for a biological ET system was carried out for azurin by
Lockwood et al. (69). The decay was computed by using the frozen
Gaussian approximation for the nuclear wavepackets (70, 71). The
multidimensional nuclear wave functions were approximated as
products of atom-centered Gaussian wavepackets of constant
widths moving along classical trajectories (obtained by MD simu-
lations). In this case, CFC(t) is the thermal average of the time-
dependent overlap ��D(t)��A(t)� between an initial nuclear wave-
packet propagated with the electron in the donor state and the same
wavepacket propagated with the electron in the acceptor state. The
time it takes to lose overlap is �FC. In this semiclassical approach,
the rate in Eq. 3 is

kDA
FG�

1
–h2 �

��

�

dtei�ED�EA�t/–h�TDA� t�TDA(0)�T ���D� t� ��A� t���T ,

[7]

where TDA(t) is the superexchange matrix element evaluated along
classical nuclear trajectories, and � �T denotes the classical thermal
average. Lockwood et al. (69) reported �FC 	 3–4 fsec with
contributions from both solvent and protein matrix relaxation.
Their value is consistent with the estimate �FC � –h��2�KBT � 3
fsec, with � � 1 eV (1 eV 	 1.602 � 10�19 J) at room temperature.
Although �FC is not the only time scale associated with the thermally
weighted Franck–Condon factor (65, 66), it seems that, at least in
the case of azurin, it is the shortest time scale.

TDA(t) fluctuations have been studied for many ET systems using
MD simulations and quantum chemical semiempirical calculations
(20, 25, 27–37). In most cases, large fluctuations in TDA were
observed, sometimes on time scales as short as tens of femtosec-
onds. A measure of the fluctuations of TDA(t) is the coherence
parameter, defined as Rcoh 	 �TDA�2��TDA

2 � (32). For a flexible
bridge with multiple interfering tunneling pathways Rcoh ap-
proaches zero. The coherence parameter is the infinite time limit
of the normalized autocorrelation function, Rcoh 	 limt3�CTDA

(t)�
CTDA

(0) (in the classical limit for the nuclear motion). The coher-
ence parameter does not contain information about how fast
coherence is lost as a result of the fluctuations in the matrix
element. This information is contained in the decay time of CTDA

(t),
�coh. Analysis of the spin–boson model with an exponentially
decaying CTDA

(t) (CTDA
(t) � exp[�t��coh]) has shown a complex

dependence of the non-Condon rate on �coh (18). Matrix element
fluctuations may enhance or reduce the ET rate (with respect to its
static, infinite �coh value), depending on the relative magnitudes of
the reorganization energy and the driving force (18).

Recently, a perturbative theory was developed (24) to calculate
non-Condon corrections to the ET rate. The theory is based on the
Taylor expansion of C̃FC(
) described in the previous section. It
is equivalent to an expansion of the rate in terms of Rcoh and �coh,
and it gives a lowest-order correction to the classical Marcus rate
equal to

k�2� � k�0� � �–h2�coh
�2 ��1 	 Rcoh�2��� � �E0�2

	 2�KBT���4�KBT�2, [8]

where k(0) is the Marcus rate, � the reorganization energy, and �E0

is the driving force of the reaction. k(2) also depends on (�FC)2, as
seen by substituting �2�KBT � –h��FC in Eq. 8. Rcoh and �coh were
computed from MD�semiempirical simulations of a C-clamp do-
nor–acceptor molecule in different solvents (37). CTDA

(t) showed a
decay time of �coh � 0.1 psec and a coherence parameter close to
zero. These values gave a negligible non-Condon correction to the
rate (0.04%) based on Eq. 8.
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To our knowledge, this C-clamp molecule analysis is the only
computation of CTDA

(t) for an ET system. Because Franck–Condon
breakdown depends on the relative decay times of CTDA

(t) and
CFC(t), it is important to explore CTDA

(t) for a biological ET system
like azurin, where there is a wealth of experimental information on
the rates (72–76), as well as prior analysis of CFC(t) (69). Here, we
compute CTDA

(t) for the Ru-modified azurin with Protein Data
Bank ID code 1BEX (77) and some of its mutants. We use MD
simulations and extended-Hückel electronic structure calculations
to compute CTDA

(t). Given the femtosecond-time-scale decay of
CFC(t) (69), we focus on the short time decay of CTDA

(t) and interpret
this decay in terms of protein structure and dynamics. Fig. 1 shows
the structure of azurin and positions of the histidine residues linked
to the Ru-bipyridine complex in the wild type (WT) and the
derivatives as follows: H83G Q107H, H83G M109H, H83G K122H,
H83G T124H, and H83G T126H. The donor–acceptor pairs were
chosen to study CTDA

(t) as a function of the following: (i) average
(MD-based) donor–acceptor distance (metal-to-metal), T122H (14
Å), WT (17 Å), M109H (19 Å), T124H (22 Å), Q107H (25 Å), and
T126H (25 Å); (ii) distance along the same covalent pathway,
(T122H vs. T124H and T126H); and (iii) intervening medium
structure (covalent, hydrogen-bonded, or mixed pathways) for
approximately the same average donor–acceptor distance (Q107H
and T126H). Further, for all donor–acceptor pairs, CTDA

(t) is
computed for a range of tunneling energies to assess the sensitivity
of the correlation function to D�A energetics.

By choosing donor–acceptor pairs with similar immediate envi-
ronments, we aim to isolate the effects of bridge structure and
dynamics on CTDA

(t). Further, because of the approximations con-
tained in MD simulations and extended-Hückel calculations, we
seek generic features of the correlation functions that are robust
with respect to parameter choice (e.g., tunneling energy) and
geometric constraints. Only the short-time dynamics of CTDA

(t) are
explored because the initial decay of the Franck–Condon factor is
very rapid.

MD Simulations. The simulated Pseudomonas aeruginosa azurin
structures were based on the Protein Data Bank structure 1BEX

(77). Five other structures with different locations of the Ru–
bipyridine complex were modeled by performing a H83G mutation
and Q107H, M109H, K122H, T124H, or T126H mutations using
the SYBYL molecular modeling package (Version 6.5, Tripos As-
sociates, St. Louis). The Ru–bipyridine complex was added to each
derivative by using the program VMD (www.ks.uiuc.edu�Research�
vmd) and the 1BEX structure as a template. All structures were
solvated in bulk TIP3 water, and Na� and Cl� counterions were
added to an ionic strength of 200 mM. The resulting structures
included 18,267–19,420 atoms and had dimensions of �55 � 57 �
53 Å3.

The structures underwent energy minimization for 500 steps with
harmonic constraints imposed on the protein backbone and Ru–
bipyridine complex, followed by equilibration for 200 psec with the
same constraints and 1 nsec without constraints at 310 K. Simula-
tions were performed on up to 300 processors at the Duke
University Center for Computational Science, Engineering and
Medicine cluster (www.csem.duke.edu) and on the Biophysics
Cluster at the University of Cyprus, by using the programs CHARMM
(78) and NAMD (www.ks.uiuc.edu�Research�namd) with the
CHARMM force field (79), isothermal–isobaric (NpT) ensemble,
periodic boundary conditions, a Langevin thermostat, and full
electrostatics particle-mesh Ewald calculations (80). The force-field
parameters for the copper center were taken from ref. 81, and the
parameters for the Ru–bipyridine complex were taken from ref. 27.
Protein conformation samples for the effective coupling calcula-
tions were obtained by performing three series of MD simulations
(5,000 conformations saved every 1, 10, and 100 fsec, respectively)
at 310 K for each derivative.

To explore how protein structural motion affects the correlation
function decay time, additional MD simulations were performed
for the WT 1BEX as follows: (i) Simulations with no constraints at
100, 30, 10, and 3 K (preceded by a 1-nsec-long equilibration at
these temperatures); (ii) simulations at 310 K with SHAKE con-
straints on all bonds to suppress bond-length fluctuations [the
program CHARMM (78) was used for this simulation, because
implementation of the SHAKE algorithm in NAMD2 is limited to
bonds with hydrogen atoms); and (iii) simulations at 310 K with
SHAKE constraints on all bonds with hydrogen atoms and all
valence angle force constants (including Urey–Bradley terms)
scaled up by a factor of 1,000 to suppress fluctuations of both bond
lengths and valence angles (these simulations were performed with
integration time step of 0.1 fsec).

TDA Calculations. In the superexchange regime, the effective tun-
neling coupling is given by refs. 82 and 83

TDA�E� � �
ij�D,A

�ES̃ 	 H̃�Di
�d���E 	 H̃��1� ij

�b��ES̃ 	 H̃� jA
�a�, [9]

where S̃ and H̃ are the orbital overlap and Hamiltonian matrices of
the donor [index (d)], bridge [index (b)], and acceptor [index (a)],
respectively. The calculations were performed by using Slater-type
valence orbitals and an extended-Hückel Hamiltonian. Calcula-
tions at this level are rapid and provide reasonable qualitative
estimates of the effective tunneling matrix elements in proteins and
small molecules (32, 35, 83–90)

The calculations were performed by using code based on the
program FORTICON8 (91), ITPACK2C routines (92), and parameters
for the extended-Hückel Hamiltonian and the Slater orbitals based
on density functional calculations (93). To describe the extent of
mixing the initial with final states onto the bridge, the effective
electronic coupling was renormalized with the method described in
refs. 35, 90, and 94 as follows:

TDA
norm�E tun�

�
TDA�E tun�

�1 	 TDD�E tun��E tun��1 	 TAA�E tun��E tun
. [10]

Fig. 1. Structures of the Ru-modified WT azurin 1BEX and its mutants, H83G
Q107H, H83G M109H, H83G K122H, H83G T124H, and H83G T126H, used in the
calculations of the TDA correlation functions.
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Ab initio calculations of Solomon and coworkers (95, 96) indicate
that the azurin donor state is dominantly composed of a dxy-orbital
of copper (�dxy

Cu) and a py-orbital of sulfur in Cys-112 (�py
S ). In our

calculations, the molecules were oriented so that the Cu–S metal
bond is aligned along the x axis, and the nitrogens in His-46 and
His-117 are positioned in the x-y plane [more precisely, close to the
x-y plane, because the strongest copper ligands form a slightly
nonplanar structure (95, 96)]. The donor orbital was defined as
�D 	 �0.67�py

S � 0.74�dxy
Cu. Because the t2g states fluctuate in energy

as the protein fluctuates, the effective electronic coupling was
computed to each of the five d-orbitals of ruthenium. The values of
Rcoh and �coh were computed for each d-orbital and then averaged.

Discussion
Fig. 2 shows the autocorrelation function of TDA, normalized by its
initial value, the initial ensemble average of TDA

2 , CTDA
norm(t) 	

�TDA(t)TDA(0)���TDA(0)2�. The averaging was performed over a
trajectory of 5,000 � 1-fsec MD snapshots. The coherence param-
eter is the long time limit value of CTDA

norm(t), and �coh is approxi-
mately the amount of time it takes for CTDA

norm(t) to drop to 1�e of its
initial value. CTDA

norm(t) in Fig. 2 is not exact; it contains both
systematic and statistical error. The systematic error is related to the
approximations of classical MD, time step, and extended-Hückel
electronic structure analysis. The statistical error is related to the
use of finite duration trajectories for the averaging. This error
increases rapidly with t because fewer points are used for the
computation of CTDA

norm(t) for large t. Therefore, only the short time
dynamics of �TDA(t)TDA(0)� is reliable, and �coh should be derived
from these dynamics. The method used to compute �coh and its
error is described in ref. 97. Given C̃TDA

(t) 	 ��TDA(t)�TDA(0)� for
a trajectory of length N (where �TDA(t) 	 TDA(t) � �TDA�),
the coherence time (in femtosecond units) is defined as �coh 

0.5 � ¥i	1

kmax C̃TDA
(i)�C̃TDA

(0), where the sum is terminated when
kmax � 6�coh

est (kmax) (97). The corresponding error is ��coh
�

�coh�2(2kmax � 1)�N, and it reflects the statistical error for the
short-time component of the autocorrelation function. An al-
ternative definition for the coherence time is �coh(�) 	
0

� dt[C̃TDA
(t)]2�[C̃TDA

(0)]2, where � is restricted to short times
(98). In this case, �coh can be computed by plotting �coh(�) as a
function of � until the first plateau is reached. We found that the
two methods give similar results for �coh. Because of the con-
siderable error in the autocorrelation function for large t, the

coherence parameters were not derived by taking the large t limit
of normalized autocorrelation functions. Rather, they were
computed directly from the averages �TDA� and �T DA

2 � by setting
Rcoh 	 �TDA�2��T DA

2 �. Error analysis for �TDA� and �T DA
2 � (and

thus Rcoh) is based on the block renormalization method de-
scribed in ref. 99.

Fig. 3 shows the dependence of �TDA� (Upper) and �TDA
2 � (Lower)

on the number N of MD conformations used to compute the
averages (WT with acceptor on the Ru dx2�y2 orbital). All confor-
mations were chosen from the same MD trajectory (0.5-nsec total
length) at equal intervals. The first point in both graphs corresponds
to averaging over 10 MD conformations separated by 50 psec, the
final point to 5,000 conformations separated by 100 fsec. The
averages and their errors stabilize as the number of points increases.
At N 	 5,000, the values are similar to those obtained from 5,000
conformations separated by 1 fsec. This result is not surprising
because all of the computed coherence times are �100 fsec, i.e., a
5,000 � 1-fsec trajectory contains at least 50 independent blocks. It
should be noted that this kind of error analysis is often neglected
in the computation of �TDA� and �TDA

2 � for proteins. Rather,
emphasis is usually placed on the level of electronic structure
theory. Even though a high-level quantum chemical method may
reduce the systematic errors of average values, improving electronic
structure methods does not address statistical errors. Statistical
errors can be large because of the limited number of data points
used in the averaging as the computational cost of the quantum
chemical calculations grows.

Tables 1–3 show the values of Rcoh and �coh (and their statistical
errors �Rcoh

and ��coh
, respectively) averaged over the five donor Ru

d-orbitals. For each Ru d-orbital, both Rcoh and �coh were computed
from a 5,000-fsec trajectory (1-fsec time step) at Etun 	 �10.8 eV
[the value used in previous studies of azurin (88, 90)]. Table 1 shows
Rcoh and �coh for the WT and the mutants at 310 K. The entry order
in the table tracks donor–acceptor center-to-center distance (the
last column shows the average distances for �5,000 fsec). Table 2
shows Rcoh and �coh for the WT as a function of temperature. Table

Fig. 2. C TDA
norm(t) 	 �TDA(t)TDA(0)���TDA(0)2� for the WT computed from a trajec-

tory of 5,000 � 1 fsec MD snapshots at 310 K. The donor is the Cu–S(Cys-112)
orbital described in TDA Calculations, and the acceptor is a dx2�y2 ruthenium
orbital. The tunneling energy is �10.8 eV. The coherence parameter is the
long-time limit of C TDA

norm(t), and �coh is approximately the amount of time it takes
for C TDA

norm(t) to drop to 1�e of its initial value.
Fig. 3. The dependence of �TDA� (Upper) and �TDA

2 � (Lower) on the number (N)
of MD conformations used to compute the averages. All conformations were
chosen from the same MD trajectory of the WT structure (0.5-nsec total length).
Thetemperature is310K,andTDA wascomputedwithEtun 	�10.8eV.Thedonor
and acceptor orbitals are the same as in Fig. 2. The first point N 	 10 on the
horizontal axis denotes 10 MD conformations separated by 50 psec, the second
point is 25 conformations separated by 20 psec, and the final point is 5,000
conformations separated by 100 fsec. In all cases, the block renormalization
method was used to compute the errors.
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3 shows these values for the WT at 310 K and different constraints
imposed on the protein. The first row of the table reports values
obtained for unconstrained MD. The second row data were com-
puted with constraints on all bond lengths (vide supra). The third
row shows the values computed with constraints on lengths of bonds
with hydrogen atoms and all valence angle force constants scaled up
by a factor of 1,000.

The tables are representative of the results we obtained for
different 5,000-fsec trajectories. The mutants T122H, T124H, and
T126H lie along the same covalent pathway, whereas Q107H and
T126H have approximately the same donor–acceptor distance but
different intervening pathways (Fig. 1). Table 1 shows that the
decay of �TDA(t)TDA(0)� for all structures is of the order of a few tens
of femtoseconds, and the coherence parameter �TDA�2��TDA

2 � is of
the order of 0.1 or less. Therefore, both Rcoh and �coh are robust,
changing little with donor–acceptor distance and intervening me-
dium. Table 2 shows that Rcoh and �coh change little with temper-
ature. An increase in Rcoh is observed only at 30 K and lower
temperatures (not probed in experiments), whereas �coh does not
depend on temperature within the statistical error.

Table 3 summarizes how constraints on protein structural flex-
ibility influence Rcoh and �coh. Use of different constraints, along
with the temperature dependence, provides a strategy to identify
specific kinds of protein motion that control these two parameters.
The TDA(t) time series show the major fluctuations on the time scale
of tens of femtoseconds. Much smaller amplitude fluctuations of
the femtosecond time scale are superimposed on the major fluc-
tuations. These two time scales correspond to valence angle vibra-
tions and covalent bond vibrations, respectively. MD does not
accurately describe the time dependence of bond vibrations, but it
does give the correct order of magnitude for the rms deviations of
bond lengths. Therefore, we expect that the magnitudes of matrix
element fluctuations caused by bond vibrations, as predicted by
MD, are of the right order of magnitude. The first kind of
constraints used in our simulations was the SHAKE constraints on
all bond lengths (including the donor and acceptor units). In the
TDA(t) time dependence, these constraints eliminate the weak
(femtosecond time scale) fluctuations but have a negligible effect
on the strong (tens of femtoseconds) fluctuations. Accordingly, as
shown in Table 3, neither Rcoh nor �coh is significantly affected by
the SHAKE constraints, indicating that these parameters are not
sensitive to covalent bond vibrations. The other kind of constraints
included the SHAKE constraints on lengths of all bonds with
hydrogen atoms, combined with scaling up all force constants for

valence angles. Suppressing both the fastest bond vibrations and all
valence angle vibrations, these constraints visibly increase the time
scale of the major TDA(t) fluctuations, consistently increasing �coh by
almost 80% (Table 3). Importantly, the 1,000-fold increase in the
valence angle force constants has a similar effect on angle fluctu-
ations as a 1,000-fold decrease in temperature, i.e., cooling the
system down to �0.3 K. This result explains why no significant
increase in �coh was observed in the simulations at low tempera-
tures: even at 3 K, angle fluctuations were large enough to cause
dephasing. In addition to the direct effect on dephasing, valence
angle fluctuations also drive dihedral angle fluctuations that, in
turn, modulate the lengths of hydrogen bonds, thereby affecting the
electronic interference among the dominant ET pathways and TDA

(32). Indeed, we observed a decrease of �30% in dihedral angle
fluctuations caused by imposing the above constraints. However,
these constraints have no significant effect on Rcoh, suggesting that
the latter is controlled not only by valence angle fluctuations but
also by dihedral angle fluctuations, which dominate the slower
motion of the protein structure.

Finally, we do not find a significant dependence of Rcoh and �coh
on the electron tunneling energy for relevant ET tunneling energies
in azurin. A large effect of the tunneling energy on �coh was
observed only when the tunneling energy was artificially brought
into resonance with bridge-centered eigenstates. In this case, �coh
dropped, and coherence was lost within 5 fsec. This situation is not
expected to be relevant to the Ru-modified derivatives examined
here, but recent experiments with highly oxidizing ET reagents in
proteins may access this regime (100, 101). Moreover, near-
resonant ET may be relevant to DNA ET (8), as well as to
unsaturated organic ET systems with low donor(acceptor)-bridge
energy gaps (41, 42).

Fast coherence loss in azurin arises from TDA fluctuations on the
time scale of tens of femtoseconds. The time scale for coherence
loss is long compared with the Franck–Condon time of 3–4 fsec for
azurin computed by Lockwood et al. (69) (the latter is in agreement
with the estimate �FC � –h��2�KBT 	 3 fsec for � � 1 eV at room
temperature). Therefore, we expect the Franck–Condon approxi-
mation to Eq. 6 to be accurate for single-step tunneling in azurin.

Interestingly, the values of Rcoh and �coh in azurin are not very
different from those computed (37) for ET in a much smaller
C-clamp-shaped donor–acceptor molecule. In the C-clamps, fluc-
tuations in the superexchange interaction through solvent presum-
ably lead to the decoherence. The time scale of this decoherence is
within an order of magnitude of the electronic decoherence time
computed here for the Ru-modified azurins. By using Eq. 8 for
azurin with an average �coh � 30 fsec, � � 1 eV, and � E0 � ��,
gives a correction of 0.8% of the Marcus rate. As in the case of ET
in C-clamped molecules, for ET in azurin non-Condon effects are
not significant.

The type of non-Condon effects considered here are relevant to
ET reactions through avoided crossings. If ET involves an electronic
transition at a conical intersection (102) (as may be the case in
excited-state ET), non-Condon effects are significant. In this situ-
ation, the Born–Oppenheimer approximation is not valid at the
avoided crossing, and corrections to the superexchange expression
for the tunneling matrix element must be considered (63).

Table 3. Constraint dependence for WT at T � 310 K and Etun �
�10.8 eV

Structural constraints Rcoh �Rcoh �coh, fs ��coh, fs

None 0.12 0.08 34.9 15.2
SHAKE (all bonds) 0.08 0.11 39.1 21.1
SHAKE (bonds with hydrogens)

and all valence angles
0.06 0.14 68.5 44.5

Table 1. Distance and medium dependence at T � 310 K and
Etun � �10.8 eV

Structure Rcoh �Rcoh �coh, fs ��coh, fs �RDA�, Å

K122H 0.04 0.06 26.7 9.7 13.8
WT 83H 0.12 0.08 34.9 15.2 17.3
M109H 0.03 0.07 55.9 32.3 19.1
T124H 0.11 0.09 27.5 10.2 21.9
Q107H 0.07 0.06 20.3 6.4 24.8
T126H 0.01 0.02 26.6 9.8 25.1

Table 2. Temperature dependence for WT at Etun � �10.8 eV

Temp., K Rcoh �Rcoh �coh, fs ��coh, fs

310 0.12 0.08 34.9 15.2
100 0.21 0.12 52.5 28.8
30 0.60 0.10 44.1 25.3
10 0.66 0.12 43.0 19.8
3 0.86 0.10 30.8 14.4

Temp., temperature.
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Conclusions
Simulations of the tunneling matrix element autocorrelation func-
tion for Ru-modified WT azurin and several of its mutants show
that the decay of �TDA(t)TDA(0)� is rapid, with a time constant of a
few tens of femtoseconds. The coherence parameter Rcoh 	 �TDA�2�
�TDA

2 � is of the order of 0.1 or less. This finding means that azurin
is a fluctuating medium for tunneling with multiple interfering
tunneling pathways. Within the statistical errors of our analysis, we
cannot ascertain any significant dependence of Rcoh and �coh on the
donor–acceptor distance or intervening medium structure or any
sensitivity to the presence or absence of chemical bond vibrations.
Importantly, decoherence occurs on the time scale of valence angle
fluctuations, indicating the central role of valence angle fluctua-
tions in TDA dephasing. All computed �coh values are an order of
magnitude longer than the decay time of the thermally weighted

Franck–Condon factor �FC, computed by Lockwood et al. (69) to be
3–4 fsec. Therefore, non-Condon effects are insignificant for the
case of azurin in the deep tunneling regime. As tunneling energies
approach the charge injection limit, the Condon approximation will
likely fail.

The methodology described in this work is suited for the study of
dynamics–function relationships for ET reactions. An interesting
question that should be addressed, by using this methodology, is
whether non-Condon effects and dephasing characteristics of pro-
teins vary with their secondary (and tertiary) structures.
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