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ABSTRACT  

Copper is an essential metal for plants. It plays key roles in photosynthetic and respiratory electron 

transport chains, in ethylene sensing, cell wall metabolism, oxidative stress protection and biogenesis 

of molybdenum cofactor. Thus, deficiency in the copper supply can alter essential functions in plant 

metabolism. On the other hand, copper during decades has been used in agriculture as an antifungal 

agent and it is also extensively released into the environment by human activities that often cause 

environmental pollution. Accordingly, excess copper is present in certain regions and environments, 

and exposure to that can be potentially toxic to plants causing phytotoxicity by the formation of 

reactive oxygen radicals that damage cells or by the interaction with proteins impairing key cellular 

processes, inactivating enzymes and disturbing protein structure. Plants have a complex network of 

metal trafficking pathways in order to appropriately regulate copper homeostasis in response to 

environmental copper level variations. Such strategies must prevent accumulation of the metal in the 

freely reactive form (metal detoxification pathways) and to ensure proper delivery of this element to 

target metalloproteins. The mechanisms involved in the acquisition and the distribution of copper 

have not been clearly defined although emerging data in last decade, mainly obtained on copper 

uptake, and both intra- and intercellular distribution, as well as on long-distance transport, are 

contributing to the understanding of copper homeostasis in plants and the response to copper stress. 

This review gives a brief overview of the current understanding of main features concerning copper 

function, acquisition and trafficking network as well as interactions between copper and other 
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elements.  
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1 INTRODUCTION  

Plants require mineral nutrient elements, predominantly acquired from the soil but also from foliar 

applications, to maintain normal growth and development and ensure the completion of life cycles. 

The acquisition and distribution of these elements are important targets for research because their 

metabolic and biochemical functions are associated with all aspects of plant physiology, plant 

biochemistry and plant molecular biology. Copper (Cu) is a redox-active transition metal essential 

for plants as well as for all living organisms. Cu participates in many physiological processes 

because it is able to exit in multiple oxidation states in vivo. Under physiological conditions Cu exist 

as Cu
2+

and Cu
+
. The cation Cu

2+ 
is often bound by nitrogen in histidine side chains, whereas Cu

+ 

prefers interaction with the sulphur in cysteine or methionine. Cu acts as structural element in certain 

metalloproteins, many of which are involved in electron transport in chloroplasts and mitochondria 

as well as in oxidative stress response. Cu ions act as cofactor in enzymes such as Cu/Zn-superoxide 

dismutase (Cu/ZnSOD), cytochrome c oxidase, ascorbate oxidase, amino oxidase, laccase, 

plastocyanin and polyphenol oxidase. At cellular level, Cu plays an essential role in cell wall 

metabolism, signalling to the transcription and protein trafficking machinery, oxidative 

phosphorylation, iron mobilization and the biogenesis of molybdenum cofactor (for reviews see 

Raven et al. 1999; Yruela 2005; Gratão et al. 2005; Pilon et al. 2006; Krämer and Clemens 2006; 

Puig et al. 2007).  

 Thus, plants require Cu for normal growth and development, and when this ion is not 

available, plants develop specific deficiency symptoms, most of which affect young leaves and 

reproductive organs. On the other hand, the redox properties that make Cu essential element also 
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contribute to its inherent toxicity. Redox cycling between Cu
2+ 

and Cu
+
 can catalyze the production 

of highly toxic hydroxyl radicals, with subsequent damage to cells at level of lipids, membranes, 

nucleic acids, proteins and other biomolecules (Halliwell and Gutteridge 1984). Although Cu usually 

binds to proteins it has capacity to initiate oxidative damage and interfere with important cellular 

processes such as photosynthesis, pigment synthesis, plasma membrane permeability and other 

metabolic mechanisms, causing a strong inhibition of plant development (van Assche and Clijsters 

1990; Marschner 1995; Küpper et al. 2003; Bertrand and Poirier 2005; Yruela 2005). Cu in excess 

can become extremely toxic causing symptoms such as chlorosis and necrosis, stunting, and 

inhibition of root and shoot growth. At cellular level, excess Cu can inactivate and disturb protein 

structure as a result of unavoidable binding to proteins. Toxicity may result from: i) binding to 

sulfhydryl groups in proteins, thereby inhibiting enzyme activity or protein function; ii) induction of 

a deficiency of other essential ions; iii) impaired cell transport processes; iv) oxidative damage. 

 Nevertheless, either Cu deficiency or excess Cu can cause disorders in plant growth and 

development by adversely affecting important physiological processes in plants. For healthy plant 

growth and development Cu must be acquired from the soil, transported throughout the plant, 

distributed and compartmentalized within different tissues and its content carefully regulated within 

different cells and organelles. Tissue and cellular concentrations of Cu need to be controlled within a 

narrow physiological range. For this purpose, plants –like all other organisms- have homeostatic 

mechanisms to acquire appropriate amounts of Cu in diverse environmental conditions and precisely 

delivering it to specific compartments and target to metalloproteins while avoiding its toxic effect. 

Thus, the acquisition and assimilation of Cu must be coordinated with mineral supply and plant 

demand in a complex and regulated interacting network. Cu homeostasis processes are dynamic in 

nature and respond to metal availability, annual cycles, and growth phases.  

 Although the mineral nutrition of higher plants is of fundamental importance to agriculture 

and human health, many basic questions remain unanswered, particularly in relation to the 
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accumulation of essential heavy metals. Which mechanisms explain that all tissues receive an 

adequate supply of the heavy metals required for vital cellular processes? Which mechanisms 

prevent plants from accumulating to toxic levels? These are some questions of fundamental 

importance in plant biology, which underlie an emerging area of research now that the complete 

sequencing of several genomes and the necessary molecular tools are available. Genomic approaches 

are being applied to understand the processes of nutrient acquisition, assimilation and metabolism. In 

particular, the studies developed in the yeast Saccharomyces cerevisiae have contributed to progress 

in the knowledge of basic cellular components of Cu homeostasis in eukaryotic organisms. The use 

of genetic and molecular techniques such as sequence comparison to identify transporters, functional 

complementation of yeast mutants and plant transformation to regulate gene activities has been 

crucial for this development. A wide range of gene families and proteins are being identified in 

plants that are likely to be involved in Cu homeostasis. Cu homeostasis is also receiving a growing 

interest in plant research since it is implicated in adaptive responses to the oxidative damage 

produced by environmental stress. Mechanisms must exist to satisfy the requirements of cellular 

metabolism and at the same time to protect cells from toxic effects. At cellular level, specific 

transporters are responsible for the uptake and secretion of metal ions, and there may be additional 

transporters that allow sequestration into organelles. In particular, the interaction of metal 

chaperones with transporters deserves attention since this may have important implications for 

sequestration of metals within intracellular stores. During the last ten years a rapid progress has been 

made in this area. Thus, heavy metal homeostasis is a very exciting and fast developing field in plant 

biology.   

 This review gives a briefly overview of the current understanding of main features 

concerning to Cu acquisition, trafficking network and interactions between Cu and other metal ions 

as well as Cu regulatory and tolerance mechanisms. 
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2 COPPER FUNCTIONS, ACQUISITION AND TRANSPORT   

2.1 Copper bioavailability.  

Cu concentration in vegetative plant tissues varies depending on plant species or ecotypes, 

developmental stage and environmental factors such as nitrogen supply and soil chemical properties. 

For instance: i) plants grown under high nitrogen supply require significantly more Cu; ii) Cu 

bioavailability tends to be larger in acidic soils. It has been reported that the Cu concentration in 

plant tissues is between 1 and 5 μg g
-1 

dry weight (Marschner 1995) and the average composition of 

Cu in leaves is 10 μg g
-1

 dry weight (5-20 μg g
-1

 dry weight) (Baker and Senef 1995) but these 

concentrations can vary among plant species and varieties. Cu concentrations in cells need to be 

maintained at low levels since this element is extremely toxic in view of its high redox properties.  

The critical free Cu concentration in the nutrient media (below which Cu deficiency occurs) ranges 

from 10
-14

 to 10
-16

 M. Plants usually find a variable supply of Cu in the soil since typically soil 

solution concentrations range from 10
-6

 to 10
-9

 M (Marschner 1995), but plants may still need to 

solubilize and reduce the metal.  

 Concentrations of free metal ions or metal chelates in the soil solution are generally rather 

low although this depends on soil properties (Kochian 1991; Marschner 1995). In both soil solution 

and solid phase Cu is mainly associated with inorganic and organic matter by complexation or 

absorption. Cu ions have a high affinity for binding sites of soil components, as well as can be 

absorbed onto surfaces of clays and Fe or Mn oxides, co-precipitated with carbonates and phosphates 

or present in the lattice of primary silicate minerals. Cu ions can be also bound to cell walls and to 

the outer membrane surface of plant root cells. The distribution of Cu among these various solid and 

plant components will greatly influence the chemical mobility and hence the amount of Cu 

potentially taken up by plants. At acidic pH, dissolved Cu will increase because of its weaker 

adsorption and so will increase the free Cu ion activity. Additionally, with increasing pH, 
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competitive adsorption will arise between organic matters in the solid phase and dissolved organic 

carbon, generally leading to an increase in Cu concentration in the soil solution due to an increase of 

dissolved organic carbon (Carrillo-González et al. 2006). Thus, upon increasing pH, the Cu ions 

activity considerably will decrease at the expense of organically bound complexes species in the soil 

solution (Sauvé et al. 1997).  

 On the other hand, in the rizhosphere, root and microbial activities can influence the chemical 

mobility of metal ions and ultimately their uptake by plants as consequence of alterations of soil pH 

or dissolved organic carbon (Hinsinger and Courchesne 2007). For instance, in the case of 

Graminaceous species, the increased root secretion of Fe-chelating compounds (phytosiderophores) 

under Fe deficiency has been reported to increase Cu uptake in a calcareous soil (Chaignon et al. 

2002). It is noticeable that soil chemical properties can differ between the bulk soil and the 

rizhosphere, so considering only properties in the bulk soil might be a poor predictor of Cu 

bioavailability and ultimately Cu uptake which rather depends on the particular properties induced 

by roots in the rizhosphere. Accordingly, contradictory results concerning the effect of pH on Cu 

uptake by plants are found in the literature. In very acidic soils, plant Cu concentration increased 

compared to calcareous soils in rape (Brassica napus L.) and tomato (Lycopersicon esculentum L.) 

(Chaignon et al. 2003; Cornu et al. 2007). On the contrary, Cu accumulation in maize (Zea mays L.) 

was as high in calcareous soils as in acidic soils (Brun et al. 2001). Michaud et al. (2007) did not 

found a clear relationship between Cu uptake and soil pH in durum wheat (Triticum turgidum durum 

L.) in Cu-contaminated soils, probably due to the implication of root-induced changes of pH and 

dissolved organic carbon in the rizhosphere. At low pH, alkalization in the rizhosphere was observed 

compared with the bulk soil, which may result in a reduced Cu bioavailability. In calcareous soils, a 

larger chemical mobility may be related to phytosiderophore secretion leading to greater Cu uptake 

in plants. 
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2.2 Copper function in plants 

Within the plant cell, Cu is required in at least six locations: the cytosol, the endoplasmic reticulum 

(ER), the mitochondrial inner membrane, the chloroplast stroma, the thylakoid lumen and the 

apoplast (Marschner 1995). The number of Cu-dependent proteins in plants is generally smaller 

compared with other metal-dependent proteins (metalloproteins). In Arabidopsis proteome can be 

found 105 and 21 proteins searching “copper protein” and “copper-binding protein” terms, 

respectively (Krämer and Clemens 2006). The most abundant Cu proteins in green tissues are 

plastocyanin and Cu/ZnSOD. In Arabidopsis Cu/ZnSOD is present in three isoforms, of which the 

major isoforms are found in the cytosol (CSD1) and chloroplast stroma (CSD2), and the third 

isoform is found in peroxisome (CSD3) (Kanematsu and Asada 1989; Bueno et al. 1995). In maize 

four cytosol Cu/ZnSOD isoenzymes have been found (Kernodle and Scandalios 2001).  

 In addition to plastocyanin and Cu/ZnSOD there is a large number (>32) of related proteins 

(blue-copper binding proteins) with unknown functions encoded in the Arabidopsis genome 

(Nerissian et al. 1998). For instance, the existence of a Cu protein involved in photosynthetic 

reactions of photosystem II (PSII) non-dependent of plastocyanin was reported earlier (Lightbody 

and Krognann 1967; Barr and Crane 1976). More recently, Burda et al. (2002) found that Cu in an 

equimolar concentration to PSII reaction centre stimulated in vitro the oxygen-evolution activity of 

PSII. Nevertheless, little information respect to this event exists in vivo. An important characteristic 

of Cu
+ 

is its ability to bind small molecules such as O
2
 as ligands. Thus, Cu is a cofactor of a large 

number of oxidases. The best-known oxidase is the mitochondrial cytochrome c oxidase. Other 

members of this enzyme group are: i) amine oxidase enzymes associated to the cell wall that 

catalyzes the oxidation of putrescine that produces H
2
O

2
 involved in lignification, cross-linking of 

cell wall proteins and programmed cell death (Moller and McPherson 1998); ii) multi-copper 

oxidases such as ascorbate oxidases that localize in the apoplast and regulate its redox state, and 
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laccases also localized in the apoplast but not functionally well understood although a role in 

lignification has been proposed (Ramocha et al. 2002); iii) multi-copper oxidase-like proteins such as 

SKU5, which are involved in cell wall formation (Sedbrook et al. 2002); iv) polyphenol oxidase 

found in the thylakoids of some plants, such as spinach (Kieselbach et al. 1998) but not in other 

species such as Arabidopsis (Schubert et al. 2002) that is involved in ROS defence. Cu
+
 can also 

bind ethylene. Accordingly, the ethylene receptor ETR1, which localizes in the endoplasmic 

reticulum (ER), is dependent on Cu
+
 (Rodriguez et al. 1999). Recently, the role of Cu in the 

synthesis of a molybdenum cofactor has been proposed (Kuper et al. 2004). This observation now 

links Cu metabolism to nitrogen assimilation and phytochrome biosynthesis (Mendel 2005).  

  

2.3 Copper acquisition and transport   

Cu acquisition and transport into and within cells is relatively little known in plants but in the last ten 

years rapid progress has been made to understand these processes within plant cells, particularly with 

the application of the knowledge in yeast to other eukaryotes organisms. Consequently, several 

families of heavy metal transporters involved in intracellular homeostasis have been identified in 

plants (for reviews see Fox and Guerinot 1998; Himelblau and Amasino 2000; Williams et al. 2000; 

Markossian and Kurganov 2003; Krämer and Clemens 2006; Colangelo and Guerinot 2006; Puig et 

al. 2007). However little results have been obtained respect to long-distance transport or transport 

processes taking place at root level. For instance, at present it is not clear how plant roots actively 

mobilize Cu ions. Phytosiderophore secretion by monocots is known to enhance Cu mobilization 

(Römheld 1991) but there is no evidence for the uptake of Cu-phytosiderophore complexes by plant 

roots. The recent progress made on the Cu acquisition, transport and distribution is presented here 

(Fig. 1, Table 1).  
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2.3.1 COPT copper transporters  

COPper Transporter Protein (COPT) family has been identified in plants by sequence homology with 

the eukaryotic Cu transporters named Ctr or by functional complementation in yeast (for reviews 

Peña et al. 1999; Labbé and Thiele, 1999; Harris 2000; Puig and Thiele 2002; Puig et al. 2007). The 

Arabidopsis genome contains six genes encoding COPT transporters, COPT1-6. The first one, 

COPT1, is the best characterized member of this Cu transporter family. It was identified by the 

ability of its cDNA to functionally complement a Saccharomyces cerevisiae ctr1Δ mutant defective 

in high-affinity Cu uptake. COPT1 transporter allows the entrance of Cu into cells from the exterior 

to the cytoplasm (Kampfenkel et al. 1995; Sancenón et al. 2003). All members of this protein family 

contain three predicted transmembrane (TM) segments and most posses an N-terminus methionine- 

and histidine-rich putative metal binding domains (Puig and Thiele 2002; Klomp et al. 2003) (Fig. 

2). Genetic data and in vivo uptake experiments have demonstrated that an extracellular methionine 

residue, located approximately 20 amino acids before TM1, and an MxxxM motif within TM2, are 

essential for Cu acquisition, and probably mediate metal coordination during transport. A 

symmetrical trimer organization with a novel channel-like architecture has been shown in the human 

Ctr1 transporter homolog to COPT members (Aller et al. 2004; Aller and Unger 2006).   

 Metal competition experiments suggest that Arabidopsis COPT1, as for other Ctr1 family 

members, is a high-affinity transporter with specificity for Cu
+
 ion (Sancenón et al. 2003) with a K

m 

in the lower micromolar range (Eisses and Kaplan 2002; Lee et al. 2002). COPT transporters do not 

use ATP for Cu import, but their transport ability is stimulated by extracellular K
+
. The COPT1 

transporter is likely to be active in the cell membrane and its expression is negatively regulated by 

Cu. The COPT1 gene is highly expressed in embryos, trichomes, stomata, pollen and roots tips. All 

of these cells are characterized by a lack of functional plasmodesmata, which blocks the acquisition 

of nutrients by a symplastic route. COPT 1 antisense plants have decreased Cu levels as a result of 
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decreased Cu uptake and show sensitivity to Cu chelators. These plants have also a pollen-

development defect and root-elongation phenotype, both of which are reversed by Cu feeding. Thus, 

its participation in root elongation, pollen development and apoplastic Cu transport has been 

proposed (Sancenón et al. 2004). COPT1 plays an important physiological role in root Cu acquisition 

and accumulation since it is required for growth under Cu limiting conditions.   

 Subsequent members of COPT family have been identified by sequence homology to COPT1 

and yeast (Saccharomyces cerevisiae) complementation (Sancenón et al. 2003). The existence of 

three COPT groups according to the number of N-terminus methionine- and histidine- rich boxes has 

been proposed. The first one, including COPT1 and COPT2, displays the more high-affinity Cu 

transporter features being probably plasma membrane proteins. The second group includes the 

COPT3 and COPT5 transporters having only one methionine- and histidine- rich box, which shows 

partially level of both complementation and Cu transport rate. COPT3 and COPT5 probably 

participate in intracellular Cu transport. Putative target sequences to the chloroplast and the secretory 

pathway have been predicted for COPT3 and COPT5, respectively. COPT4 represents a third group 

showing high level expression in roots that lacks methionine residues and motifs essential for Ctr1-

mediated high-affinity Cu transport. These findings suggest a non-direct role in Cu transport 

(Sancenón et al. 2004) and its function in Cu homeostasis is currently questionated. An additional 

member of COPT family, named COPT6, has been identified recently. Further characterization will 

be necessary to know its putative role in Cu transport.  

  

2.3.2 P
1B

-type ATPase transporters   

P-type heavy metal ATPases are involved in the transport of a range essential and potentially toxic 

metals (i.e., Cu
+
,
 
Cu

2+
, Zn

2+
, Cd

2+
, Pb

2+
) across cell membranes (Solioz and Vulpe 1996; Palmgren 

and Axelsen 1998). They transport metals across membranes following the classical E1/E2 Albers-

Post catalytical cycle (Külhbrandt 2004, Argüello et al. 2007). Sequence comparisons generally 
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group P
1B

-type ATPases into two further classes: i) those transporting monovalent cations as Cu/Ag 

and ii) those transporting divalent cations as Cd/Pb/Zn/Co (Axelsen and Palmgren 2001; Cobbet et 

al. 2003). Structurally, P
1B

-type ATPases contain eight transmembrane (TM) segments with various 

cytoplasmic domains involved in enzyme phosphorylation (P-domain), nucleotide binding (N-

domain) and energy transduction (A-domain), domains that are common for all P-type ATPases (Fig. 

2). Additionally, P
1B

-ATPases show different features associated with their singular function in 

heavy metal transport such as i) metal transmembrane binding sites responsible for metal recognition 

and movement across the membrane permeability barrier, and ii) N- and C-termini metal binding 

domains with highly conserved CxxC motif that control the enzyme turnover rate without affecting 

metal binding to transmembrane transport sites (Argüello 2003; Argüello et al. 2007). The 

mechanism operating during metal delivery to metal transmembrane binding sites is still not clear 

but the requirement of conserved amino acid residues in the transmembrane region has been 

proposed (Argüello 2003; Argüello et al. 2007). More recently, the structure of two transmembrane 

transport sites with high metal affinity has been determined in a P
1B

-ATPase transporting Cu
+
 

(Argüello et al. 2008). Site I constituted by two cysteines in TM6 (CPC motif) and a tyrosine in TM7 

and site II formed by asparagine in TM7 and methionine and serine in TM8. Both sites can be 

independently loaded with Cu
+
but their simultaneous occupation is associated with enzyme turnover. 

It has been postulated that chaperone can deliver Cu
+
 directly to the transmembrane metal-binding 

sites, suggesting that in this model the N-terminus metal binding-site has a regulatory function 

without participating in metal transport (González-Guerrero and Argüello 2008; Chen-Chou 2008).  

 Plants differ significantly from other organisms in the number and selectivity of their P
1B

-

ATPases (Williams and Mills 2005). For instance, the number of genes encoding P
1B

-ATPases can 

vary among species. Arabidopsis genome encodes eight members of the P
1B

-type ATPase subfamily, 
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also known as HMA transporters (AtHMA1-AtHMA8), a number similar to other non-plant 

eukaryotic species, which have been characterized to some extent. These proteins differ in their 

structure, function and regulation but all of them are specialized in specific metal ion transport to 

cellular compartments and targets proteins (Baxter et al. 2003; Williams and Mills 2005). The rice 

(Oryza sativa L.) genome contains nine P
1B

-type ATPase genes and ten members of this subfamily 

have been identified in barley (Hordeum vulgare L.).   

 AtHMA1 to AtHMA4 belong to the group implicated in divalent cations transport, and 

AtHMA5 to AtHMA8 act in transport of monovalent Cu
+
 ions. Based on their amino acid sequences 

and topological arrangements, and combining this with their metal affinity the P
1B

-ATPases (HMAs) 

have been classified into six subgroups (P
1B-1 

- P
1B-6

) (Argüello 2003; Argüello et al. 2007). The first 

member cloned in plants was PAA1 (AtHMA6) (P
1B

-type ATPase of Arabidopsis 1) from 

Arabidopsis thaliana L. (Tabata et al. 1997), which shows similarity to the cyanobacterial CtaA 

protein. Later, Shikanai et al. (2003) demonstrated that PAA1 (AtHMA6) is responsible for the 

delivery of Cu to chloroplasts, which provides the cofactor for the stromal Cu/ZnSOD enzyme and 

for the thylakoid lumen protein plastocyanin. paa1 mutants have a high chlorophyll fluorescence 

phenotype arising from impaired photosynthetic electron transport apparently because of a 

deficiency in holoplastocyanin. The phenotype can be rescued by the addition of excess Cu to the 

growth medium. PAA2 (AtHMA8), closely related to PAA1 (AtHMA6), shows similarity to PacS 

transporter from cyanobacteria and transports Cu into the thylakoid lumen to supply plastocyanin 

(Abdel-Ghany et al. 2005b). A double paa1paa2 mutant resulted in seedling lethality, a more severe 

phenotype than that observed for plants defective for both genes, underlying the importance of Cu to 

photosynthesis (Weigel et al. 2003; Abdel-Ghany et al. 2005b). The phenotypes of paa1 and paa2 

mutants were reverted by addition of exogenous Cu but not of the paa1paa2 double mutant, 

suggesting that an alternative lower-affinity pathway for Cu delivery can exist in chloroplasts. 
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Recently, the homolog of PAA2 (AtHMA8) in soybean (Glycine max L. var. Corsoy) named 

GmHMA8 has been identified and localized in the thylakoid membrane (Bernal et al. 2007b).  

 Proteomic analyses of the Arabidopsis chloroplast envelope identified AtHMA1 as a new 

candidate for the alternative Cu transport into this organelle (Seigneurin-Berny et al. 2006). AtHMA1 

localizes in chloroplast envelope and affects Zn- and Cu-uptake activity when expressed in yeast. It 

is worth mentioning that the AtHMA1 protein does not contain the MxCxxM N-terminus Cu
+
-

binding motifs (Fig. 2), but instead, it is histidine rich at the N-terminus domain, suggesting that it 

may transport Cu
2+ 

rather than Cu
+
. Characterization of hma1 mutants revealed lower Cu content in 

chloroplasts and a reduction of the chloroplast Cu/ZnSOD activity, but normal plastocyanin content, 

suggesting that AtHMA1 could deliver divalent ions including Cu
2+

 and Zn
2+

 to Cu/ZnSOD in 

plastids. The idea that Cu
2+

 may be present in the space between both chloroplast envelopes is 

supported by the existence of the chloroplast Cu
2+

-binding protein AtCutA (Burkhead et al. 2003) in 

this location. However, the responsible transporters for this alternative transport activity in 

thylakoids have not been described yet. Furthermore, AtHMA1 may have specific functions in plants 

grown under adverse light conditions (Seigneurin-Berny et al. 2006).   

 The Responsive to Antagonist (RAN1)/AtHMA7 was identified in a genetic screen for plants 

with an unusual response to the ethylene antagonist trans-cyclooctene, underscoring the critical role 

of Cu in the ethylene-signalling pathway (Hirayama et al. 1999). This role is explained by the fact 

that ethylene receptors are Cu-dependent proteins (Rodríguez et al. 1999; Hirayama and Alonso 

2000). In Arabidopsis, RAN1 (AtHMA7) was the first functionally characterized heavy metal 

ATPase. RAN1 (AtHMA7) is involved in ethylene signalling by supplying Cu at the endoplasmic 

reticulum, where it is required for the formation of functional ethylene receptors (Woeste and Kieber 

2000; Chen et al. 2002). The plant hormone ethylene is an important signal in many abiotic stress 

situations but also in plant pathogen interaction. RAN1 (AtHMA7) has also been found in rapeseed 
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(Brassica napus), BnRAN1, (Southron et al., 2004). Among the rice P
1B

-ATPases, OsHMA9 was 

found to form a subclass with RAN1 (AtHMA7). The recent characterization of OsHMA9 indicated 

that it plays a role in Cu detoxification acting as an efflux pump in the plasma membrane (Sichul et 

al. 2007). Mutant oshma9-1 and oshma9-2 plants exhibited the phenotype of increased sensitivity to 

high levels of Cu, and also Zn and Pb. The OsHMA9 gene was mainly expressed in vascular tissues, 

including xylem and phloem and weakly expressed in mesophyll tissues. In developing tissues, 

expression was strong in anthers, suggesting a putative role in metal delivery to rice anthers. The 

importance of metal transport in anthers has been previously reported.   

 The Arabidopsis AtHMA5, the closest homolog of RNA1 (AtHMA7) in the P
1B

-type ATPase 

subfamily, is strongly and specifically induced by Cu in whole plants (Fig. 2). The hma5 T-DNA 

insertion mutants are hypersensitive to Cu and HMA5-defective plants accumulate Cu in roots to a 

greater extent than wild-type plants, suggesting its key role in transmembrane transport, and 

particularly in root Cu detoxification (Andrés-Colás et al. 2006). This phenotype is the opposite of 

that observed for the COPT antisense lines, supporting the notion that COPT1 and AtHMA5 

transport Cu in opposite directions. AtHMA5 is mostly expressed in roots, flowers and pollen. The 

specific interaction of AtHMA5 with two different ATX1-type chaperones, ATX1 and CCH, in 

Arabidopsis thaliana has been demonstrated. Although further experiments are necessary to confirm 

the fact, it has been proposed that AtHMA5 could be involved in Cu efflux at specific root cells and 

its overexpression in plants could be a strategy for improving Cu detoxification under Cu excess.   

  

2.3.3 Copper chaperones  

The Cu chaperones belong to a new family of cytosolic, soluble, low-molecular-weight metal-

receptors proteins named metallochaperones that are involved in the intracellular trafficking of metal 

ions and insert the Cu into the active sites of specific partners, Cu-dependent enzymes (O´Halloran 
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and Culotta 2000; Huffman and O`Halloran 2001). The limited solubility and high reactivity of Cu
+ 

inside the cell requires the participation of these specialized proteins that prevent inappropriate Cu 

interaction with other cellular components. Cu chaperones are conserved in most eukaryotes, but 

specific characteristics seem to emerge in plants. In yeast, the P-type ATPase transporter named 

Ccc2p interacts with a small cytosolic Cu chaperone named Antioxidant1p (Atx1), which delivers 

Cu to the Ccc2p by direct protein-protein interaction. Arabidopsis has two homologs of the yeast 

ATX1 chaperone named Copper Chaperone (CCH) and ATX1 (Himelblau et al. 1998; Andrés-Colás 

et al. 2006). CCH has been the most extensively studied of the Cu chaperones in plants (Mira et al. 

2001a, b). The CCH chaperone exhibits the conserved features of the ATX1-type metallochaperone 

family such as typical lysine residues, overall βαββαβ fold structure and an MxCxxC Cu
+
-binding 

motif in the N-terminus (Pufahl et al. 1997). However, CCH also presents a plant-exclusive C-

terminal domain with special structural characteristics (Mira et al. 2001a,b; Mira et al. 2004) that 

makes CCH unique and distinct from the non-plant ATX1-type chaperones. CCH-like C-terminus 

domains have been only found in higher plants, suggesting a regulatory role for that. Both the CCH 

and ATX1 chaperones complement the yeast atx1 mutant and interact with the N-terminus of 

AtHMA5 (Andrés-Colás et al. 2006). However, the C-terminus of CCH has a negative effect on its 

interaction with AtHMA5. The plant CCH gene expression has been related to oxidative stress and 

senescence, when the plant reallocates nutrient resources. High levels of CCH expression were found 

in Arabidopsis stems and vascular cells that lack nuclei. A plant-specific role in Cu symplastic 

transport through the plasmodesmata during senescence associated with nutrient mobilization has 

been proposed for this extra C-terminus domain of CCH. Expression of CCH increases by oxidative 

stress, senescence, and Cu deficiency. A CCH chaperone has been also identified by differential 

display in tomato (LeCCH) infected with the fungal pathogen Botrytis cinerea (Company and 

González-Bosch 2003) suggesting an interesting relationship between Cu homeostasis and plant 

defence responses.   
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 The COX17 chaperone shares sequence similarity to COX17 from yeast that might mediate 

the delivery of Cu to the mitochondria for the assembly of a functional cytochrome-c oxidase 

complex (Balandin and Castresana 2002). In this manner COX17 would contribute to the increase in 

activity of specific enzymes that are required to preserve organelle functionality in a number of 

biotic and abiotic stress situations.   

 Despite their role in Cu homeostasis, neither CCH nor RAN1 (AtHMA7) are induced by Cu 

treatment, indicating that they might be more important in helping cells cope with Cu deficit than Cu 

excess. In contrast, activation of AtCOX17 gene expression in response to Cu treatment might be an 

indication of a function like metallothioneins, which are also induced by high concentrations of 

metals (Zhou and Goldsbrough 1995). Nevertheless, further experimental support is necessary to 

establish the function of these proteins.  

 The CCS gene, homolog of the yeast Ccs1p/Lys7p gene, encoded a protein that delivers Cu to 

the Cu/ZnSOD by a protein-protein interaction. It has been identified in tomato (LeCCS) (Zhu et al. 

2000), Arabidopsis thaliana (Wintz and Vulpe 2002), potato (Solanum tuberosum L.; StCCS) 

(Trindade et al. 2003), maize (ZmCCS) (Ruzsa and Scandalios 2003) and soybean (GmCCS) (Sagasti 

S, Bernal M, Picorel R, Yruela I, unpublished results). AtCCS has a predicted chloroplast targeting 

sequence but dual localization in both cytosol and plastids (Chu et al. 2005). Therefore is possible 

that AtCCS delivers Cu to both cytosolic and chloroplastic Cu/ZnSOD enzymes, perhaps using an 

alternative translation start site. It has been shown that AtCCS is Cu up-regulated and co-regulated 

with cytosolic and chloroplastic Cu/ZnSOD targets indicating an important role in the regulation of 

oxidative stress protection. An up-regulation of AtCCS mRNA has been also found in response to 

senescence. Additionally, AtCCS, and both cytosolic and chloroplastic Cu/ZnSODs were down-

regulated in response to Cu deficiency. It has been also proposed that AtCCS expression is regulated 

to allow the most optimal use of Cu for photosynthesis (Abdel-Ghany et al. 2005a).   

 StCCS gene expression was induced by auxin which is known to play a role in different 
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stages of potato (Solanum tuberosum) development. Auxins have a promoting effect on cell 

elongation/expansion. Surprinsingly, potato (Solanum tuberosum L.) plants sprayed with CuSO
4 
did 

not respond with a significant change in StCCS expression (Trindade et al. 2003). This is consistent 

with the inhibition of StCCS gene expression observed when potato plants were grown in vitro in 

media supplemented with 10 mM CuSO
4

. This surprised finding may be explained if the presence of 

a chaperone would not be required for the incorporation of Cu in the Cu/ZnSOD when Cu is present 

at high concentrations in leaves.   

  

2.3.4 ZIP transporters  

ZIP proteins belong to divalent metal transporters family and generally contribute to metal ion 

homeostasis through the transport of cations into the cytoplasm (Colangelo and Guerinot 2006; Puig 

et al. 2007). They contain eigth transmembrane (TM) domains and a histidine-rich variable loop 

between TM3 and TM4. IRT1 (Iron-Regulated Transporter 1) is the best characterized member of 

ZIP family in plants. Fe acquisition in Arabidopsis roots under Fe deficiency mostly depends on 

AtIRT1, which is considered the major Fe transporter at the root surface in Arabidopsis  thaliana. 

The closely OsIRT1 appears to play similar role in Fe uptake under Fe limiting conditions in rice. 

The ZIP family contains 14 additional members in Arabidopsis (Mäser et al. 2001). AtZIP2 and 

AtZIP4 complement growth defects of yeast Cu and Zn transport mutants (Grotz et al. 1998; Wintz et 

al. 2003). Expression of both genes is up-regulated in Arabidopsis by deficiency in Cu and Zn, but 

not in Fe. It has been proposed that AtZIP2 participates in Cu acquisition by Arabidopsis roots. 

Although the role of these proteins in plant Cu transport still requires further characterization, the 

preference that ZIP family members show for divalent metals suggest that ZIP2 and ZIP4 proteins 

may transport Cu
2+

 ions.  

 Six cDNA encoding ZIP family members have been identified in the model legume 
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Medicago truncatula L.and tested for the ability to complement yeast metal-uptake mutants (López-

Millán et al. 2004). A role in metal homeostasis has been proposed based on expression analysis of 

mRNA levels in response to metal supply.  

  

2.3.5 Nramp transporters  

Nramp family members are implicated in the transport of several divalent metal ions. In plants, 

investigations of Nramp family were largely restricted to rice (Oryza sativa) where three members 

were identified, OsNramp1, OsNaramp2 and a partial length OsNramp3 (Belouchi et al. 1995; 

1997). Subsequently, two Arabidopsis genes were identified (Alonso et al. 1999) which showed 

similarity to Nramps. More recently, three additional genomic sequences from Arabidopsis with 

homology to Nramps have been found named AtNramp1, AtNramp3 and AtNramp4. Comparisons of 

pair wise similarities between each of these genes suggests that the plant Nramps can be broadly 

divided into two groups: 1) OsNramp1, OsNramp3 and AtNramp5 which share high similarity and 2) 

OsNramp2, AtNramp1, AtNramp2, AtNramp3 and AtNramp4, which have lower similarity to group 

(1). This finding could suggest the possibility of subgroups that may vary in their substrate 

specificity, although this remains to be demonstrated. As with other members of this family, the 

plant Nramp proteins have twelve predicted transmembrane domains, however, it also possesses a 

long intracellular C-terminus tail which is unique to the Nramp proteins. A transport function for the 

plant Nramp homologues remains to be formally demonstrated; however there is good evidence from 

yeast studies for a role of the Nramp proteins in divalent cation transport. In Arabidopsis Nramp1 

(AtNramp1) confers tolerance to toxic concentrations of external Fe (Curie et al. 2000). Homologues 

of Nramp family have been also identified in soybean proposing to be involved in Fe
2+

 transport and 

Fe homeostasis in the nodule to support symbiotic N
2
 fixation (Kaiser et al. 2003). However, they 

have also been shown to be mediating the uptake to other metal ion such as Cu in yeast. Therefore a 

similar function in plants should be not dismissed.  
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2.3.6 Mugineic acid and nicotianamine.   

Since very little metal in plants is assumed to exist as free ions, a number of small organic molecules 

have to be implicated in metal ion homeostasis as metal ion ligands or chelators in order to improve 

acquisition and transport of metal ions with low solubility, and immobilization for metal tolerance 

and storage. Among these ligands mugineic acid (MA) and nicotianamine (NA) have been shown to 

participate in the transport of essential metals such as Cu, Fe, Mn, Ni or Zn. Nicotianamine (NA), 

which is a precursor of mugineic acid (MA), is an ubiquitous metal-chelator in all plants and, like 

MA, is believed to play a primary role in metal homeostasis (Haydon and Cobbet 2007). In vitro, NA 

is able to form stable complexes with Mn, Fe, Co, Zn, Ni and Cu, in increasing order of affinity 

(Curie et al. 2009). The stability of all metal-NA complexes is maximal at pH 6.5 indicating that NA 

would be more likely a symplastic chelator of metals but among essential metals Cu is the exception 

as the Cu-NA complex being very stable in mild acidic conditions. This fact favours the possible 

occurrence of Cu-NA complex in an apoplastic environment such as the xylem. NA is synthetisized 

by nicotianamine synthase (NAS) from S-adenosyl-L-methionine. The first evidence for a role of 

NA in metal transport came from Cu- and Fe- related phenotypes associated with the NA synthesis-

defective chloronerva tomato mutant, which showed interveinal chlorosis (Ling et al. 1996; Mori 

1999). Later, studies in NA-defective tobacco (Nicotiana sp.) plants pointed to the essentiality of NA 

for metal transport in veins and interveinal areas, and for reproductive growth and fertility. 

Nicotianamine synthase (NAS) genes were up-regulated in roots and shoots of plants grown under 

Cu, Fe or Zn deficiency. Recent evidence for the role of NA in plants comes from depletion of NA in 

tobacco (Nicotiana sp.) by transgenic overexpression of Nicotianamine aminotransferase (NAAT) 

from barley. The levels of Cu, Fe and Zn decreased in leaves and floral organs of transgenic plants, 

suggesting a role for NA in long-distance translocation of these metals. In a reciprocal experiment, 

overexpression of barley NAS in transgenic tobacco (Nicotiana sp.) lead to increased Cu, Fe and Zn 

content in leaves and flowers and enhanced the Fe and Zn content of pollen and seeds, further 
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supporting a role for NA in transport of these metals (Takahashi et al. 2003). This could be 

consistent with NA should complex Cu, Fe and Zn in the phloem and Cu and Zn in the xylem for 

their translocation from roots to shoots (von Wiren et al. 1999). The finding that Cu-NA complex is 

completely stable at the pH of xylem sap (pH 5-6) supports this assumption (Curie et al. 2009).  

  

2.3.7 YSL transporters  

The Yellow Stripe-Like (YSL) transporters belong to the oligopeptide transporter (OPT) superfamily 

(Curie et al. 2001; Curie et al. 2009), which transport tri-, tetra-, penta- and hexapeptides (Yen et al. 

2001). YSL proteins are also believed to mediate the uptake of metals that are complexed with plant-

derived phytosiderophores (PS) or nicotianamine (NA) (Colangelo and Guerinot 2006). Thus, the 

assumption that the members of the OPT family transport only peptides is being challenged since 

some OPT protein may also be capable of divalent metal ions transport. The best-studied member of 

this family is YS1 from maize (Roberts et al. 2004; Schaaf et al. 2004). ZmYS1 protein accumulates 

in roots and leaves of Fe-deficient plants and functions as a proton-coupled symporter to transport 

Fe-PS and may also play a role in the homeostasis of Cu, Zn or Ni as mugineic (MA)-complexes. On 

the basis of sequence similarity to ZmYS1, A. thaliana has eight predicted YSL proteins. 

Considering that non-grasses plants do not produce or use PS, AtYSL proteins most probably 

transport metal-NA complexes. Two family members, AtYSL1 and AtYSL2, have recently been 

studied is some detail. AtYSL2 transcript accumulation increases under conditions of Fe sufficiency 

or Fe resupply, and AtYSL2 transcript levels also respond to Cu and Zn (DiDonato et al. 2004; Schaaf 

et al. 2005). The expression of AtYSL2 in metal-uptake-defective yeast strains mediated the uptake of 

Fe-NA and Cu-NA. Localization of Arabidopsis YSL2 in root endodermis and pericycle cells facing 

the meta-xylem tubes has suggested its participation in lateral movement of Fe and/or Cu within the 

veins (Schaaf et al. 2005). These proteins seem to be involved in the unloading of metal-NA from 

vasculature into developing tissues, in immobilization of metal-NA from senescent leaves and in an 
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efficient loading of metal-NA into seeds.  

 AtYSL1 transcript levels increase in response to high Fe conditions (Le Jean et al. 2005). 

Arabidopsis YSL1-defective mutants contain lower levels of Fe-NA in their seeds and display a 

transient defect in germination that can be rescued by Fe supply. It has been shown that AtYSL1 and 

AtYSL3 were up-regulated during leaf senescence. The ysl1ysl3 double knockout mutants, which 

exhibit interveinal chlorosis in leaves caused by decreased Fe levels and reduced fertility as a 

consequence of defective anther and embryo development were less efficient in mobilizing metals, 

especially Cu, from senescent leaves. These results and YSL1/YSL3 expression in the vasculature of 

shoots and reproductive organs suggest a function in Cu delivery among other metals from vascular 

tissues, as well as in Fe-NA delivery to seeds (Waters et al. 2006). AtYSL2 and AtYSL3 are 

differentially expressed under metal deficiencies, and heterologous expression of AtOPT3 in yeast 

suggests that it can transport Cu
2+

, Mn
2+

, and Fe
2+

 (Wintz et al. 2003).  

 The rice (Oryza sativa) genome contains 19 putative OsYSL genes. OsYSL2 has been shown 

to transport Fe
2+

-NA and Mn
2+

-NA complexes but not Fe
3+

-NA. A role in the transport of divalent 

cations in the phloem has been suggested (Koike et al. 2004; Colangelo and Guerinot 2006). Current 

investigations point out the role of YSL proteins in long-distance metal-NA chelate transport and 

development of pollen grains and seeds (Curie et al. 2009) but further studies are necessary to clarify 

if specific members of YSL family have substrate specificity. 

 

2.4 Regulatory mechanisms 

In plants, the regulatory mechanism of gene expression is a relatively new area of research.  

Particularly, there are still little indications of how genes encoding metal transporters are regulated in 

higher plants. This could occur potentially at the transcriptional level (control on initiation rates, 

differential mRNA splicing, mRNA stability) or at the post-translational level (targeting, stability). 

Many metal transporters in other organisms are regulated at the transcriptional level by extracellular 
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metal concentrations via transcription factor proteins (Radisky 1999). Studies in model organisms 

such as the green alga Chlamydomonas reinhardtii and the yeast Saccharomyces cerevisiae outlined 

a number of principles of metal regulation. Metal-sensing transcription factors controlling the 

transcription of target genes are a common feature in metal acquisition. These are examples for very 

direct metal-dependent regulation, not requiring upstream signal transduction cascades. For instance, 

under Cu deficiency the Cu-binding Mac 1p (metal-binding activator 1) transcription factor of S. 

cerevisiae binds as a homodimer to copper-responsive sequence elements (CuRE) in the promoters 

of the genes ScCtr1 and ScCtr3, which encode Cu
+
 uptake systems (Labbe et al. 1997; Zhu et al. 

1998; Rutherford and Bird 2004; Krämer and Clemens 2006). Mac 1p is able to bind four Cu
+
 ions in 

a poly-copper cluster within its transactivation domain. The binding of Cu
+
 to Mac 1p triggers an 

interaction between the transactivation and DNA binding domains of Mac 1p, inhibiting the 

functions of both domains. Under conditions of Cu excess, the Cu-dependent transcriptional 

activator ScAce1p is activated by the binding of four Cu
+
 ions and activates the transcription of 

genes involved in the protection of yeast cells from Cu toxicity, such as the gene encoding the Cu-

buffering cysteine-rich Cup1 protein (Rutherford and Bird 2004).   

 In plants, depending on Cu status, a mechanism of Cu-responsive transcriptional repression 

via SBP-related transcription factors (SPL) that bind to GTAC sequences within the promoter region 

regulates the replacement of chloroplastic FeSOD by Cu/ZnSOD in response to Cu by directly 

repressing the transcription of the FeSOD gene and indirectly inducing the transcription of the 

CuZnSOD (Nagae et al. 2008). 

 Although numerous animal and human genes are alternatively spliced (Green 1991), the role 

of this type of regulatory mechanism of gene expression in plants is a relatively new area of research 

(Kazan 2003). The great majority of alternatively spliced genes in Arabidopsis thaliana encode 

proteins with regulatory functions. Additionally, genes associated with various stress (biotic, water, 
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light, salt, wounding, heavy metal, heat) responses seem to be particularly prone to alternative 

splicing in both animals and plants (Kazan 2003). Among those, AtCutA mRNA that encodes a 

chloroplast protein involved in Cu tolerance in Arabidopsis is regulated by alternative splicing 

(Burkhead et al. 2003). P
1B

-ATPases seem to be also alternatively spliced, at least in certain plants. 

Bernal (2006a) demonstrated that GmHMA8, a member of the soybean P
1B

-ATPases subfamily, is 

subject of alternative splicing, whereby retention of an intron yield a non-spliced (NSP) transcript 

named NSP-GmHMA8. The putative non-spliced NSP-GmHMA8 protein contains six 

transmembrane (TM) domains, two TMs shorter than typical P
1B

-ATPases including GmHMA8. In 

humans, there is evidence that splicing regulates both the Menkes (ATP7A/MNK) and the Wilson 

(ATP7B/WMN) Cu+-P
1B

-ATPases highly homologues to GmHMA8. Generally, many spliced 

products in humans show tissue-specific expression (Lutsenko et al. 2007).  

 Another important level of metal regulation is the metal-dependent regulation of transcript 

stability. Cu-dependent transcriptional regulation has been shown in the unicellular green alga 

Chlamydomonas reinhardtii. Apoplastocyanin is rapidly degraded when Cu is not available for the 

formation of holoplastocyanin, probably through a non-specific pathway (Merchant and Bogorad 

1986a,b). Thus, the availability and insertion of the metal cofactor into apoplastocyanin controls the 

stability of the translation product in the chloroplast of C. reinhardtii. Although not all 

apometalloproteins are unstable, the insertion of metal ion cofactors is likely to be an important 

factor controlling the activity and/or stability of proteins, and possibly of biological processes 

(Krämer and Clemens 2006).   

 Additionally, it has been shown that Cu regulates the expression of certain members of P
1B

-

ATPases, COPT transporters, and Cu chaperones. For instance, the expression of AtHMA5 in 

Arabidopsis, and OsHMA5 and OsHMA9 in rice, P
1B

-ATPases involved in Cu detoxification, is 

stimulated by excess Cu at the transcriptional level (Andrés-Colás et al. 2006; Sichul et al. 2007). On 
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the contrary, excess Cu reduces the transcript level of PAA2 (AtHMA8) and GmHMA8 (Schiavon et 

al. 2007; Bernal 2006a). COPT1 mRNA levels increase when Cu is limited (Sancenón et al. 2003). 

Concerning Cu chaperones, AtCOX17 expression was up-regulated and AtATX1 expression was 

down-regulated in response to excess Cu supply (Baladin and Castresana 2002; Schiavon et al. 

2007). By contrast, CCS expression was not significantly influenced by Cu in Arabidopsis (Schiavon 

et al. 2007) whereas the accumulation of CCS mRNA was strongly increased in soybean (Sagasti S, 

Bernal M, Picorel R, Yruela I, unpublished results).  

 In higher plants, there is little evidence for the post-transcriptional regulation of metal 

homeostasis proteins. However, there is solid evidence for the regulation of sub-cellular protein 

localization and stability in yeast and humans. Thus, it is likely that similar mechanisms operate in 

higher plants. An example of this post-transcriptional mechanism of metal regulation is the metal-

dependent re-localization or degradation of metal transport proteins. The ATP7A/MNK P
1B

-ATPase 

responsible for Menkes disease in humans, and highly homologue to PAA2 (AtHMA8) and 

GmHMA8 transporters in plants, exhibits a Cu-dependent subcellular localization. The protein was 

proposed to cycle continuously between the Golgi and the plasma membrane. Under most conditions 

the major proportion of the ATP7A/MNK protein localizes predominantly to the trans-Golgi, 

supplying Cu to the lumen of this compartment. Under exposure to high Cu concentrations, 

localization is shifted towards the plasma membrane, where the bulk of this transporter exports Cu to 

the exterior of the cell. Furthermore, in Cu-deficient cells, the human Cu uptake transporter hCtr1, 

highly homologue to COPT1 in plants, localizes to the plasma membrane, but undergoes Cu-

stimulated endocytosis under Cu resupply. Two putative Cu-binding methionine-rich sequence 

elements of hCtr1 are involved in the regulation of endocytosis, suggesting that direct Cu sensing by 

hCtr1 may be controlling its localization (Guo et al. 2004).   

 Plants can be postulated to contain specific metal sensors that detect changes in metal status 

(deficiency or excess) and trigger signalling cascades that activate the appropriate responses. In 
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higher plants, the signal transduction pathways involved have not been identified yet. Jonak et al. 

(2004) observed that toxic concentrations of Cu activated mitogen-activated protein kinases 

(MAPKs) in Medicago sativa seedlings, suggesting that MAPK pathways are activated in response 

to excess Cu. MAPKs are involved in signal transduction induced by heavy metals and protein 

phosphorylation events. It remains to be established to which extent the activation of the respective 

MAP kinase cascades is metal-dependent or an effect of oxidative stress.  

 Recently, several exciting findings have revealed the regulation of micro-RNAs (miRNAs) 

expression by specific nutrient stresses (Chiou 2007). The novel function for miRNAs in regulating 

plant adaptive responses to nutrient stresses opens up an interesting field to research. The role of 

miR398 in the expression patterns of CSD1 and CSD2 mRNAs has been reported (Sunkar et al. 

2006). Particularly, they show that miR398 expression is downregulated transcriptionally by 

oxidative stresses, and this downregulation is important for posttranscriptional CSD1 and CSD2 

mRNA accumulation and oxidative stress tolerance. Transgenic A. thaliana plants overexpressing a 

miR398-resistant form of CSD2 accumulate more CSD2 mRNA than plants overexpressing a regular 

CSD2 and are consequently much more tolerant to high light, heavy metals, and other oxidative 

stresses. Evidence that several miRNA families mediate the regulation of Cu-containing proteins in 

A. thaliana in response to Cu status has been recently reported (Yamasaki et al. 2007, Abdel-Ghany 

and Pilon 2008). The transcription of miR398 is repressed by Cu and miR398 mediates down-

regulation of chloroplastic Cu/ZnSOD (CSD2) in A. thaliana in response to changes in a low range 

of Cu levels (0.2-0.5 µM) (Yamasaki et al. 2007), indicating that miR398 is rather involved in a 

response to Cu limitation. A multiple copies of GTAC sequences were found in miR398 promoter 

sequences suggesting that Cu promotes the expression of the chloroplastic Cu/ZnSOD (CSD2) 

posttranscriptionally by repressing the transcription of miR398 through GTAC sequences motif 

(Nagae et al. 2008). This GTAC sequence-dependent transcriptional regulatory mechanism by Cu 

seems to be conserved in land plants. The down-regulation of chloroplastic Cu/ZnSOD (CSD2) on 
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low Cu would contribute to maintaining a Cu pool for plastocyanin allowing plants to save Cu for 

essential functions such as photosynthetic electron transport (Yamasaki et al. 2007). More recently, 

Abdel-Ghany and Pilon (2008) have found that miR397, miR408 and miR857 together regulate other 

Cu-containing proteins such as plantacyanin, and a number of laccases. These authors have proposed 

that Cu related miRNAs are used in response to avoid Cu deficiency since they are up-regulated 

already in a condition where symptoms of deficiency are still absent and where plastocyanin function 

is not compromised. 

 

2.4.1 Responses to copper deficiency 

Cu can be limiting to plant productivity when below 5 μg g
-1

 dry weight. Cu-deficient plants show 

changes in the expression of a series of genes and activation of morphological changes either in root 

or leaf architecture. Typical symptoms of Cu deficiency appear first at the tips of young leaves and 

then extend downward along the leaf margins. The leaves may also be twisted or malformed and 

show chlorosis (i.e., loss of chlorophyll) or even necrosis; the overall biomass of affected plants is 

subsequently reduced. These symptoms are known for a long time (for review see Marschner 1995; 

Küpper and Kroneck 2005) and can be explained in view of the roles of Cu in plant metabolism. 

Thus, the lack of Cu reduces PSI electron transport due to decreased formation of plastocyanin 

(Baszynski et al. 1978; Shikanai et al. 2003), which is the major target of Cu deficiency in 

photosynthesis. Decrease in PSII activity was also observed in Cu-deficient chloroplasts (Droppa et 

al. 1987; Henriques 1989). Droppa et al. (1987) concluded that severe Cu deficiency changes the 

thylakoid membranes and modifies the ambient of the PSII acceptor side. They also noticed the 

absence of a 29 kDa polypeptide, which is probably a component of CP29, a minor chlorophyll a/b 

binding protein of PSII. Cu-deficient plants show disintegration of the thylakoid membranes of 

chloroplasts (Baszynski et al. 1978; Henriques 1989) as well as decreased pigment (chlorophylls and 

carotenoids) content, reduced plastoquinone synthesis and lower unsaturated C18 fatty acids contents 
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(Barón et al. 1992). Availability of Cu also affects Cu/ZnSOD enzyme diminishing their expression 

and activity.   

 Current knowledge establishes that at least three different molecular strategies can be 

distinguished in response to Cu deficiency in plants. The first one is conducted to improve metal 

acquisition and includes increased expression of metal reductases and high-affinity transporters. The 

second one consists in prioritizing the use of metals in essential versus non-essential pathways. 

Finally, if metalloproteins with different metallic ligands perform similar or overlapping functions, a 

specific metalloprotein can be substituted by another when its metal is deficient (Puig et al. 2007).  

The up- and down- regulation of genes directing the events mentioned above involve a series of 

molecular mechanisms that begin with the plant “sensing” the deficiency and then transmitting the 

signal along transduction pathways through the plant vascular system. Signals between the aerial 

parts of the plants, including the apical meristem, and the roots lead to the activation or inactivation 

of transcription factors that influence expression of specific genes. Thus, plants respond to a change 

in metal supply by marked alterations in their transcriptome. Genetic and biochemical studies in 

model organisms (i.e., the green alga C. reinhardtii) have established that transcriptional regulation 

control is the primary response to Cu deficiency. The up-regulation of genes in response to Cu 

limitation in Chlamydomonas (i.e., cytochrome c
6
 ,Cyt c

6
, and coproporphyrinogen III oxidase , 

CPX1) is dependent on Cu-responsive elements (CuREs) in the 5´ upstream region of Cu-deficiency 

induced genes, with critical GTAC core sequences as responsible for transcription activation of 

genes under deficiency conditions (Quinn et al. 2000; 2002). Based on a genetic screen, Eriksson et 

al. (2004) revealed that the Copper Response Regulator 1 (Crr1) is responsible for Cyt c
6
 and CPX1 

activation upon Cu limitation. The Crr1 protein shares some similarity with the plant DNA-binding 

domain named squamosa-promoter- binding-protein family (SBP) and contains Zn fingers in its 

DNA-binding domain (Kropat et al. 2005). The Crr1-SBP domain specifically binds CuRE within 
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Cyt c
6
 and CPX1 promoter regions. Other interesting feature is that Crr1-protein can work as a 

transcriptional activator or as a repressor, depending on the position of the CuRE (Moseley et al. 

2002). The Arabidopsis genome contains 17 proteins with a well-conserved DNA binding domain, 

(SBP domain), which are denoted SPL proteins (squamosa protein-like (SPL) proteins), some of 

them involved in flower development (Birkenbihl et al. 2005). 

 Cu-protein substitution by functionally equivalent Fe proteins under low Cu has been well-

documented in different organisms. In plants, the chloroplastic Cu/ZnSOD (CSD2) is replaced by the 

FeSOD upon Cu limitation. Under this condition, chloroplastic FeSOD mRNA, its transcript product 

and the activity levels increased, while either chloroplastic or cytosolic Cu/ZnSOD levels are 

undetectable (Abdel-Ghany et al. 2005b). This finding is accompanied by a decrease in the 

expression of the corresponding Cu chaperone CCS. This coordinated regulation of nuclear encoded 

genes at transcriptional level is probably controlled by the optimal use of chloroplastic available Cu 

ions and suggest that stromal Cu levels maybe regulate nuclear expression through a still unknown 

signalling pathway. Recently, using transgenic moss plants (Barbula unguiculata L.) it was 

determined that GTAC motif is a negative cis-acting element of the FeSOD in response to Cu 

(Nagae et al. 2008). These authors also found that a SBP-type transcription factor (PpSBP2) and its 

related protein bound to the GTAC motif repressed the expression of FeSOD. Additionally, evidence 

that miRNA mediates this regulation in A. thaliana has been shown (Yamasaki et al. 2007, Abdel-

Ghany and Pilon, 2008). More recently, it was found that the DNA binding domain of SPL7, the SPL 

protein most similar to Crr1 (transcription factor in Chlamydomonas reinhardtii), interacts with 

GTAC cores of the miR398 promoter in vitro. SPL7 regulates the expression of FeSOD gene and it is 

involved in the switching between Cu/ZnSOD and FeSOD under Cu deficiency (Yamasaki et al. 

2009). Additionally, SPL7 also activates the expression of miR397, miR408 and miR857 in low Cu 

conditions yielding the degradation of a series of Cu-proteins and leading to appropriate Cu 
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redistribution. It has been found that SPL7 activates some Cu transporters and chaperones, so it 

could be a master regulatory factor involved in Cu homeostasis.  

 Several Arabidopsis genes increased expression in response to low Cu availability, i.e, 

COPT1, COPT2, ZIP2 transporters, FRO3 metal reductase, CCH chaperone and chloroplastic 

FeSOD (Himelblau et al. 1998; Sancenón et al. 2003; Wintz et al. 2003; Abdel-Ghany et al. 2005b; 

Mukherjee et al. 2006). The theoretical analysis of the COPT2 promoter sequence showed putative 

cis elements responsive to both low Fe and low Cu, suggesting that this promoter can integrate 

signalling pathways of deficiencies in both metals.   

 

2.4.2 Responses to copper toxicity 

Toxic levels of Cu occurs naturally in some soils whereas others may contain high levels of Cu as a 

result of anthropogenic release of heavy metals into the environment through application of pig and 

poultry slurries rich in Cu, fertilizers accumulation, fungicides, industrial and urban activities, 

metaliferous mining or metal processing, and waste disposal technologies (Kabata-Pendias and 

Pendias 2001; Pilon-Smits and Pilon 2002). Cu concentration in non-contaminated soils and natural 

waters is ca. 20-30 mg kg
-1

 and 2 µg kg
-1

, respectively but in contaminated soils and waters can 

reach levels one hundred times higher (Fernandes and Henriques 1991). Additionally, atmospheric 

heavy metal emission has also been identified as an important source of heavy metal contamination 

in plants (Friedland 1990; Salim et al. 1992). At concentrations above those required for optimal 

growth Cu can be toxic for most plants with the exception of a few plant species that can 

hyperaccumulate metals (i.e., Arabidopsis halleri L., Silene vulgaris (Moench) Garcke, Thalspi 

caerulescens L.). It is worth mentioning that this toxicity is dependent on plant species, the 

concentration of metal supplied, exposure time and soil properties. In sensitive plant species or 

ecotypes Cu was shown to inhibit growth and to interfere with important cellular processes such as 

photosynthesis and respiration (Marschner 1995; Prasad and Strzalka 1999, Yruela 2005). In the 
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presence of high levels of Cu (3-100 µM) plants normally show reduced biomass (reduction of the 

root and shoot volume, stem size, leaf size), chlorotic symptoms, necrosis, and inhibition of shoot 

and root growth. A lower content of chlorophyll and alterations of chloroplast structure and 

thylakoid membrane composition have been found in leaves of spinach, rice, wheat (Triticum durum 

L. cvv. Adanello and Ofanto), bean (Phaseolus coccineus L. cv. Piekny) and oregano (Origanum 

vulgare L.) in such growth conditions (Baszynski et al. 1988; Lidon and Henriques 1991; 1993; 

Ciscato et al. 1997; Pätsikkä et al. 1998; Quartacci et al. 2000; Panou-Filotheou et al. 2001). 

Particularly, degradation of grana stacking and stroma lamellae, increase in the number and size of 

plastoglobuli, and appearance of intrathylakoidal inclusions were observed. It has been proposed that 

Cu interferes with the biosynthesis of the photosynthetic machinery modifying the pigment and 

protein composition of photosynthetic membranes (Lidon and Henriques 1991; Maksymiec et al. 

1994). Pätsikka et al. (2002) attributed the reduction of chlorophyll content to a Cu-induced Fe 

deficiency. The substitution of the central Mg ion of chlorophyll by Cu in vivo has also been 

proposed as a damage mechanism leading to inhibition of photosynthesis (Küpper et al. 2003; 

Küpper and Kroneck 2005). Besides, lipid peroxidations, decrease of lipid content and changes in 

fatty acid composition of thylakoid membranes were also shown (Sandmann and Böger 1980; Luna 

et al. 1994; Maksymiec et al. 1994). As a consequence of those modifications, an alteration of PSII 

membrane fluidity was found (Quartacci et al. 2000). On the other hand, the decrease of the 

photochemical activity caused by Cu is accompanied in vivo by an alteration of the structure and 

composition of the thylakoid membranes, which can influence the conformation and function of the 

photosystems (Baszynski et al. 1988, Ouzounidou et al. 1992, Lidon and Henriques 1993). 

Baszynski and Kruppa (1995) proposed that those processes induced by Cu could involve either the 

destruction of the oxygen-evolving complex polypeptide composition or the interaction with ions 

necessary for proper functioning of the complex as Mn, Ca and Cl.  

 Plant cell cultures have been widely used as suitable model system to analyse cell stress 
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response and adaptation, among many other studies on plant physiology. Related studies on cell 

culture from mesophyll cells provided information on functional cell organization changes induced 

by excess Cu that can be extrapolated to leaf cells in plants. Soybean cell suspensions exposed to 

excess Cu (10 μM) maintained the general cell organization pattern of the non-treated soybean 

cultures but excess Cu exposure induced changes in specific subcellular structures. Smaller 

chloroplasts with rounded shape and more numerous, with a denser structured internal membranes, 

no starch granules within chloroplasts and larger cytoplasmic vacuole were observed (Bernal et al. 

2006b, 2006c). Similarly, chloroplasts of seven-week-old of Arabidopsis thaliana plants exposed to 

50 μM Cu during 2-14 days showed rather circular than ellipsoidal shape (Wójcik and Tukiendorf 

2003). Starch grains disappeared and plastoglobuli became larger in chloroplasts from leaves of 

oregano exposed to excess Cu (10-25 μM g-1) (Panou-Filotheou et al. 2001).  Roots and shoots also 

sense the phytotoxicity of Cu. Roots of oregano plants exposed to 13-25.5 μM g-1 Cu (Panou-

Fitlotheou and Bosabalidis 2004) revealed a destroyed epidermis and a cortex of large cells with 

folded walls. Cortical cells exhibited a metamorphosis of the amyloplasts into leucoplasts. In root 

vascular cylinder, the diameter of the xylem vessels increased.   

 As mentioned previously, it is well known that transition metals like Cu catalyze the 

formation of hydroxyl radicals (OH·) from the non-enzymatic chemical reaction between superoxide 

(O
2

.-
) and H

2
O

2
 (Haber-Weiss reaction) (Halliwell and Gutteridge, 1984). Hence, the presence of 

excess Cu can cause oxidative stress in plants and subsequently increase the antioxidant responses 

due to increased production of highly toxic oxygen free radicals. Accordingly, it was observed that 

excess Cu in plants led to oxidative stress inducing changes in the activity and content of some 

components of the antioxidative pathways (i.e., ascorbate peroxidase (APX), catalase, 

dehydroascorbate reductase (DHAR), guiacol peroxidase, glutathione reductase (GR), 

monodehydroascorbate reductase (MDHAR), superoxide dismutases (SODs)) (De Vos et al. 1992; 
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Luna et al. 1994; Stohs and Bagchi 1995; Navari-Izzo et al. 1998; Gupta et al. 1999; Drazkiewicz et 

al. 2003; Wang et al. 2004; Lombardi and Sebastiani, 2005). The ascorbate-gluthatione cycle has 

been reported to be involved in response to excess Cu (Gupta et al. 1999; Drazkiewicz et al. 2003).  

The antioxidant responses have been observed in leaves and roots being either Cu concentration or 

time-dependent as well as plant specie or ecotype dependent.  

 The mechanism of Cu toxicity on photosynthetic electron transport has extensively also been 

studied in vitro, and it was found that PSII is the most sensitive site to Cu toxicity. Both the acceptor 

and the donor sides of PSII were suggested as the main targets of Cu toxic action. On the PSII 

reducing side, the Q
B
 binding site and the Pheo-Fe-Q

A
 domain have been reported as the most 

sensitive sites for Cu toxicity (for review see Barón et al.1995; Yruela 2005). The interaction of Cu 

toxicity with photoinhibitory and recovery processes on PSII has been also investigated (Yruela et al. 

1996, Pätsikkä et al. 1998) demonstrating that Cu enhances the adverse effects of light. Considering 

that Cu is an efficient catalyst in the formation of reactive oxygen species (ROS), it was suggested 

that the increased Cu toxicity by light during photoinhibition is due to production of hydroxyl 

radicals (Yruela et al. 1996). A different proposal was given by Pätsikkä et al. (2002) suggesting that 

the reduced chlorophyll content observed in plant leaves grown in the presence of high Cu 

concentrations made leaves more susceptible to photoinhibition as a consequence of a Cu-induced Fe 

deficiency. 

 Susceptibility to excess Cu varies with plant species and ecotypes. For instance, alfalfa and 

barley are highly tolerant to excess Cu, but rice (Oryza sativa) and potato are less tolerant (Jones 

1998). To better understanding such differences and how plants adapt to metal stress it is important 

to know how excess Cu affects gene expression. 

DNA microarrays are powerful tools for providing an overview of gene expression under 

environmental conditions and in particular under Cu stress. Recently, several works have been done 

with this purpose. Weber et al. (2006) examined transcriptome changes upon Cd2+ and Cu2+ exposure 
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in roots of the Cd-hypertolerant metallophyte A.  halleri. They did not find any evidence for Cu2+-

specific responses. The overlap between A. thaliana and A. halleri was extensive. Most of the genes 

responsive to Cu2+ in A. halleri were also found in the A. thaliana list. With very few exceptions, the 

genes of the 'Arabidopsis Cu2+ core response' were strongly responsive to many other abiotic stresses 

such as ozone, salt, cold and osmotic shock. This is likely due to the fact that excess Cu2+ triggers the 

massive generation of reactive oxygen species, which is a consequence of most other biotic and 

abiotic stresses. Keinämen et al. (2007) identified genes that are up-regulated by Cu exposure in a 

Cu-tolerant birch (Betula pendula Roth.) clone. More recently, Sudo et al. (2008) examined gene 

expression in response to excess Cu in rice leaves. Microarray analysis revealed that Cu treatment 

particularly affects genes involved in defence, abiotic stresses, photosynthesis and transport. A large 

proportion of general and defence stress response genes are up-regulated under excess Cu conditions 

whereas photosynthesis and transport-related genes are down-regulated. The results suggest that the 

defence response has an essential role in the stress response to excess Cu. The defence-related genes 

involved in phytoalexin and lignin biosynthesis were the most sensitive to Cu. Defence-related genes 

could be effective targets for increasing Cu tolerance. Thus, the role of Cu as an antifungal agent 

may act in part by inducing defence-response genes, as well as by inhibiting the pathogen (Sudo et 

al. 2008). Additionally, plant management of abiotic and pathogen stresses had overlapping 

components, likely including signal transduction. 

 Proteomic approach has been also used to investigate the plant response to excess Cu. Bona 

et al. (2007) analyzed the root proteome of Cannabis sativa L., an annual herb with capability to 

absorb and accumulate heavy metals in roots and shoots, exposed to 150 µg g-1 Cu2+. Cu up-

regulated several proteins being the aldo/keto reductase the most up-regulated protein, which is a 

NAD(P)H-dependent enzyme widely distributed from mammals to insects, fungi and yeast. Its 

increase was associated to its involvement in detoxification process. Besides, actin, an important 

component of plant cytoskeleton and microfilaments, formate deshydrogenase (FHD), a 
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mitochondrial NAD-dependent enzyme which catalyzes the oxidation of formate into CO2 

mantaining a reduced environment, and the 40S ribosomal protein involved in protein synthesis 

machinery, were increased. In Cannabis sativa L., Cu also down-regulated proteins such as 

thioredoxin peroxidase, enolase, glutaredoxin and cyclophilin (Bona et al. 2007). 

 

2.4.3 Tolerance mechanisms to copper toxicity  

In order to avoid metal toxicity all plants possess basal tolerance mechanisms, which appear to be 

involved primarily in avoiding the accumulation of toxic concentrations at sensitive sites within the 

cell preventing the damaging effects rather than developing proteins that can resist the heavy metal 

effects. The potential cellular mechanisms involved in tolerance include those by: i) reducing metal-

uptake through mycorrhiza action or extracellular exudates; ii) immobilizating excess of Cu in the 

root and thus excluding the metal from the shoot; iii) stimulating the efflux pumping metal at the 

plasma membrane; iv) chelation of metals by phytochelatins, metallothioneins, organic acids or heat 

shock proteins; v) compartmentation of metals in the vacuole (Hall 2002; Krämer and Clemens 

2006). There is little evidence that tolerant species or ecotypes show an enhanced oxidative defence; 

tolerant plants show rather enhanced avoidance and homeostatic mechanisms to prevent the stress 

(De Vos et al. 1991; Dietz et al. 1999).  

 Intraspecific and interspecific differences in sensitivity to Cu do occur between different 

plant species. On the other hand, with regard to mechanisms allowing Cu tolerance, a question of 

interest is whether this tolerance is constitutive in each species or depends on previous long-term 

exposure to metal. Van Thichelen et al. (2001) showed that some mycorrhizal species protect Pinus 

sylvestris L. against Cu toxicity extracelullarly, although the amount of Cu retained by different 

fungi varies considerably. The mechanisms employed by the fungi are probably by binding to 

extracellular materials. Organic acids (citrate, malate, oxalate), carbohydrates, proteins or peptides 

enriched in cysteine or hystidil groups excreted by plants can facilitate metal uptake, but these 
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molecules can also inhibit metal acquisition by forming a complex with it outside the root that is not 

taken up. The importance of these mechanisms may vary in accordance with the concentration of 

metal supplied, plant specie or variety involved and the exposure time.  

 Dark deposits attached at the outer surface of the cell wall containing high level of Cu have 

been observed in plants grown under metal stress conditions (Vitória et al. 2006). Similar deposits 

were observed in Cu-stressed soybean cell suspensions that were accompanied by the accumulation 

of higher levels of citrate and malate (Bernal et al. 2006c). Similar levels of citrate and malate in 

copper tolerant Nicotiana plumbaginifolia L. cells were reported (Kishinami and Widholm 1987). 

Citrate appears to be responsible for Cu tolerance in A. thaliana (Murphy et al. 1999). Citrate 

synthesis was preferentially stimulated during the first time of Cu exposure in soybean cell 

suspensions, being one of the fastest responses to Cu exposure (Bernal et al. 2006c). Two organic 

acids exudation responses differing in time have been observed in roots of aluminium (Al) resistant 

plants (for review see Mariano et al. 2005). In the former response organic acids release is rapidly 

activated after Al exposure and the rate of release remains constant with time. In this case it has been 

suggested that Al activates a constitutive mechanism of organic acids transport in the plasma 

membrane and the activation of genes is not necessary. Al can activate anion channels, which have 

been proposed as the mediators of organic acids transport across the cell membranes. In the second 

one there is a delay in the organic acids release after the addition of Al and this release increases with 

time. In this case the activation of genes related to the metabolism and membrane transport of 

organic acids might be required.   

 Once inside the root cells, metals are translocated by membrane metal transporters and metal-

binding proteins to their final destination. This process involves specific proteins (i.e., 

metallothioneins, metallochaperones or low-molecular-weight metal chelators) that must maintain a 

fine balance between having enough essential metals available for metabolic functions and at the 

same time avoiding deficiency or toxicity. Excess metals are stored in a location where the metal can 
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do the least harm to cellular processes. This involves storage in special cellular compartments such 

as the vacuole. Sequestration may also be in the apoplast, or in specialized cells such as epidermal 

cells and trichomes.  

 Despite the widespread occurrence of metallothioneins (MTs) and the relatively high level of 

RNA expression of many MT genes, their function in plants remain poorly understood. Expression 

of some MT genes is induced by Cu: i) the level of expression of 2-type MT gene correlate closely 

with Cu tolerance in a group of A. thaliana ecotypes (Murphy and Taiz 1995); ii) expression of 2-

type MT is elevated in a Cu-sensitive mutant that accumulates Cu (van Vliet et al. 1995); iii) Cu 

tolerance in the metallophyte plants Silene vulgaris (Moench) Garcke and Silene paradoxa L. was 

associated with increased levels of a 2b-type MT (van Hoof et al. 2001; Mengoni et al 2003); iv) the 

yeast MT CUP1 gene introduced into tobacco plants contributed to Cu metal phytoextraction 

(Thomas et al. 2003). However, the involvement of MTs in Cu detoxification in plant has not been 

conclusively demonstrated. The divergence of plant MT protein sequences and the complex 

expression patterns of MT genes suggest that the functions of MTs may not be limited to Cu 

detoxification. Recently Guo et al. (2008) have reported direct evidence for functional contributions 

of MTs to metal homeostasis in plants. 

 The role of phytochelatins (PCs) in Cu detoxification has not been shown. Cu is a strong 

activator of PC biosynthesis but PC-deficient mutants show relatively little sensitivity to Cu. Since 

PCs can form complexes with Cu it could be possible that PC-Cu complexes are not sequestered in 

the vacuole (Cobbet and Goldsbrough 2002).   

 P
1B

-type Cu transporting ATPases are thought to be important not only in obtaining sufficient 

amounts of Cu ions for essential cell functions but also in preventing accumulations of these ions to 

toxic levels. On the other hand, Cu ions are chelated by specific chaperones and delivered to Cu 

pumps for transport into organelles or directly to cytosolic Cu dependent proteins. Thus, both Cu 

chelation and Cu pumping activity likely are not only required for Cu-uptake but also for 
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detoxification processes. Thus, these transporters and chaperones could be involved in the overall 

strategy of Cu tolerance. A possible role of metal transporters and chaperones in phytoremediation 

(defined as the use of green plants to remove pollutants from the environment or to render them 

harmless) has been proposed. Putative candidates to improve Cu phytoremediation include root Cu 

reductases and transporters, NA synthases and two Cu detoxification proteins: P-type ATPases and 

MTs (Puig et al. 2007). Concerning P-type ATPases, the Cu-tolerant plant Silene vulgaris (Moench) 

Garcke displays enhanced ATP-dependent Cu efflux across the root cell plasma membrane (Van 

Hoof et al. 2001). Furthermore, the inactivation of the ActP gene, which encodes a P-type ATPase, 

causes Cu hypersensitivity in Rhizobium legominosarum and Sinorhizobium meliloti (Reeve et al. 

2002). In A. thaliana, AtHMA5 has been proposed as a candidate for overexpression to improve Cu 

detoxification (Andrés-Colás et al. 2006). More recently, Gao et al. (2009) have suggested the 

possible role of acyl-CoA-binding protein 2, ACBP2, and farnesylated protein AtFP6 in mediating 

Cu, Cd and Pb transport in A. thaliana roots. A. thaliana plants overexpressing ACBP2 or AtFP6 

were more tolerant to Cd than wild-type plants suggesting a similar role in Cu tolerance. 

 As mentioned above differences in sensitivity to Cu have been found among plant varieties. 

In order to understand the origin of such variations quantitative trait locus (QTL) analyses has been 

used to investigate the interaction between molecular mechanisms of Cu tolerance and phenotypic 

differences. A QTL study in Arabidopsis identified that Cu sensitivity was correlated with a major 

QTL on chromosome 1 (Kobayashi et al. 2008). This QTL1 regulates the Cu translocation capacity 

and involves the Cu+-transporting P1B-type ATPase AtHMA5. The results revealed that amino acid 

polymorphisms in strictly conserved motifs of AtHMA5 are involved in Cu tolerance of the roots and 

explain Cu tolerance variations in Arabidopsis. The same mechanism (i.e. substitution of amino 

acids in conserved domains) was identified as a cause of dysfunctional Cu homeostasis in human 

Menkes and Wilson diseases. This may support the importance of HMA5 in Cu tolerance and 

therefore the importance of Cu homeostasis in Cu tolerance. Similar mechanisms may contribute to 
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natural variation in plant tolerance to Cu, especially for root growth, but further studies are necessary 

to clarified that.      

  

3 INTERACTIONS BETWEEN COPPER AND OTHER ELEMENTS  

In general transition metal ions are distinguished by their different chemical properties, i.e. redox 

potential, coordination geometry, charge and thermodynamic and kinetic properties of ligand 

exchange. Accordingly, in a given metalloenzyme, a specific metal ion is used for a specific 

function. However, according to the Irving-Williams series (Zn
2+ 

< Cu
+
 > Cu

2+
 > Ni

2+
 > Co

2+
 > Fe

2+
 

> Mn
2+

 > Mg
2+ 

> Ca
2+

) metal ions can bind to organic ligands in a metal-binding site of a 

metalloprotein, metal-chaperone or metal transporter with different affinities (Fraústo da Silva and 

Williams 2001). Thus, although binding affinity for a metal ion is also determined by other 

secondary factors such as the size of metal binding-site cavity in a protein, the geometry of ligand 

atoms and other characteristic, normally each metal ion can be replaced by other metal ion down-

stream in the Irving-Williams series. A further implication of the chemical principles illustrated by 

the Irving-Williams series is that metal homeostasis of one transition metal should generally not be 

considered alone, but always in the context of all cations and their respective concentrations. Cations 

chemically similar to other can enter into plants by competing with uptake pathways for 

macronutrients and micronutrients metal ions. Consequently in metal-pollutes areas toxic metal ions 

can enter into most plants since metal homeostasis network are not equipped to avoid the entry of 

non-essential metal transitions at high concentration. Therefore, one major mechanism of toxic 

action of all transition metal is the efficient competition of metal ions for specific binding sites, 

consequently, displacements of essential metal ions from their binding sites can occur. For instance, 

it has been shown that the central ion Mg
2+

 in chlorophyll was substituted by Cu and other toxic 

metals under metal excess conditions resulting in an impairment of the correct function of the 
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chlorophyll-complexes (i.e. light harvesting antenna complex) because metal-substituted 

chlorophylls are not suitable for photosynthesis (Küpper and Kroneck 2005).  

 In plants relatively little is known about Cu transport into and within cells showing a 

dependence on Cu for Fe, Zn, Mn and other element assimilation. Schmidt (1999) reported that Cu 

and Fe compete in ion-uptake. Pätsikkä et al. (2002) observed that excess Cu in hydroponic medium 

induces a Fe-deficiency in bean plants. Chen et al. (2004) observed that Fe-deficiency induces Cu 

accumulation in Commelina communis L. plants. Furthermore, Rombolà et al. (2005) found that Fe-

deficiency increases the Cu content and decreases the Zn content in leaf blades of sugar beet grown 

hydroponically. Cu and Fe antagonism often occurs in plants grown under Cu toxicity (Foy et al. 

1978; Wallace and Cha, 1989; Lombardi and Sebastiani 2005). Nevertheless, opposite scenario has 

been also observed in oregano (Panou-Filotheou et al. 2001), rice seedlings (Kitagishi and Yamane 

1981) and wheat (Triticum aestivum L. cv Vergina) (Lanaras et al. 1993) plants exposed to Cu 

toxicity in soil. An increasing concentration of soil Cu resulted in a parallel increase in leaf Cu 

content with no reduction in the leaf Fe and Mg. These apparently contradictory results may be 

explained by different tolerance strategies adopted by different plants.  

 Other organisms such as mammal cells, yeast or certain algae do not appear to manifest a 

competition showing a dependence on Cu for Fe assimilation (Franklin et al. 2002). A Cu dependent 

Fe assimilation pathway has been found in the unicellular green alga Chlamydomonas reinhardtii 

(La Fontaine et al. 2002). Additionally, an antagonist interaction between Cu and Zn was observed in 

this alga (Herbik et al. 2002). Similar feature has been observed in some plants. Soil Cu affected 

negatively the accumulation of Zn in roots of oregano (Panou-Filotheou and Bosabalidis 2004). 

More recently, Bernal et al. (2007a) demonstrated that Cu interacts differently with Fe and Zn 

depending on the pathway through excess Cu is supplied. Thus, soybean plants treated with excess 

Cu through leaves behave differently than plants treated by supplementing the growth medium with 

excess Cu. Soybean plants showed no antagonist interaction between Cu- and Fe-uptake when 
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excess Cu was supplied through leaves but Cu compete with Fe-uptake in plants grown with excess 

Cu in the hydroponic medium. Concerning Zn-uptake soybean plants exhibited Zn content decrease 

upon Cu treatment of leaves whereas the opposite was observed upon Cu treatment through roots. 

Interestingly, plants with Cu-treated leaves behaved similarly as soybean cell suspensions grown in 

the presence of excess Cu (Bernal et al. 2006b, 2006c). The different plant response observed upon 

these two Cu-treatments might be explained assuming different Cu-uptake strategies in leaf and root 

cells.  

 

4 PROSPECTS 

This review shows that progress in understanding Cu homeostasis in plants has been noticeable in 

last decade, but there are still unclear aspects or little investigated. For instance, several families of 

genes involved in regulation of Cu homeostasis have been identified and their expression analyzed 

under either deficiency or excess Cu conditions, but little is known about the structure and functional 

mechanisms of proteins generated by those genes. Some of these proteins are inserted in the 

membranes of cells and organelles, and it is true that structural studies on membrane proteins are 

difficult but further biochemical and structural studies including molecular interactions and 

molecular recognition of proteins involved in Cu homeostasis should be necessary to know the 

molecular basis of Cu trafficking and transport.  

 On the other hand, most of molecular studies are focused in intracellular homeostasis being 

the information on Cu distribution and remobilization in xylem and phloem saps as well as Cu 

xylem-to-phloem exchange less available. Furthermore, researchers should pay more attention to 

metal interactions by their relevant implications in Cu distribution and remobilization within the 

plant. 

 Other interesting aspect to further explore is the putative significant role of Cu chaperones 

and transporters in Cu tolerance. Recently, it has been point out the role of AtHMA5 transporter, 



 41

involved in Cu transport in roots, as important element in Cu tolerance mechanisms but it is 

unknown if other proteins involved in Cu transport and trafficking are also candidates. Moreover, 

variations in Cu tolerance exist among plant varieties however the involvement of specific genes 

related with Cu homeostasis in determining such variations have been little investigated. Studies of 

natural variations based on quantitative trait locus (QTL) analysis have provided a useful approach to 

understand the mechanisms of variation in target traits such as freezing tolerance, salinity tolerance, 

growth and flowering among others. Recently, this approach has been applied in Arabidopsis to 

identify critical genes regulating variations in Cu tolerance (Kobayashi et al. 2008). The results 

revealed that amino acid polymorphisms in certain genes involved in Cu transport can be responsible 

of such variations. These studies suggest that the combination of association mapping analysis and 

the biochemical approach could be useful to identify key genes regulating variations related to Cu 

tolerance or sensitivity among genotypes and varieties. An interesting question for future research is 

if the same mechanisms found in Arabidopsis can explain variations in Cu tolerance of other crop 

species. The understanding of such mechanisms may be used in molecular breeding programmes (i.e. 

marker-assisted selection).  

 

5 CONCLUSION 

In summary, our knowledge of Cu and heavy metals homeostasis is still rudimentary in some cases. 

A comprehensive understanding of Cu transport and trafficking across plant membranes and 

distribution and remobilization through xylem and phloem saps, at the molecular level, including 

metal interactions as well as variations in Cu tolerance and sensitivity in plants will be essential for 

developing schemes to genetically engineer plants that accumulate specific metals, either for use in 

phytoremediation or to improve human nutrition. 
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FIGURE LEGENDS  

Figure 1. Scheme of transport pathways identified for Cu in a generic plant cell. Cu-membrane 

transporter proteins are indicated in orange, Cu-chaperones in violet, and Cu-proteins in blue. 

Arrows indicate the proposed direction for metal transport. CCH, copper chaperone; ATX1, 

antioxidant 1; CCS, copper chaperone for Cu/Zn superoxide dismutase; CSD1, cytosolic Cu/Zn 

superoxide dismutase; CSD2, chloroplastic Cu/Zn superoxide dismutase; CSD3, peroxisomal Cu/Zn 

superoxide dismutase; COPT, copper transporter; COX, cytochrome-c oxidase; ER, endoplasmic 

reticulum; FRO, ferric reductase oxidase; HMA, heavy metal P-type ATPase; MT, metallothioneins; 

NA, nicotianamine; PAA, P-type ATPase of Arabidopisis; Pc, plastocyanin; RAN1, responsive-to-

antagonist 1; SOD, superoxide dismutase; YSL, yellow stripe-like protein; ZIP, IRT-like protein. 

Scheme modified from Pilon et al. (2006), Puig et al. (2007), Bernal (2006a).  

  

Figure 2. Predicted membrane topology for several members of COPT and P1B-ATPase (HMA) 

families Cu-transporters. This topology is based on predictions but has not been verified 

experimentally.  
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TABLE 1. Copper homeostasis proteins in plants 
 

Family Name Description Subcellular localization Tissue expression Referentes 

ZIP AtZIP2 Divalent cation transporter Plasma membrane? Root Grotz et al. (1998); Wintz et al. (2003) 

 AtZIP4 Divalent cation transporter Plasma membrane?   

 MtZIP4 Divalent cation transporter  Root, leaf López-Millán et al. (2004) 

COPT AtCOPT1 High-affinity Cu+ transporter Plasma membrane? Root, pollen, embryo, stomata, 
trichome 

Kampfenkel et al. (1995); Sancenón et al. (2004) 

 AtCOPT2 High-affinity Cu+ transporter Plasma membrane?  Sancenón et al. (2003) 

 AtCOPT3 High-affinity Cu+ transporter Chloroplast?   

 AtCOPT5 High-affinity Cu+ transporter Secretory pathway?   

 AtCOPT6     

P1B-ATPase AtHMA1 Cu2+-P1B-ATPase transporter? Chloroplast envelope Root, shoot Seigneurin-Berny et al. (2006) 

 AtHMA5 Cu+-P1B-ATPase transporter Secretory pathway? Root, flower, pollen Andrés-Colás et al. (2006) 

 OsHMA5 Cu+-P1B-ATPase transporter Secretory pathway? Root Sichul et al. (2007) 

 AtHMA6(PAA1) Cu+-P1B-ATPase transporter Chloroplast envelope Root, shoot Shikanai et al. (2003); Abdel-Ghany et al. (2005b) 

 OsHMA6 Cu+-P1B-ATPase transporter Chloroplast envelope Root, shoot, leaf Sichul et al. (2007) 

 AtHMA7(RAN1) 
 

Cu+-P1B-ATPase transporter 
 

Trans-Golgi network? 
 

 Hirayama et al. (1999); Woeste and Kieber (2000; Chen 
et al. (2002) 

 BnHMA7(BnRAN1) Cu+-P1B-ATPase transporter Trans-Golgi network?  Southron et al. (2004) 

 OsHMA7 Cu+-P1B-ATPase transporter Trans-Golgi network? Root, shoot, leaf Sichul et al. (2007) 

 AtHMA8(PAA2) Cu+-P1B-ATPase transporter Thylakoid membrane Shoot Abdel-Ghany et al. (2005b) 
 GmHMA8 Cu+-P1B-ATPase transporter Thylakoid membrane Leaf, mesophyll cell Bernal et al. (2007b) 
 OsHMA8 Cu+-P1B-ATPase transporter Thylakoid membrane Root, shoot, leaf  Sichul et al. (2007) 
 OsHMA9 Cu+-P1B-ATPase transporter Plasma membrane Vascular tissue (phloem, 

xylem), mesophyll tissues, 
anthers 

Sichul et al. (2007) 

ATX AtCCH ATX1-like Cu chaperone Cytosol Stem, vascular tissue Himelblau et al. (1998); Andrés-Colás et al. (2006) 

 AtATX1 ATX1-like Cu chaperone Cytosol  Puig et al. (2007) 
 
 

LeCCH ATX1-like Cu chaperone Cytosol  Company and González-Bosch (2003) 

CCS AtCCS Chaperone for Cu/ZnSOD  Cytosol and chloroplast Stem, flower, leaf Abdel-Ghany et al. (2005b); Chu et al. (2005) 

 LeCCS Chaperone for Cu/ZnSOD   Zhu et al. (2000) 
 StCCS Chaperone for Cu/ZnSOD   Trindade et al. (2003) 
 ZmCCS Chaperone for Cu/ZnSOD   Ruzsa and Scandalios (2003) 
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 GmCCS Chaperone for Cu/ZnSOD Chloroplast Mesophyll cells, leaf  Sagasti S, Bernal, M, Picorel R, Yruela I, unpublished 
results 

COX AtCOX17-1 COX17-like Cu chaperone   Baladin and Castresana (2002); Wintz and Vulpe (2002) 
 AtCOX17-2 COX17-like Cu chaperone   Baladin and Castresana (2002); Wintz and Vulpe (2002) 

YSL ZmYS1 
AtYSL1 
AtYSL2 
OsYSL2 
AtYSL3 
TcYSL3 
 

Cu2+-NA complex transporter? 
Cu2+-NA complex transporter 
Cu2+-NA complex transporter? 
Cu2+-NA complex transporter? 
Cu2+-NA complex transporter 
Cu2+-NA complex transporter? 
 

Plasma membrane? 
Plasma membrane 
Plasma membrane? 
Plasma membrane 
Plasma membrane? 
Plasma membrane 

Root, shoot 
Pollen, vascular tissue, 
peduncle, leaf  
Root (endoderm pherycicle), 
shoot  
Leaf (phloem), seed 
Pollen, flowers, root, leaf 
Root 
 

Roberts et al. (2004); Schaaf et al. (2004) 
Waters et al. (2006); Curie et al. (2009) 
DiDonato et al. (2004); Schaaf et al. (2005)  
Koike et al. (2004) 
Waters et al. (2006); Curie et al. (2009) 
Gendre et al. (2007); Curie et al. (2009) 
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