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Abstract 

 

This paper compares rates of tree water use, Huber value, canopy conductance and canopy 

decoupling of two disparate, co-occurring tree species, in a stand of remnant native vegetation in 

temperate Australia in order to compare their relative behaviour seasonally and during and after a 

drought. The study site was an open woodland dominated by Eucalyptus crebra (a broadleaf) and 

Callitris glaucophylla (a needle leaved tree). Tree water use was measured with sapflow sensors 

and leaf area and sapwood area measured destructively on felled trees. Huber value was calculated 

as the ratio of sapwood area to leaf area. Diameter at breast height (DBH) of the stem was used as a 

measure of tree size. Canopy conductance was calculated using an inversion of the Penman-

Monteith equation while omega (canopy decoupling) was calculated as described by Lu et al. 2003.  

 

The relationship between DBH and daily total water use varied over the four measurement periods, 

with largest rates of water use observed in summer 2003/4, following a large rainfall event and the 

smallest maximum water use observed in winter 2003 when monthly rainfall was much less than 

the long-term mean for those months. Despite differences in the relationship between sapwood area 

and DBH for the two species, the relationship between daily total water use and DBH did not differ 

between species at any time. The same rates of water use for the two species across sampling 

periods arose through different mechanisms: the eucalypt underwent significant changes in leaf area 

whilst the Callitris displayed large changes in canopy conductance, such that tree water use 

remained the same for both species over the two year period.  

 

Canopy conductance and the decoupling coefficient were both significantly larger in winter than 

summer in both years.  The generally low decoupling coefficient (0.05 to 0.34) reflects the low leaf 

area index of the site. When evaporative demand was small (winter) the degree of stomatal control 

was small and the decoupling coefficient was large. There was no relationship between tree size and 

either canopy conductance or the decoupling coefficient. Transpiration rates generally showed little 

variation between seasons and between species because of the balance between changes in leaf area, 

canopy conductance and evaporative demand. The occurrence of a significant drought did not 

appear to prevent these co-ordinated changes from occurring with the result that convergence in 

water use was observed for these two disparate species. 
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Introduction 

 

Obtaining estimates of rates of tree water use are important in investigations of ecosystem function 

and of catchment hydrology (Magnani et al. 1998, Pausch et al. 2000).  Whilst it is axiomatic that 

variation in environmental conditions (especially solar radiation, atmospheric vapour pressure and 

soil moisture) influence tree and stand water use (Arneth et al. 1996, Zeppel et al. 2004), the 

relative behaviour of co-occurring contrasting life-forms (for example needle-leaved versus 

broadleaved species) is poorly known. Similarly, contrasting the impact of drought on co-occurring 

species that differ in habit has rarely been examined in the field, whilst the influence of tree size in 

determining tree water use and related behaviour is also unclear for Australian ecosystems.   It is 

important to quantify the influence of habit and tree size on tree water use, leaf and sapwood area 

and other parameters because these factors have significant impacts on forest hydrology (Vertessy 

et al. 1998; Watson et al. 1999). Furthermore, different habits and trees of different sizes have 

different hydraulic architectures (Eamus and Prior 2001, McDowell et al. 2002) and such 

differences may influence additional functional features, including changes in stomatal and canopy 

conductance, rate of photosynthesis, transpiration rate and growth (Becker et al. 2000; Yoder et al. 

1994; Brodribb and Field 2000; Hubbard et al. 2001; Macinnis-Ng et al. 2004). In a recent review 

Ryan et al. (2006) note that there remain significant inconsistency in the response of canopy 

conductance and transpiration rate to increased tree height, both within and across species. 

 

Tree water use is influenced by leaf area and sapwood area (O’Grady, 2000; Martin et al. 2001), 

both of which are proportional to tree size (Kolb and Stone, 2000; Meinzer et al. 2001). 

Consequently an understanding of relationships among tree size, leaf area, sapwood area and water 

use are essential for predicting hydrological processes within forests (Vertessy et al. 1995). 

However, patterns of variation in these relationships between seasons, between drought and non-

drought periods and between co-occurring species remain relatively poorly documented (Meinzer et 

al. 2001). As tree height increases, canopy leaf area per tree generally increases. However, total 

daily water use may increase with tree size (Martin et al. 1997; Andrade et al. 1998) or show no 

consistent trend (Wullschleger et al. 2000, Hatton and Vertessey 1990).  This paper investigates the 

influence of tree size on tree water use for two co-dominant species differing in leaf form (broadleaf 

compared to needle leaved) across 2 years of study, during which time the stand of trees was subject 

to both drought and post-drought conditions.  
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The influence of hydraulic architecture on water transport through the soil-plant-atmosphere 

continuum is the subject of extensive research (Ryan et al.  2000; Meinzer 2001;  Becker et al. 

2000; Mencuccini 2002; McDowell et al. 2002 ; Mencuccini, 2003 ; Mokany et al. 2003; 

Zimmerman et al. 2004). Trees adjust their hydraulic architecture in relation to growing conditions, 

such as atmospheric and soil water content (Chaves et al. 2003; Mencuccini and Grace, 1994; 

Sellin, 2001; Whitehead and Beadle, 2004).  Pipe theory (Mokany et al. 2003) predicts that for a 

given species, the ratio of sapwood area to leaf area should remain similar throughout the 

development of the plant (Waring et al. 1982).  Whilst support for this prediction exists (Whitehead 

et al. 1984; Morataya et al. 1999) contradictory evidence has also been observed (Hubbard et al. 

1999, Magnani et al. 2000). In the present study we examine the relationship between tree height 

and Huber value (Hv; ratio of sapwood area to leaf area) in remnant vegetation in temperate 

Australia across two seasons.  

 

Whilst the influence of tree size (DBH or height) on tree water use has been investigated in many 

species, there appears to be little information about the influence of tree size on transpiration rate 

(rate of water transpired per unit leaf area per unit time). Although a priori reasoning may suggest 

no influence of tree size on transpiration rate (because leaf area is a component of both tree size and 

transpiration rate), the social status (emergent, co-dominant, suppressed) of the canopy of a single 

tree within the canopy depends on its height and a tree’s social status influences the daily total rate 

of water use (Arneth et al. 1996, Martin et al. 1997). Furthermore, variation in canopy conductance 

and the degree of decoupling of a canopy (McNaughton and Jarvis 1983) vary with tree size (Martin 

et al. 1997, 2001) and these factors may contribute to variation in transpiration rate, as a function of 

tree size. In the present study we examine how canopy conductance, decoupling and transpiration 

rate vary with tree size. 

 

The aims of the work described in this paper are to (a) compare the rates of water use of two 

disparate co-occurring tree species; (b) determine seasonal changes in relationships among tree size, 

leaf area, sapwood area, Huber value, omega and tree water use for these two species; (c)  examine 

whether canopy conductance and omega vary with tree size and season; and (d) examine the 

influence of drought on these patterns and relationships.   
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Materials and Methods 

Site description 

 

The study site was located in remnant woodland on the Liverpool Plains, (about 90 km south of 

Tamworth) on the northwest plains of New South Wales, Australia (31.5 S,  150.7 E, elevation 

390 m). Vegetation at the site consisted of open woodland, with an average height of 14 m, 

dominated by Eucalyptus crebra  F. Muell. and Callitris glaucophylla J. Thompson and L.A.S. 

Johnson. These two species account for approximately 75% of the tree basal area at the site. Soils at 

the site were well drained acidic lithic bleached earthy sands (Banks, 1998) with pockets of clay. 

Total tree basal area for the site was 23.8 + 3.4 m
2
 ha

-1
 and leaf area index was generally about 1.0 

to 1.2 throughout the year. 

 

Weather,  soil moisture content and  leaf water potentials 

 

Wind speed was measured with a cup anemometer located above the canopy, approximately 18 m 

above ground. Wind speed was measured every 15 s and hourly averages recorded on a Star Logger 

(Measurement Engineering Australia, Adelaide).   

 

Rainfall data and aspirated wet and dry bulb temperatures were obtained from a screened climate 

station (Environdata Pty Ltd, Australia) located approximately 500 m from the study site in a 

cleared field (approximately 4 ha). Total solar radiation was measured above the screen. Vapour 

pressure deficit (VPD) was calculated from wet and dry bulb temperatures. 

 

Volumetric soil moisture content was measured with an array of frequency domain reflectometry 

sensors which measure soil moisture by measuring the dielectric constant of soil (Theta Probe, 

ML2-X, Delta-T Devices, UK) in three plots. Theta probes were buried horizontally at 10, 40 and 

50 cm in two plots, and at 10 and 40 cm in a third plot. Total soil moisture storage was calculated 

by multiplying the soil depth by the percent of moisture contained by the soil and then the water 

contained in each layer was summed. Relative water content was estimated by dividing actual daily 

soil moisture content by maximum soil moisture content over the entire season. 

 

Water potential of three replicate leaves of three replicate trees of both species were measured in 

summer 2002/3, winter 2003, summer 2003/4, on between 1 and 3 days using a Scholander-type 
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pressure bomb (Plant Water Status Console,  Soil Moisture Equipment Corporation, USA). Fully 

expanded, sunlit, mature leaves were sampled in the outer canopy between 2 – 8 m height (using a 

hydraulic platform for access) between pre-dawn and 1700 h. 

 

Leaf area, sapwood area, DBH, height and Huber values 

 

Seven C. glaucophylla and eight  E. crebra trees were destructively sampled in December 2002 

(summer), June 2003 (winter), and January (summer) 2003. The DBH of each tree and the diameter 

of each branch (measured at the junction with the stem) were measured. Three branches from each 

tree were selected from the lower, mid- and upper-third of the canopy and the total projected leaf 

area of each branch determined using a leaf area meter (WinDIAS Delta-T devices Ltd, UK). C. 

glaucophylla leaves were examined under a binocular microscope, and were found to be a three 

sided. The projected area of photosynthetically active material only was measured on C. 

glaucophylla. A regression of branch diameter and leaf area for each species was then used to 

calculate the total leaf area per tree from the branch diameters of all branches for each individual 

tree.  Regressions of DBH versus total branch diameter and individual branch diameter versus leaf 

area per stem were also calculated. This allowed an estimate of leaf area to be calculated from DBH 

using allometric relationships (Burrows et al. 2000; Santiago et al. 2000; Vann et al. 1998).  

 

Sapwood cross-sectional area was measured on two, 5 mm diameter, cores, taken from the trunk at 

about 1.3 m height. Sapwood area was measured on each tree that was instrumented with 

Greenspan sap flow loggers. In addition, sapwood area was measured on trees that were felled. A 

distinct colour change was observed between bark, sapwood and heartwood in both species.  

 

Diameter at breast height (DBH;  ~1.3 m above the ground) was measured using a diameter tape 

and tree height was recorded after cutting the tree down. Huber value (Hv) was calculated by 

dividing by sapwood area (m
2
) by leaf area (m

2
). 

 

Sap flow measurement 

 

Sap velocity was measured using the heat pulse technique with commercial sap flow sensors 

(Greenspan Technology Pty Ltd., Warwick, Australia). Two probe sets (4 sensors) were inserted at 

90  to each other in each tree. A preliminary Monte Carlo simulation showed that four probes per 
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tree were adequate (Zeppel et al. 2004). A minimum of seven and a maximum of 15 trees were 

instrumented for each species at each sampling time. 

 

Sap velocities were monitored at 15-minute intervals over a two-week period during July-August 

2002 (mid-drought; winter), January-February 2003 (mid-drought; summer) July-August 2003 

(post-drought; winter) and February-March 2004 (post-drought; summer). Tree water use was 

calculated for each sensor for twelve consecutive days after allowing two days for development of 

the wound that develops as a result of drilling into the wood (O’Grady, 2000; Olbrich, 1991). The 

weighted averages technique of Hatton and Wu (1995) was used to convert sap velocities to volume 

of transpired water.  

 

Volume fractions of wood and water in the sapwood were determined gravimetrically on 5 mm 

cores taken from 10 trees of each species on two occasions. In Eucalyptus crebra the mean (and 

s.e.) wood fraction was 0.55 + 0.03 and 0.50 + 0.04 in winter and summer respectively. The mean 

water fraction was 0.23 + 0.02 and 0.28 + 0.01 in winter and summer respectively. In Callitris 

glaucophylla the mean wood fraction was 0.34 + .01 in winter and 0.34 + 0.04 in summer. The 

mean water fraction was 0.52 + 0.01 in winter and 0.48 + 0.03 in summer. 

 

Radial sapflow profiles and wound width 

 

Radial profiles of sap velocity through the sapwood of each species were determined to calculate 

the regions of maximum flow across the sapwood. Sap flow was measured at a minimum of 6 

depths across the sapwood, replicated 3 or 4 times in different aspects in each tree.  Knowledge of 

the region of maximum sap flow across the sapwood was used to calculate the depth to insert the 

sap flow sensors. The full method is described by O’Grady (2000). 

 

The width of the wound around the holes used to insert the probes was measured twice in seven 

trees of each species, using a binocular microscope to measure the wound, using the technique 

described by O’Grady (2000). A wound width of 2.5 mm for C. glaucophylla and 3.7 mm for 

Eucalyptus crebra was used to correct velocity estimates.  
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Calculating canopy conductance and the decoupling coefficient 

 

Maximum hourly canopy conductance (Gc) of each tree was estimated from hourly transpiration 

and climate data using the inverted Penman Monteith equation (Lu et al. 2003). Because there can 

be a time lag between transpiration at the canopy level, and sap flow in the tree stem 1.3 m above 

ground, due to stem storage of water in trees (Ewers and Oren, 2000; Lhomme et al. 2001; Schulze 

et al. 1985), it was necessary to estimate the length of this time lag so that transpiration rates and 

canopy conductances could be most accurately modelled with the Penman-Monteith equation 

(Martin et al. 2001, Phillips et al. 2002). Regressions between hourly values of transpiration (m
3
 

water m
2
 leaf area h

-1
) and radiation (MJ m

-2
) on clear sunny days were performed for time 

differences of -1, 0, 1 and 2 h. The regression with the highest r
2
 was determined to be the time lag, 

and regressions were performed for between two or three trees, for each sampling period (Winter 

2002, r
2
 = 0.95; Summer 2002/3, r

2
 = 0.72; Winter 2003, r

2
 = 0.96; and Summer 2003/4, r

2
 = 0.89). 

Each season had a time lag of one hour, with the exception of Summer 2002/3, which had no time 

lag, possibly due to an extremely large rain event (93 mm) preceding the sampling period. 

Therefore a lag of one hour was used in all hourly time step calculations except Summer 2002/3. 

 

Using transpiration as an input, canopy conductance (Gc, mm hr
-1

) was estimated using the 

equation: 

 

Gc = [Ehp Ga.]/[ (Rn) + (kCpDGa)- (([ + ) Ehp]  (1) 

          

where  is the latent heat of vaporisation (2.39 MJ kg
-1

),  is the slope of the relationship between 

saturation vapour pressure and temperature (kPa C
-1

), Rn is net radiation intercepted by the forest 

canopy (MJ m
-2

 hr
-1

) (54% of total radiation in this forest, M. Zeppel, unpublished data),  is air 

density (kg m
-3

), Cp is the specific heat of air (1.013 MJ kg-1  C
-1

), D is the vapour pressure deficit 

(kPa), Ga is aerodynamic conductance  (m s
-1

),  is the psychometric constant (0.066 kPa C
-1

), Ehp 

is transpiration measured using the heat pulse system, and k is a conversion factor, to convert values 

from seconds to hours.  

 

A sensitivity analysis was conducted on the effect of variation in temperature on  and  on Gc. 

Varying temperature from 6 to 40 C only changed Gc by 2%, therefore an ambient winter 

temperature of 13.5 C in winter and 27.5 C was assumed.  
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Ga is the inverse of ra, aerodynamic resistance (s m
-1

), which was estimated from the following 

equation (Yunusa et al. 2000): 

 

ra = 4.72(ln (Z/Zo))
2 

/ (1+ 0.54U)     (2) 

 

where Z is canopy height (m), Zo is roughness height (1.95 m for this forest type, Hutley, pers 

comm), and U is wind speed (m s
-1

). A conversion factor that was dependent on air temperature was 

used to convert Gc in mmol m
-2

 h
-1

 to mm h
-1

.  

  

The decoupling co-efficient (Ω) estimates the extent to which canopy transpiration is controlled by 

stomatal aperture in response to micrometeorological changes, and is dimensionless. Ω was 

calculated using (Lu et al. 2003): 

 

Ω = [/ + 1] / [/ + 1 + Ga/Gc]      (3)  

 

The decoupling coefficient ranges from zero to one. As Ω approaches zero, stomatal control of 

transpiration becomes stronger because the vapour pressure at the canopy surface becomes 

increasingly coupled to that in the bulk air (Lu et al. 2003). 

 

Results 

Weather and leaf water potential 

 

Peak net radiation was about 4 MJ m
-2

 h
-1 

in summer and half of this in winter (Fig. 1a). Vapour 

pressure deficit was similarly larger in summer (2.1 kPa) than winter (1.1 kPa) and peaked later in 

the afternoon in summer than in winter (Fig. 1b). The long-term average annual rainfall for the 

Liverpool Plains is 680 mm, with approximately 50% of this occurring between October and 

February and 50% occurring from March to September (Fig. 2). However, rainfall between June 

2002 and May 2003 was significantly less than the long-term average. Total rainfall in 2002 was 

366 mm or 60 % of the 20-year average and total rainfall in 2003 was 522 mm 86% long-term 

average. In winter 2002, (June to August) rainfall was approximately 25 % of the average winter 

rainfall, while in summer 2002/3 (December to February) rainfall was approximately 60 % of the 
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long-term average (Fig. 2). The period June 2003 to May 2004 received higher than average rainfall 

(Fig. 2). 

Soil moisture 

 

The relative water contents of the soil (RWC) at 10 and 40 cm depths are shown in Fig. 3.  RWC of 

soil at 10 cm was more responsive to rain than soil at 40 cm. The RWC at 10 cm responded to rain 

events if the cumulative total over a 4 – 7 day period exceeded 10 – 15 mm. Thus, a number of 

small (> 10 mm) rain events on consecutive days influenced RWC, as well as large (> 20 mm) 

individual rain events. Single rain events of less than 10 mm had no effect at 10 cm or 40 cm. Soil 

at 40 cm responded to rain events larger than 20 mm and the response time was slower, and soil at 

40 cm retained moisture for longer than soil at 10 cm. 

 

Pre-dawn water potential for the eucalypt was very low (approximately -2.8 MPa) in summer 

2002/3, reflecting the impact of the prolonged drought on plant water relations (Fig. 4a). 

Throughout the remainder of the day, eucalypt leaf water potential (ψw) declined to reach a 

minimum of -4.0 MPa (Fig. 4a). Pre-dawn water potential data are not available for Callitris 

because of equipment problems. However, in summer 2002/3, ψw of Callitris reached -5.0 MPa in 

late afternoon. 

 

Pre-dawn leaf water potential of the eucalypt was higher (closer to zero) in winter 2003 than 

summer 2002/3. Similarly, ψw throughout the day were higher for both species in winter 2003 than 

summer 2002/3 (Fig. 4b). In the summer of 2003/4, after significant rains in the 3 months prior to 

the measurement of ψw, pre-dawn water potential for both species was higher than that observed in 

winter 2003 (Fig. 4c). However, the daily range of ψw in summer 2003/4 was similar to that 

observed in winter 2003, for both species. Generally, ψw of the Callitris was higher than that of the 

eucalypt, although this was not true for summer 2002/3. The difference in ψw was typically 0.5 to 

1.0 MPa throughout the day, but the difference was generally smaller at the start or end of the day. 

 

Sap velocity, tree size and tree water use 

 

There was no significant relationship between tree size (DBH) and sap velocity for either species in 

either season (Zeppel, 2006). Sap velocity generally ranged between 10 and 45 cm h
-1

 for the 

eucalypt and 5 and 30 cm h
-1

 for Callitris.  The relationship between tree size (DBH) and daily total 
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water use varied over the four measurement periods (Fig. 5a-d). Maximum water use (ca 130 to 140 

L d
-1

) of large trees was measured in summer 2003/4, within 4 weeks of a significant (> 80 mm) 

rainfall event (Fig. 5d) and the smallest maximum water use (ca 30 L d
-1

) for similarly sized trees 

was observed in winter 2003 (Fig. 5c) when monthly rainfall was much less than the long-term 

mean for those months. 

 

The slope of the regression of leaf area and tree size was larger for the eucalypt than  Callitris 

during summer 2003 and summer 2004 (Fig. 6). In winter this was not observed.  For a mid - sized 

tree (DBH = 20 cm) the leaf area of the eucalypt was reduced by approximately 50% from summer 

2003 to winter, while the leaf area of Callitris  showed an approximately 25 % reduction. In winter, 

there was no difference in the slope of the regression of leaf area on DBH (Fig 6b).  

 

As DBH increased, sapwood area increased significantly for both species (Fig. 7). For small trees 

(DBH <20 cm) the ratio of sapwood area: DBH did not differ between the 2 species, but for 

medium and large diameter trees, Callitris  maintained a significantly larger sapwood area than the 

eucalypt (Fig. 7). 

 

Huber value, canopy conductance, canopy decoupling coefficient and transpiration rate 

 

Huber value was generally within the range 0.004 to 0.0012 for all measurement times and species 

(Fig. 8). There was no relationship between Huber value (Hv) and tree height for either species in 

either summer or winter (data not shown). Similarly, there were no differences in Hv between 

seasons or species (Fig. 8).   

 

Canopy conductance ranged between approximately 80 and 380 mmol m
-2

 s
-1

 for the eucalypt (Fig. 

9a). For the eucalypt, canopy conductance was significantly larger in winter than summer in both 

years, with the largest value obtained in the winter of 2002 and the smallest in the summer of 

2003/4. In contrast, there was no consistent trend for Callitris  with Gc being larger in winter than 

summer in 2003/2004 but smaller in winter than summer in 2002.  

 

The decoupling coefficient was similarly significantly larger in winter than summer (Fig. 9b) for the 

eucalypt, with the largest value obtained in winter 2002 and smallest value in summer 2003/4 but 

there was no consistent trend for Callitris. The decoupling coefficient ranged in value between 0.05 

and 0.34 across all sampling times.  
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Transpiration rate varied between 0.5 mm d
-1

 and 1.8 mm d
-1

 (0.5 and 1.8 L m
-2

 d
-1

) for C. 

glaucophylla and 0.7 to 1.1 L mm d
-1

 (0.7 to 1.1 L m
-2

 d
-1

) for the eucalypt (Fig. 9c). There was no 

significant difference in transpiration between seasons for the eucalypt but C. glaucophylla showed 

significantly larger transpiration rates in the summer compared to the winter. There was no 

relationship between tree size and transpiration rate for any season for either species (data not 

shown). 

 

Discussion 

Tree water use and transpiration rates 

 

Sap velocity was independent of tree size for both species, a fact that makes scaling of individual 

tree water use to stand water use considerably easier than if sap velocity varied with tree size 

(Eamus et al. 2000; Meinzer et al. 2001).  Independence of sap velocity from size has been 

observed previously (Oren et al. 1999, Vertessy et al. 2002) and this independence in velocity from 

size increases the confidence we can have in the scaled estimates of stand water use.  

 

The severe and prolonged drought that affected Eastern Australia of 2002/3 was demonstrated in the 

period from July 2002 to June 2003, which received much less rainfall than the long-term average 

(Fig. 2). In contrast, the summer of 2003/4 received larger than average rainfall. The impact of this 

difference in rainfall between years is reflected in the leaf water potentials. Pre-dawn leaf water 

potential, an approximate indicator of soil water availability (Prior et al. 1997, Baldocchi et al. 

2004), and mid-day values of leaf water potential were much lower in the summer (January and 

February) of 2002/3 than either winter (July to August) 2003 or summer 2003/4 (Fig. 4b-c).  

Similar relationships between leaf water potential and soil moisture have been observed in 

woodlands in Australian savanna (Prior et al. 1997), Mediterranean (Otieno et al. 2006) and tropical 

monsoon forest (Kume et al. 2007).  Large differences in soil moisture and evaporative demand 

amongst measurement periods are likely to strongly influence leaf area, Huber value, canopy 

conductance and tree water use of this ecosystem and this is discussed later.  

 

Rates of daily water use for large diameter trees were largest in the summer of 2003/4 (110 L d
-1

 for 

trees of 50 cm diameter) and smallest in winter 2003 (36 L d
-1

 for trees of 50 cm diameter) and 

winter 2002 (60 110 L d
-1

 for trees of 50 cm diameter).  The rate of water use in summer 2002/3 
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was approximately 80 110 L d
-1

 for trees of 50 cm diameter. These patterns reflect both the impact 

of seasonality of radiation and vapour pressure deficit (Farrington et al. 1994, Stohr and Losch 

2004, Wullschleger et al. 1998) and the influence of the drought. The winter of 2002 was 8 months 

into one of the worst droughts experienced in eastern Australia and this, coupled to reduced 

radiation and vapour pressure deficits in winter compared to summer explains the low rate of water 

use compared to either summer. The decrease in water use in winter 2003 compared to the winter of 

2002 despite more rain in winter 2003 compared to winter 2002 is likely to be a result of a lag 

between the increased rainfall in winter 2003 and any increase in leaf area in response to that rain. 

Leaf flush is initiated in spring and consequently the potential for an increase in leaf area and hence 

water use was not observed until summer 2003/4, when leaf area per tree was much larger than that 

observed in winter 2003 (Fig 6).    

 

Seasonal changes in leaf area are well documented for eucalypts and other tree genera (Williams et 

al. 1997; O’Grady et al. 1999) and result from seasonal changes in temperature and water 

availability (Myers et al. 1998). It is likely that eucalypts and some other genera may use changes in 

leaf area per tree to adjust rates of total daily tree water use (Eamus et al. 2000, Kume et al. 2007) 

during dry conditions. Callitris, in contrast to the eucalypt, showed smaller variation in leaf area 

than the eucalypt throughout the study period and, perhaps consequentially, exhibited a 25 % lower 

(more negative) minimum leaf water potential (-5.0 MPa) during the drought (summer 2002/3), 

than the eucalypt (– 4.0 MPa), supporting the conclusion that the eucalypt used changes in leaf area 

more effectively than Callitris to regulate tree water use and hence leaf water potential. 

 

 

Within each measurement period the relationship between total daily water use (L d
-1

) and DBH 

was the same for both species. Thus, for a given DBH, total daily water use was the same for both 

species. Such convergence of water use for sympatric species has been observed previously for 

broad leaved species (Calder et al. 1992; Enquist 2002; Hatton et al. 1998). However, this is the 

first example of such convergence for a broad leaf and a needle leaved species. Such convergence 

may arise because a species that routinely used less water than a competing adjacent species at a 

site would be at a competitive disadvantage because the competing species would have access to the 

unused water and would benefit (through nutrient uptake and the carbon gain associated with water 

loss from leaves) from use of that water. Meinzer et al. (2001) similarly observed that the 

relationship between sap flux density and tree size for 24 co-occurring species was the same for all 

species, indicating strong convergence in water use.  
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The rate of transpiration (rate of water transpired per unit leaf area per unit time) did not show any 

significant change between seasons for the eucalypt. Several coordinated changes may explain this 

lack of seasonal change in eucalypt transpiration rate. In the summer of 2003/4 after the drought 

had broken, water use per tree was largest, but leaf area per tree was also the largest (and 

consequently Huber value was smallest). Omega (Ω) was the smallest and therefore the coupling 

between the hot dry air of the summer at this site and the canopy was largest. To prevent too large a 

decline in leaf water potential (which were higher at this time than in previous measurement times) 

canopy conductance was lowest. This contrasts to winter 2003, when cooler daytime temperatures 

and smaller VPDs, coupled to the reduced leaf area per tree and hence much larger Huber values 

and a much larger Ω, resulted in a smaller demand for water supply to the canopy, a reduced level 

of water stress and consequently a much larger canopy conductance was maintained at this time. 

Finally, in summer of 2002/3, during the later part of the drought, low leaf water potentials were 

observed as a result of the low soil moisture content coupled with a large evaporative demand of the 

atmosphere, a small Ω and moderate leaf area and Huber value. These conditions resulted in a small 

canopy conductance being maintained. As a consequence of this coordination amongst changes in 

leaf area per tree, Gc, Ω and evaporative demand, transpiration varied much less between 

measurement periods than expected given the large difference in soil moisture, temperature and 

VPD that existed during drought and non-drought periods and winter and summer periods. A 

similar lack of variation in transpiration despite large variations in soil moisture, rainfall, VPD and 

leaf water potentials has been observed along a strong rainfall gradient in tropical Australia (Eamus 

et al. 2000). Similarly Hatton et al. (1998) concluded that transpiration rate of temperate eucalypts 

does not differ between species, whilst Meinzer et al. (1997) have also shown that transpiration rate 

for 4 co-occurring species in a tropical forest did not differ. These results support the view that 

transpiration rate is relatively conservative at a site (Magnani et al. 1998). More importantly, 

however, was strong convergence in rates of water use across the two species across all 

measurement periods across the full range of tree size.  We suggest that this is because it is the rate 

of acquisition of water per se (with the associated uptake of nutrients and the carbon gain that is 

concomitant with water loss from the canopy) that determines competitive outcomes between co-

occurring species rather than transpiration rate, which, as observed here, can differ between species 

without there being any difference in water use.   

 

Transpiration rate of the Callitris,  in contrast to the eucalypt, did vary between seasons and, also 

unlike the eucalypt, transpiration showed a larger response in the summer of 2003/4 after the 
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drought had broken, compared to the drought period of summer 2002/3. Callitris showed  no 

increase in leaf area between summer 2002/3 and summer of 2003/4, in contrast to the significant 

increase in leaf area observed in the eucalypt. Thus, water use was the same in the Callitris and 

eucalypt for all measurement periods through two different mechanisms. For the eucalypt, 

transpiration rate did not differ between summer 2002/3 and summer 2003/4 but leaf area increased 

and so total tree water use increased in summer 2003/4 compared to summer 2002/3. In contrast, 

transpiration rate increased in the Callitris but leaf area was relatively constant and so tree water use 

increased in parallel with the eucalypt between summer 2002/3 and summer 2003/4. The observed 

decline in Gc for Callitris, from 380 to 175 mmol m
-2

 s
-1

 for the period summer 2002/3 to summer 

2003/4 is also in marked contrast to the lack of response of Gc for the same period for the eucalypt, 

further exemplifying the different mechanisms underlying the convergence of total tree water use 

observed for the two species. 

 

Canopy conductance, omega and Huber values  

 

Canopy conductance (Gc) in the present study ranged from approximately 80 to almost 400 mmol 

m
-2

 s
-1

 (Fig. 9a). This range agrees well with values determined for broad leaf oak forest, mixed 

coniferous forest, Amazonian rainforest and mature beech forest (Granier and Breda 1996, Harris et 

al. 2004, Martin et al. 1997, Magnani et al. 1998).  There was no relationship between Gc and tree 

size for either species, as has been noted previously when Gc is expressed on a leaf area basis 

(Martin et al. 2001). Seasonal variation in canopy coupling (Ω) were significant and differed 

amongst species.  Hutley et al. (2001) similarly observed seasonal changes in Ω, with large values 

in the wet season (where water vapour pressure deficits are small and soil moisture content large) 

and small values in the dry season (where the converse occurs). These seasonal changes indicate 

that when evaporative demand is small (winter in temperate Australia or wet season in monsoonal 

Australia) the degree of stomatal control of water loss is small, and Ω is consequently larger. Thus, 

canopy conductance (Gc) was larger in winter than summer in the present study and larger in wet 

seasons than in dry seasons.   

 

Eamus et al. (2000) observed that along a strong rainfall gradient, the relationship between DBH 

and sapwood area was the same among different species within a single site, but different when 

comparing amongst species growing at different sites. Similarly, Meinzer et al. (2001) found a 

single relationship between DBH and sapwood area amongst 24 co-occurring tree species in 

Panama. The results of the present study do not support the convergence of a single relationship 
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between DBH and sapwood area amongst the two species examined here. Similarly, the 

relationships between DBH and leaf area were different for the two species in summer. However, a 

single relationship between DBH and tree water use was observed for both species in the present 

site (as discussed previously). We suggest that the larger sapwood area per unit DBH observed for 

medium and large Callitris trees compared to the eucalypt, is a result of the smaller sapwood 

specific conductivity generally observed in conifers compared to broad leaved species (Tyree and 

Ewers 1996, Eamus and Prior 2001) and that differences in sapwood area, leaf area and leaf specific 

conductivity between the two species acted in concert to minimise differences in transpiration rate. 

 

Values of Hv obtained in the present study (5 to 10 x 10
-4

) compare well with the range obtained in 

a 4 ecosystem study in temperate Australia (2 to 16 x 10
-4

; Macinnis-Ng et al. 2004).  Macinnis-Ng 

et al. (2004) found a significant decrease in Hv in summer compared to winter, a result they 

attributed to the leaf flushing that occurred in the summer. In the present study the increase in leaf 

area observed after the drought was broken (summer 2003/4 was reflected in the small but not 

significant decrease in Huber values for both species. The lack of a strong response in the present 

study could be because of the influence of the prolonged (> 18 months) drought on leaf area and a 

resulting continued inhibition of the leaf expansion that would normally occur in the spring.  

Huber values can increase as trees become taller (McDowell et al. 2002, Schafer et al. 2000). As 

trees grow taller, Hv may increase to compensate for the increased path length that water must 

travel to reach the leaves (Hubbard et al. 1999). This increase in Hv with tree height is also 

predicted in a model developed by Magnani et al. (2000). In contrast, Mokany et al. (2003) and 

Fischer et al. (2002) showed a decreasing Hv with tree height in Eucalyptus delegatensis and Pinus 

flexilis respectively. Mokany et al. (2003) showed that sapwood specific conductivity (ks) increased 

with tree height and concluded that this increase in ks supports the view that increased tree height 

requires an increase in the ability of the stem to supply water to the canopy.  In contrast to the 

majority of studies, no relationship between Hv and tree height was observed in either species in the 

present study. This could be because (a) the range of tree sizes was relatively small; (b) because of 

changes in sapwood specific conductivity with tree size (Phillips et al. 2002); or (c) drought during 

the preceding 18 months had masked any relationship between Hv and tree size because of the 

impact of drought on leaf area and stem growth (and hence sapwood area).  

 

In conclusion, we note the following: seasonal variation in leaf area, canopy conductance, omega 

and tree water use was observed for the needle-leaved and broadleaved species in this remnant 

native woodland of temperate Australia.  However, the relationship between tree size and total 
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water use was the same for both species, suggesting significant convergence in the integrated 

hydraulic behaviour of the two species, despite significant differences in seasonal changes in leaf 

area between the two species and differences between species in the relationship between sapwood 

area and tree size for medium and large diameter trees. As a consequence of coordination of 

changes amongst Gc, leaf area, omega and evaporative demand, rates of transpiration  did not show 

any significant change between seasons for the eucalypt but more importantly rates of tree water 

use did not differ between the two species at any time. The occurrence of a significant drought did 

not appear to prevent coordinated changes from occurring.  
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