Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Responsive P(NIPAM-co-AA) Particle-Functionalized Magnetic Microspheres

Yiheng Wang A , Mengge Xia A , Yongtao Wu A and Meifang Zhu A B
+ Author Affiliations
- Author Affiliations

A State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, China.

B Corresponding author. Email: zmf@dhu.edu.cn




Professor Meifang Zhu received her Ph.D. in material science in 1999 from Donghua University (DHU), China. She visited Dresden University of Technology, Germany, as an assistant professor. She obtained her master's and bachelor's degrees in chemical fibre studies from China Textile University in 1988 and 1986, respectively. Since 1989, she has worked as an assistant teacher, an associate professor and a full professor in DHU, and she is the dean of the College of Material Science and Engineering. Her research group works on the development and characterization of organic/inorganic hybrid materials such as functional polymer fibres, nanocomposite hydrogels, and biomedical materials.

Australian Journal of Chemistry 67(1) 134-141 https://doi.org/10.1071/CH13336
Submitted: 30 June 2013  Accepted: 3 October 2013   Published: 6 November 2013

Abstract

Functionalized magnetic microspheres were prepared by anchoring cross-linked core–shell poly(N-isopropylacrylamide-co-acrylic acid) (P(NIPAM-co-AA)) nanoparticles onto silica-coated magnetic microspheres (Fe3O4@SiO2). First, the smaller polystyrene/P(NIPAM-co-AA) core–shell nanoparticles were synthesized through seed emulsion polymerization and adhered to the surface of amino-modified Fe3O4@SiO2 micorspheres, which were made using the modified Stöber method through electrostatic interaction under appropriate preparation conditions. An amidation reaction between the carboxylic and amino groups on the respective surfaces was then catalyzed. Finally, the novel architecture magnetic microspheres with multiresponsive functionalities were obtained, and their polymerization conditions, environmental sensitivity, and magnetic properties were discussed and optimized. The superparamagnetism and temperature/pH dual responsivity and excellent dispersibility of the P(NIPAM-co-AA) functionalized magnetic microspheres provide them with high potential to be used in the fields of controlled drug delivery, bioseparation, and catalysis.


References

[1]  S. Hallier-Soulier, E. Guillot, FEMS Microbiol. Lett. 1999, 176, 285.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkvVeqt7g%3D&md5=2d1d29665d2ed5e66b6f4326e37b1953CAS | 10427711PubMed |

[2]  S. Hallier-Soulier, E. Guillot, J. Appl. Microbiol. 2000, 89, 5.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlsF2hu70%3D&md5=6e13c83debf694e6a65300e27752cdaaCAS | 10945772PubMed |

[3]  Y. Deng, D. Qi, C. Deng, X. Zhang, D. Zhao, J. Am. Chem. Soc. 2008, 130, 28.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVWqsLnL&md5=afd621b838680de6ff9c7848e10a29dcCAS | 18076180PubMed |

[4]  Y. T. Zhang, Y. K. Yang, W. F. Ma, J. Guo, Y. Lin, C. C. Wang, ACS Appl. Mater. Interfaces 2013, 5, 2626.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjs1yns78%3D&md5=64692b55c188532d1e44f74630ad5f28CAS |

[5]  J. Ge, Q. Zhang, T. Zhang, Y. Yin, Angew. Chem. Int. Ed. 2008, 47, 8924.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVequ7bE&md5=17501f866ce23f935b1fbd051619a94bCAS |

[6]  G. Xie, Q. Zhang, Z. Luo, M. Wu, T. Li, J. Appl. Polym. Sci. 2003, 87, 1733.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntVWktw%3D%3D&md5=c367d695f60ea91a6ccf1ef29e6c3d11CAS |

[7]  A. Pich, S. Bhattacharya, H. J. P. Adler, Polymer 2005, 46, 1077.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXnsVOhug%3D%3D&md5=58640ebe62f510564ef0ba633716b56dCAS |

[8]  A. Pich, S. Bhattacharya, A. Ghosh, H. J. P. Adler, Polymer 2005, 46, 4596.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXks1ahsbk%3D&md5=7f7b3fb74267b4dff15987d9551fd06cCAS |

[9]  Z. Ma, Y. Guan, H. Liu, J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 3433.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmsFeitLo%3D&md5=094b0357751ff0e92c22d6109139e32dCAS |

[10]  Y. Deng, L. Wang, W. Yang, S. Fu, A. Elassari, J. Magn. Magn. Mater. 2003, 257, 69.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXis1Wltg%3D%3D&md5=4b0c04536713154781f1a4813dc311e5CAS |

[11]  L. P. Ramirez, K. Landfester, Macromol. Chem. Phys. 2003, 204, 22.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitlSrtL8%3D&md5=7c6890a1e88e8a3979508f72b434bf4aCAS |

[12]  Z. Z. Xu, C. C. Wang, W. L. Yang, Y. H. Deng, S. K. Fu, J. Magn. Magn. Mater. 2004, 277, 136.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvFOksLk%3D&md5=d03cf14bb52e7e4b1a55e8e54ded3fb8CAS |

[13]  L. P. Ramirez, K. Landfester, Macromol. Chem. Phys. 2003, 204, 22.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitlSrtL8%3D&md5=7c6890a1e88e8a3979508f72b434bf4aCAS |

[14]  S. Gu, T. Shiratori, M. Konno, Colloid Polym. Sci. 2003, 281, 1076.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnvFalsb0%3D&md5=8bacfa66e38a938ee3ee1cd3e8264e24CAS |

[15]  Y. Deng, W. Yang, C. Wang, S. Fu, Adv. Mater. 2003, 15, 1729.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovFCktLc%3D&md5=4d441c0947be8da90c46bc00db4b0aacCAS |

[16]  Y. Lu, Y. Yin, B. T. Mayers, Y. Xia, Nano Lett. 2002, 2, 183.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XislamtQ%3D%3D&md5=b73a811b2a087bd5f90f4406836d5c5fCAS |

[17]  F. Zhang, C. C. Wang, J. Phys. Chem. C 2008, 112, 15151.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtV2lu7nF&md5=e2f740220990d60fe38ff63a134b7b3eCAS |

[18]  D. Yang, J. H. Hu, S. K. Fu, J. Phys. Chem. C 2009, 113, 7646.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksV2it7o%3D&md5=62fbe2687b1dbb0fc71a4855e5f93a96CAS |

[19]  C. M. Nolan, L. T. Gelbaum, L. A. Lyon, Biomacromolecules 2006, 7, 2918.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptlGltro%3D&md5=5461726e0693d84204c3fd4298243a22CAS | 17025370PubMed |

[20]  L. B. Chen, F. Zhang, C. C. Wang, Small 2009, 5, 621.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktlSjtrs%3D&md5=6027b9029b9d64a1a07969cb2ad87a09CAS | 19189322PubMed |

[21]  M. P. Leal, A. Torti, A. Riedinger, R. Fleur, D. Petti, R. Cingolani, R. Bertacco, T. Pellegrino, ACS Nano 2012, 6, 10535.

[22]  J. Kim, M. J. Serpe, L. A. Lyon, J. Am. Chem. Soc. 2004, 126, 9512.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlvVSksbg%3D&md5=aa93508da9d88515640259c14c7a73bdCAS | 15291534PubMed |

[23]  J. Kim, M. J. Serpe, L. A. Lyon, J. Am. Chem. Soc. 2005, 127, 9588.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkvFSmtb4%3D&md5=3d98005d49ee4805493a0b2e18c23fcdCAS | 15984886PubMed |

[24]  H. Zhu, J. Tao, W. Wang, Y. Zhou, P. Li, Z. Li, K. Yan, S. Wu, K. W. K. Yeung, Z. Xu, H. Xu, P. K. Chu, Biomaterials 2013, 34, 2296.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvFWhtLfP&md5=4a8f9ae17b1145054b0ea373b9f498dcCAS | 23274069PubMed |

[25]  Y. Lu, Y. Mei, M. Drechsler, M. Ballayff, Angew. Chem. Int. Ed. 2006, 45, 813.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1OhtL8%3D&md5=55c2d63df607379b5e4fa432b25970aeCAS |

[26]  R. A. Frimpong, J. Z. Hilt, Nanotechnology 2008, 19, 175101.
         | Crossref | GoogleScholarGoogle Scholar | 21825659PubMed |

[27]  A. P. Herrera, M. Rodríguez, M. Torres-Lugo, C. J. Rinaldi, J. Mater. Chem. 2008, 18, 855.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhvVersrg%3D&md5=74a10ea7ce10d346908c527322dd9056CAS |

[28]  M. Laurenti, P. Guardia, R. Contreras-Cáceres, J. Pérez-Juste, A. Fernandez-Barbero, E. Lopez-Cabarcos, J. Rubio-Retama, Langmuir 2011, 27, 10484.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpslWqsr0%3D&md5=774eb1315c452becb74c69039b5472d5CAS | 21790174PubMed |

[29]  S. C. Glotzer, M. J. Solomon, Nat. Mater. 2007, 6, 557.
         | Crossref | GoogleScholarGoogle Scholar | 17667968PubMed |

[30]  M. Karg, Y. Lu, E. Carbo-Argibay, I. Pastoriza-Santos, J. Perez-Juste, L. M. Liz-Marzan, T. Hellweg, Langmuir 2009, 25, 3163.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1SltLs%3D&md5=8dd226d3dbcec6c085d373a8b532fdf0CAS | 19437719PubMed |

[31]  A. Budgin, Y. Kabachii, Z. Shifrina, P. Valetsky, S. S. Kochev, B. D. Stein, A. Malyutin, L. M. Bronstein, Langmuir 2012, 28, 4142.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1OmsbY%3D&md5=5a37bf2f9af00cd50bba7ff141cd453cCAS | 22303838PubMed |

[32]  G. Viau, R. Brayner, L. Poul, N. Chakroune, E. Lacaze, F. Fievet-Vincent, Chem. Mater. 2003, 15, 486.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpsVejs7Y%3D&md5=78afbacb9005ce28b0fc2372c177cfd3CAS |

[33]  W. Stöber, A. Fink, E. J. Bohn, Colloid. Interface Sci. 1968, 26, 62.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  F. Zhang, C. C. Wang, Langmuir 2009, 25, 8255.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktVOlu7k%3D&md5=9b12f849ab48a0d75d42a35938cb3ca8CAS | 19348500PubMed |

[35]  K. L. Hoy, J. Coat. Technol. 1979, 51, 27.
         | 1:CAS:528:DyaE1MXitVGrsbc%3D&md5=8c4a028fb814e652be5c3ab68563b525CAS |

[36]  K. Takamura, G. M. Theo, J. Rheol. 2010, 54, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht12mu78%3D&md5=75f7f3921e733dbcadfabdc3db2e5c65CAS |

[37]  A. Pich, S. Bhattacharya, Y. Lu, V. Boyko, H. J. Adler, Langmuir 2004, 20, 10706.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXos1Kht7o%3D&md5=e1f758b7c8bd445e82f76a33eac2cf29CAS | 15544405PubMed |