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ABSTRACT
Two-quantum variants of two-dimensional electronic spectroscopy (2DES) have previously been used to characterize multi-exciton
interactions in molecules and semiconductor nanostructures though many implementations are limited by phasing procedures or non-
resonant signals. We implement 2DES using phase-cycling to simultaneously measure one-quantum and two-quantum spectra in col-
loidal CdSe quantum dots. In the pump–probe geometry, fully absorptive spectra are automatically acquired by measuring the sum of
the rephasing and nonrephasing signals. Fifth-order two-quantum spectroscopy allows for direct access to multi-exciton states that may
be obscured in excited state absorption signals due to population relaxation or third-order two-quantum spectra due to the non-resonant
response.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0021381., s

I. INTRODUCTION

Optical excitation of semiconductor quantum dots (QDs)
forms bound electron–hole pairs, or excitons (X). QDs may simul-
taneously confine several excitons, which form confined multi-
excitons (MX). The energy of an MX state is characterized by a
binding energy, ΔMX, which reflects mean-field effects as well as cor-
relation interactions.1 The MX state is split into a fine structure,
and this fine structure varies depending on the size of the QD.2,3

Characterization of the MX fine structure in semiconductor nanos-
tructures is therefore important for understanding material proper-
ties such as optical gain4 as well as testing fundamental many-body
physics.

Coherent multi-dimensional spectroscopy (CMDS) reveals
electronic and vibrational structure dynamics on an ultrafast
timescale by correlating the time evolution of quantum coher-
ences. CMDS typically employs one-quantum (1Q) coherences,
giving insight into phenomena such as spectral diffusion5 and elec-
tronic and vibrational couplings.6,7 Two-quantum (2Q) coherences
are a promising probe for many-body physics as they directly excite

two-photon transitions, reflecting electron correlation effects8–12

and multi-exciton dynamics.13 However, third-order 2Q CMDS is
restricted to non-rephasing pathways and may be contaminated with
the non-resonant response due to the lack of a time delay between
the pump and probe pulses.14

Fifth-order CMDS offers a greater number of excitation path-
ways than third-order CMDS, allowing one to disentangle signals
that are obscured in lower-order implementations.6,15–19 Fifth-order
2Q CMDS has been used to isolate MX signals in semiconductor
nanostructures,11,20 distinguishing bound biexcitons and unbound
two-exciton correlations.20 Recently, fifth-order 2Q CMDS has been
used to study exciton–exciton interactions in molecular aggre-
gates.13,21–24 Fifth-order 2Q CMDS allows for measurement of both
rephasing and non-rephasing 2Q signals25 and allows for a time
delay between pump and probe pulses, which may help to avoid the
non-resonant response seen in third-order 2Q spectra.

Many 2Q spectra have been measured in the BOXCARS
beam geometry, where desired signals are isolated using phase-
matching.8,10–12,20,26 One often desires to combine rephasing and
non-rephasing signals to generate “fully absorptive” spectra. Due
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to the inherent phase instability of non-collinear beam geometries,
individual signals must be phase-shifted before combination and
typical phasing procedures may not be reliable for the 2Q signal.26

Phase instability in the BOXCARS beam geometry can be circum-
vented with active or passive phase stabilization procedures, which
contribute to experimental complexity.10,27,28 Conversely, collinear
beam geometries isolate the desired signal by cycling the phase of the
excitation pulses.29–31 Fluorescence-detected collinear beam geome-
tries allow for isolation of multiple 2Q signals,32,33 and the par-
tially collinear pump–probe geometry allows for isolation of a fully
absorptive fifth-order 2Q signal.13,24,25

Here, we implement a two-dimensional electronic spectroscopy
(2DES) experiment in the pump–probe geometry, employing four-
step phase-cycling to simultaneously and separately measure fully
absorptive 1Q and 2Q spectra in colloidal CdSe QDs.

II. EXPERIMENTAL METHODS
The 2DES experiments presented here use three independently

controlled pulses to prepare a macroscopic polarization. The pulses
interact with the sample creating coherences, such as |G⟩⟨X|, or
exciton populations, such as |X⟩⟨X|. A pump–probe beam geome-
try is used: the first two pulses are collinear and cross through the
sample at an angle in the direction k1 = k2, while the third pulse
passes straight through the sample in the direction k3. The first and

second pulses are separated by time delay t1. The second and third
pulses are separated by time delay t2. The prepared polarization
radiates during time delay t3. The radiated signal is detected by a
spectrometer as a function of t1 and t2, and oscillations along t3
are directly detected in the frequency domain. In the pump–probe
geometry, many signals are simultaneously detected in the k3 direc-
tion; therefore, desired signals are isolated by phase-cycling. The
phase difference between the first two pulses, Δϕ12, is varied, and
the signal is measured for every phase value. Linear combinations
of the signal at different values of Δϕ12 allow for the retrieval of the
1Q and 2Q spectra. Increasing the intensity of the first two pulses
allows one to see multi-exciton signals that are not created at low
intensities.

Multiple 1Q and 2Q signals are created in the three-pulse 2DES
experiment. We will begin by comparing four signals that we label
third-order 1Q, fifth-order 1Q, third-order 2Q, and fifth-order 2Q.
The third-order and fifth-order signals are created by three and
five pulse interactions, respectively. The first two pulses are high
intensity pump pulses, allowing for several interactions per pulse,
while the third pulse is a low intensity probe pulse. The third-order
2Q signal is created in this experiment but cannot be measured
in the pump–probe geometry. This signal is presented purely for
reference.

The four signals are depicted in Fig. 1 as schematic pulse dia-
grams and as wave-mixing energy level (WMEL) diagrams, on the
left and right, respectively. A three level system with a ground state

FIG. 1. Schematic representations of (a)
third-order 1Q pathway k1 − k2 + k3,
(b) fifth-order 1Q pathway (k1 − k1)
+ k1 − k2 + k3, (c) third-order 2Q path-
way k1 + k2 − k3, and (d) fifth-order
2Q pathway 2k1 − 2k2 + k3. Asterisks
denote that multiple interactions are pos-
sible with that pulse. On the right, the four
pathways are depicted as level diagrams
for a three level system with a binding
energyΔXX. Solid arrows represent inter-
action with the ket, dashed arrows repre-
sent interaction with the bra, and a wavy
arrow represents the emitted signal.
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(G), a single exciton state (X), and a biexciton state (XX) is assumed.
In a WMEL diagram, time moves forward from left to right, and
each arrow corresponds to a single pulse interaction. A solid arrow
corresponds to interaction with the ket, and a dashed arrow cor-
responds to interaction with the bra. A wavy arrow represents the
emitted signal. The biexciton state is shifted to a lower energy than
twice the single exciton energy (2X). This shift, ΔXX, corresponds to
the biexciton binding energy.

In the third-order 1Q experiment [Fig. 1(a)], the first pulse
interacts with the system and creates a coherent superposition of the
ground and singly excited states, or 1Q coherence. This macroscopic
polarization oscillates during time delay t1. After time delay t1, the
second pulse transfers the system from a coherence to a population
that evolves during t2. The third pulse creates a third-order polariza-
tion that oscillates during t3 and radiates in the k1 − k2 + k3 and −k1
+ k2 + k3 wavevector directions. In the pump–probe geometry, k1 =
k2, so the signal simply radiates in the k3 direction. The sum of the
k1 − k2 + k3 and −k1 + k2 + k3 signals gives a fully absorptive spec-
trum, as typically measured in 2D spectroscopies.34–37 An example
pathway is shown in the WMEL diagram in Fig. 1(a).

The fifth-order 1Q pathways are created when an intense pump
pulse interacts with the system several times, as depicted in Fig. 1(b).
One example is the pathway (k1 − k1) + k1 − k2 + k3 that radiates
in the same direction as the third-order 1Q pathway k1 − k2 + k3
and is shown in the WMEL diagram in Fig. 1(b). In this pathway,
the first pulse interacts with the system three times, while the sec-
ond and third pulses interact once each. These fifth-order 1Q signals
can complicate the interpretation of 1Q spectra37–39 and cannot be
readily isolated from their third-order 1Q counterparts using phase-
cycling, though these contributions can be distinguished based on
their pulse intensity dependence.

In the third-order 2Q experiment [Fig. 1(c)], the first pulse
creates a 1Q coherence and the second pulse creates a coherent
superposition of the ground and doubly excited states, or 2Q coher-
ence, which oscillates during time t2. The third pulse creates a
third-order polarization that oscillates during t3 and radiates in the
k1 + k2 − k3 wavevector direction.8–12 An example pathway is shown
in Fig. 1(c). There is no rephasing equivalent to this pathway; there-
fore, a fully absorptive third-order 2Q spectrum cannot be gener-
ated. This leaves the spectrum with a phase twist, which can obscure
the interpretation of the spectrum.40 Additionally, this pathway does
not allow for a population time delay between the two pump pulses
and the final probe pulse. The overlap between these pulses can lead
to unwanted non-resonant signals.14 Because of phase-matching
restrictions, the third-order 2Q signal cannot be measured in the
pump–probe geometry.

In the fifth-order 2Q experiment, Fig. 1(d), the first pulse inter-
acts with the system twice directly creating a 2Q coherence that
oscillates during t1. The second pulse then interacts twice creating
a population, and the third pulse transfers the system to a 1Q coher-
ence. The fifth-order polarization oscillates during t3, radiating in
the −2k1 + 2k2 + k3 and 2k1 − 2k2 + k3 wavevector directions.11,13,20

Summation of these two terms gives a fully absorptive fifth-order
2Q spectrum. In the pump–probe geometry, both these signals are
detected in the k3 direction.

The coherences along time t3 are directly measured in the spec-
tral domain in this experiment. Isolating the signal in the third-order
1Q and fifth-order 1Q signals and then Fourier transforming the

coherence along time t1 generate a 1Q–1Q spectral correlation map,
or 1Q spectrum. Isolating the signal in the fifth-order 2Q signal and
then Fourier transforming the coherence along time t1 generate a
2Q–1Q spectral correlation map, or 2Q spectrum.

Cascaded third-order signals may be confused with fifth-order
signals, and in some cases, the cascaded signals dominate the spec-
trum, as in fifth-order Raman spectroscopy.41 Concentration studies
have shown that third-order cascades do not contribute significantly
to fifth-order order experiments that exclusively contain resonant
transitions.6,16,18 The cascaded signal depends on the sample con-
centration, sample thickness, excitation frequency, phase-matching
geometry, and the relative intensity of the third-order and fifth-
order response functions.16 To minimize cascades, we have used an
optical density of 0.3 mm and a 0.2 mm sample thickness, which
would result in a cascade intensity that is similar to or smaller than
other studies.6,18 The optical frequency is also similar to previous
studies.6,18 To minimize the optical path length, the probe beam is
aligned perpendicular to the face of the sample cell.

This paper presents a comparison of two 2DES signals extracted
from the same experiment. The 1Q spectrum, including contri-
butions from both third-order and fifth-order 1Q pathways, is
compared to the 2Q spectrum, which is purely fifth-order. The
2DES measurements are performed on a previously described pulse-
shaper based instrument.36 A pump–probe beam geometry and
a 4 × 1 × 1 phase-cycling scheme are used, as discussed in
Appendices B 1 and B 2. The phase of the first pulse is cycled
through values of Δϕ12 = 0, π/2, π, and 3π/2. The 1Q 2D spec-
trum is obtained using weights [1, 0, −1, 0]. The 2Q 2D spectrum
is obtained using weights [1, −1, 1, −1]. The acquisition uses a rotat-
ing frame with a frequency of 307.45 THz to avoid aliasing in the
2Q coherence. The delay time t1 is incremented in steps of 1 fs from
0 fs to 100 fs. The pump pulse energy was varied from 2.9 nJ/pulse
to 35 nJ/pulse. While high pulse intensities are required to maxi-
mize fifth-order signals, artifacts in the pulse shape are possible when
operating acousto-optic pulse shapers at high intensity. The highest
intensity pulse used in this study was characterized using transient-
grating frequency resolved optical gating (TG-FROG), as shown in
Appendix A 2. The pulse duration is determined to be 12 fs, and
no pulse shaper artifacts are evident. The 1Q and 2Q signals are
apodized using Gaussian apodization windows with widths of σ =
45 fs and 22.5 fs, respectively; details of the apodization are shown
in Appendix A 3. The pump pulse powers were varied with the
pulse shapers; then, the powers were independently measured with
a power meter placed directly before the sample position. Colloidal
CdSe QDs are provided by NNlabs and have absorption and emis-
sion linewidth characteristic of an ensemble dispersity of σ < 10%.
The sample is diluted to an optical density of 0.3 nm at 640 nm and
flowed through a 0.2 mm flow cell. The sample absorption spectrum
and laser spectrum are provided in Appendix A 1.

III. THEORY
In this section, we will list the pathways that are theoreti-

cally detected in the third-order 1Q, fifth-order 1Q, and fifth-order
2Q cases. For simplicity, we will limit our analysis to a three level
system, corresponding to the doubly degenerate3 band-edge state of
a CdSe QD.
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FIG. 2. Third-order contributions to the
1Q spectrum. Left: Peak positions for
third-order 1Q. Positive signals are
shown in blue, and negative signals
are shown in red. Numbers correspond
to numbered DSFDs. Right: (top row)
rephasing pathways: −k1 + k2 + k3,
(bottom row) non-rephasing pathways:
k1 − k2 + k3. The sign of the signal is
in parentheses.

The polarization P(t) emitted after interaction with an electric
field E(t) is traditionally expressed perturbatively,16,40 as in Eq. (1).
Centrosymmetric systems do not emit even-order terms in the
polarization as these orders rely on non-inversion symmetry,

P(t) = P(1)(t) + P(3)(t) + P(5)(t) +⋯

∝ iR(1)(t)E(t) + i3R(3)(t)E3(t) + i5R(5)(t)E5(t) +⋯. (1)

Here, P(1) is the first-order polarization as measured by a lin-
ear absorption experiment, P(3) is the third-order polarization as
measured by the third-order 2DES experiment, and P(5) is the fifth-
order polarization as measured by a fifth-order 2DES experiment.

The terms R(K )(t) correspond to the Kth order response functions.
Each term R(K )(t) is itself a sum of response functions, R(K)(t)
= ∑i R

(K)
i (t), where each R(K)i corresponds to a distinct sequence

of pulse interactions. In the following discussion, the label (K) is
omitted, and the response functions are designated solely by the
label i. In order to isolate a desired signal, these response func-
tions may be discriminated by the direction of the emitted radiation
and phase-cycling. This is discussed in detail in Appendices B 1
and B 2.

Figures 2–4 depict the third-order 1Q, fifth-order 1Q, and fifth-
order 2Q signals, respectively, using double-sided Feynman dia-
grams (DSFDs). In a DSFD, time progresses from the bottom of the
diagram to the top; the left side of the diagram represents the ket,

FIG. 3. Fifth-order contributions to the 1Q spectrum. (Left) Peak positions for fifth-order 1Q. Positive signals are shown in blue, and negative signals are shown in red.
Numbers correspond to numbered DSFDs. (Right) DSFDs for fifth-order 1Q pathways. Other fifth-order 1Q pathways may be simplified and are identical to the third-order
pathways in Fig. 2, so they are not included in this figure. Pathways including multiple interactions with the third pulse are omitted as the third pulse is of low intensity.

FIG. 4. Fifth-order 2Q pathways. Left:
Peak positions for fifth-order 2Q signals.
The x axis is at twice the frequency of
the diagrams in Figs. 2 and 3. Positive
signals are shown in blue, and nega-
tive signals are shown in red. Numbers
correspond to numbered DSFDs. Right:
(top row) rephasing pathways: −2k1
+ 2k2 + k3, (bottom row) non-rephasing
pathways: 2k1 − 2k2 + k3.
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and the right side represents the bra; arrows pointing toward the
diagram represent excitation, while arrows pointing away represent
emission; the final, dashed arrow represents the emitted signal. For
readability, the ground state is denoted by 0, the X state is denoted
by 1, and the XX state is denoted by 2.

For the third-order contributions to the 1Q experiment, six sig-
nals are detected: the wavevector sequence −k1 + k2 + k3 results
in the three rephasing pathways R1, R2, and R3, and the sequence
k1 − k2 + k3 results in the three non-rephasing pathways R4, R5, and
R6. Diagrams R1 and R4 are ground-state bleach (GSB) signals, while
R2 and R5 are stimulated emission (SE) and R3 and R6 are excited
state absorption (ESA). The spectral positions of each DSFD are
shown in a schematic in Fig. 2.

The fifth-order 1Q signals correspond to pathways (−k1 + k1)
− k1 + k2 + k3, (−k1 + k1) + k1 − k2 + k3, −k1 + k2 + (−k2 + k2)
+ k3, and k1 − k2 + (−k2 + k2) + k3. In some cases, simultaneous pulse
interactions acting on the same side of the DSFD but in opposite
directions can negate each other. For this reason, fifth-order path-
ways may simplify and become identical to third-order pathways,
although with a different sign due to the i5 term in Eq. (1). These
fifth-order signals would appear at the same position as the third-
order pathways and decrease the intensity of the peak. For a three
level system, there are eight cases of fifth-order pathways that do not
simplify, and these DSFDs are shown in Fig. 3. Six of these cases are
particularly significant as they feature |1⟩⟨2| coherences along time
delay t1, which is not possible in any of the third-order 1Q path-
ways. This displaces the signal along excitation energy by the binding
energy, ΔXX.

In the case of the fifth-order 2Q experiment, eight pathways
are detected for a three level system. The wavevector sequence
−2k1 + 2k2 + k3 results in the four rephasing pathways R15, R16, R17,
and R18, and the sequence 2k1 − 2k2 + k3 results in the four non-
rephasing pathways R19, R20, R21, and R22. As in the third-order 1Q
case, diagrams R15 and R19 are GSB signals, R16 and R20 are SE, and
R17 and R21 are ESA. In contrast to the third-order 1Q case, there
are two XX SE diagrams, R18 and R22. ESA to triexciton states from
biexciton states is also possible but will have a limited effect in the
bandwidth described here as the doubly degenerate band-edge elec-
tronic state in CdSe QDs does not allow for triexcitons.3 This is
further discussed in Fig. 7. Exciton–exciton annihilation as well as
biexciton population relaxation13 can cause a biexciton population
|2⟩⟨2| to relax to an exciton population |1⟩⟨1|. This could reduce the
impact of DSFDs R18 and R22.

Upon expansion, Eq. (1) features a factor of −1 between the
third-order and fifth-order response functions. This produces a
phase difference of ϕ = π between the third-order and the fifth-
order coherences. There is an additional phase factor of ϕ = π every
time a pulse interacts with the right (bra) side of the DSFD. In the
spectral domain, this accumulated phase translates to a change in
sign between respective response functions, Ri. This sign is given in
brackets next to every response function Ri in Figs. 2–4.

The non-linear response probed in 2DES allows the separa-
tion of inhomogeneous and homogeneous linewidths. In QDs, the
energy of the band-edge state is inversely proportional to the quan-
tum dot diameter due to quantum confinement. Size heterogene-
ity in a sample of QDs thus causes inhomogeneous broadening in
spectroscopic measurements.42 In 2DES, inhomogeneous broaden-
ing is reflected as a broadening along the main diagonal due to

correlation between the excitation energy E1 and emission energy
E3.36,43,44 This is shown schematically in Fig. 5(a). The excitation
and emission energies both blueshift with the decreasing particle
size. Inhomogeneous broadening has also been observed in 2Q–1Q
correlation maps.16,45,46 This is schematically depicted for a fifth-
order 2Q spectrum in Fig. 5(b), reflecting how the transition energies
that are probed in a 2Q experiment may reflect an inhomogeneous
particle size distribution.

A phenomenological model is developed in Figs. 5(c) and 5(d)
to qualitatively describe the effect of sample inhomogeneity on both
1Q and 2Q spectra. A simulated 2DE spectrum for a single, fully

FIG. 5. (a) Inhomogeneous broadening as probed by the 1Q stimulated emission
pathway R2. (b) Inhomogeneous broadening as probed by the fifth-order 2Q stim-
ulated emission pathway R16. 2D spectra correlate the energy of the first transition
(E1) with the energy of the third transition (E3). Both E1 and E3 vary with the
QD size and are thus correlated. (c) Simulated 1Q peak and (d) simulated 2Q
peak. The lineshape is determined by the homogeneous broadening parameter
ν. Panels (e) and (f) incorporate the inhomogeneous broadening parameter σ.
The simulated fifth-order 2Q peak is redshifted by ΔXX from the y = x/2 diago-
nal. Red represents a negative signal and blue represents a positive signal in
panels (c)–(f).
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absorptive, homogeneously broadened peak is shown in Fig. 5(c).
The peak is generated by summing the simulated coherences from
the rephasing SE diagram R2 and the non-rephasing SE diagram R5
and Fourier transforming the sum of the coherences. The coherences
dephase at a rate of ν = 0.045 PHz, leading to homogeneous broad-
ening. The resulting spectrum lies on the main diagonal, y = x. In
the simulated fifth-order 2Q spectrum in Fig. 5(d), the spectrum lies
on the line y = x/2 −ΔXX. For the fifth-order 2Q spectrum, values
of ν = 0.090 PHz and ΔXX = 100 meV are used. Note that a differ-
ent aspect ratio is used in panels (c) and (d), as well as panels (e)
and (f). This choice of aspect ratios emphasizes the similarities and
differences between the 1Q and 2Q spectra.

To incorporate inhomogeneous broadening, the spectra are
convolved along the diagonal with a Gaussian distribution with
widths of σ = 40 meV for the 1Q spectrum and σ = 80 meV for
the 2Q spectrum. These spectra are shown in Figs. 5(e) and 5(f).
The peaks are broadened along their respective diagonal lines. This
model assumes that the biexciton energy does not vary across the
inhomogeneous ensemble. In reality, the binding energy increases
at smaller nanocrystal diameters,2,47–49 which may be reflected in
the tilt of the 2Q peaks. However, based on the known size-
dependence of CdSe QDs,47 we estimate that the binding energy
does not vary enough through the size distribution of the sample
to make an appreciable difference on the tilt of the 2Q peaks in this
study.

IV. RESULTS AND DISCUSSION
Experimental 1Q and 2Q spectra are plotted in Fig. 6 for pump

pulse energies of I0 = 2.9 nJ/pulse, 13.5 nJ/pulse, and 35 nJ/pulse at
t2 = 100 fs. The population time is more than 4× the pulse length,
so non-resonant signals caused by temporal overlap between pump
and probe pulses are not expected. At I0 = 2.9 nJ/pulse, a broad neg-
ative peak is seen in the 1Q spectrum along the diagonal line E1 = E3
with a minimum near E1 = E3 = 1.94 eV. This can be attributed
to negative third-order GSB and SE pathways R1, R2, R4, and R5
with positive contributions from ESA pathways R3 and R6 atten-
uating the signal. The 2Q signal is expected to appear at roughly
E1 = 2 × 1.94 = 3.68 eV, though no signal is seen in that region.
At low pump intensity, pathways featuring a single interaction per
pulse are dominant, so mainly third-order signals are observed and
contributions from fifth-order 1Q and fifth-order 2Q pathways are
minimal.

At higher pump intensity, multiple interactions per pulse
become probable and fifth-order signals begin to appear. The 2Q
signal manifests as a broad positive peak near the E1 = 2 × E3
diagonal line, as expected. The 2Q signal begins to appear with
I0 = 13.5 nJ/pulse though the spectrum is contaminated with arti-
facts due to noise; therefore, this spectrum is included for purely
illustrative purposes, and the spectral lineshape will not be inter-
preted. At I0 = 35.0 nJ/pulse, the peak amplitude of the 2Q signal
is 66% of the peak amplitude of the 1Q signal at I0 = 2.9 nJ, resulting
in a spectrum that is smooth enough for comparison with the 1Q
spectra.

The fifth-order contributions to the 1Q spectrum are more sub-
tle. With increasing pump intensity, a negative shoulder appears in
the 1Q spectrum around (E1, E3) = (1.88, 1.88) eV, as expected for

FIG. 6. 1Q and 2Q spectra at t2 = 100 fs with pump pulse energies of I0 = 2.9
nJ/pulse, 13.5 nJ/pulse, and 35 nJ/pulse, respectively. In the 1Q spectra, the
dashed line corresponds to E1 = E3. In the 2Q spectra, the dashed line corre-
sponds to E1 = 2E3. At I0 = 2.9 nJ/pulse, only third-order contributions are present
in the 1Q spectrum and no signal is seen in the range of the 2Q spectrum. As the
pump intensity increases, fifth-order signals appear in both spectra. The sign of
each spectrum reflects the sign of the DSFDs in Figs. 3 and 4.

fifth-order 1Q pathways R8, R9, R12, and R13. The 1Q peak narrows
at (E1, E3) = (1.88, 2.03) eV, consistent with a positive shoulder due
to pathways R7 and R11. These features have been discussed in more
detail in previous publications.37,38

Projections onto the emission axis, E3, reflect emission energies.
All the third-order 1Q, fifth-order 1Q, and fifth-order 2Q pathways
have 1Q coherences on the emission axis. The 1Q and 2Q 2D spec-
tra thus appear in a similar spectral region when projected onto E3.
However, inhomogeneous broadening and fifth-order contributions
to the 1Q spectra must be taken into account when comparing the
E3 projections of the 1Q and 2Q 2D spectra.

E3 projections are also known as pseudo-TA projections
because they conceptually resemble transient absorption (TA) spec-
tra. Under high pump intensity, ESA is diminished in band-edge
TA spectra of CdSe QDs as the XX state becomes saturated.37 The
band-edge TA spectrum then resembles the linear absorption spec-
trum.37,47 Figure 7(a) shows E3 projections produced by integrating
across the full excitation range, from E1 = 1.8 eV–2.1 eV for the 1Q
2D spectrum or E1 = 3.6 eV–4.2 eV for the 2Q 2D spectrum. The
spectra are set to 0 at 1.8 eV and 1 at their maxima. The projec-
tions closely follow the linear absorption spectrum, consistent with
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FIG. 7. Experimental E3 projections at
t2 = 100 fs and with a pulse energy of
35 nJ/pulse. Spectra are normalized to
their absolute maxima, which changes
the sign of the 1Q spectrum. (a) Inte-
grated E3 projections show the similarity
between the 1Q and 2Q spectra, consis-
tent with the behavior of these systems
at high fluence. Consecutive E3 projec-
tions at a range of E1 values reflect inho-
mogeneous broadening in (b) 1Q spec-
tra and (c) 2Q spectra. Fifth-order 1Q
contributions to the 1Q spectra cause
deviations between the 1Q and 2Q sig-
nals. This discrepancy can be seen at
E1 = 1.87 (d), but not at E1 = 1.95 (e).

the high pump intensity transient absorption studies on the same
material.37,47 Pseudo-TA spectra at a range of pump intensities show
a peak that redshifts with increasing pump intensity for both 1Q
2D and 2Q 2D spectra, consistent with ESA pathways blocked by
saturation of the XX state (Appendix A 4).

The normalized integrated projections in Fig. 7(a) are nearly
identical for the 1Q and 2Q experiments though there is a clear devi-
ation around E3 = 2.10 eV. Spectral features in this region can be
attributed to mixed multi-exciton states, incorporating exciton states
other than the band-edge state, and cannot be rationalized by a three
level system.37 Both the 1Q and 2Q spectra feature ESA contribu-
tions from X to mixed XX states as well as ESA from XX to mixed
XXX states.

One of the advantages of 2DES over TA is an increased res-
olution in excitation energies. Figure 7(b) shows a sequence of 1Q

pseudo-TA spectra taken at a range of excitation energies. Increased
excitation energy shifts the pseudo-TA spectra to higher energies.
This reflects the inhomogeneous broadening, previously discussed
in Fig. 5. A similar trend is seen in the 2Q spectra, shown in
Fig. 7(c).

Clear differences between the 1Q and 2Q spectra appear at spe-
cific excitation energies. Pseudo-TA slices through the 1Q 2D spec-
trum at E1 = 1.95 eV and the 2Q 2D spectrum at E1 = 2 × 1.95 eV
in Fig. 7(e) resemble the integrated spectra in Fig. 7(a). However,
pseudo-TA slices through the 1Q 2D spectrum at E1 = 1.87 eV and
the 2Q 2D spectrum at E1 = 2 × 1.87 eV in Fig. 7(d) look consider-
ably different. This can be attributed to fifth-order 1Q contributions
that appear at lower values of E1 in the 1Q 2D spectrum.

Due to the spectral overlap between the ESA and XX SE path-
ways in the 2Q spectra (as seen in Fig. 4), it is difficult to separate
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their effects. Both the 1Q and 2Q signals saturate at high pump
intensity, confirming that biexcitons are being formed (Appendix
A 4). Therefore, one would expect the 1Q pathways R10 and R14
and the 2Q pathways R18 and R22 to create a deviation from the lin-
ear absorption spectrum in the E3 projections. This deviation is not
apparent in either the 1Q or 2Q spectra.

Figure 8 shows projections onto the excitation axis, E1. These
excitation spectra are complementary to the pseudo-TA spectra in
Fig. 7. As seen in Fig. 6, the 2Q excitation axis lies at roughly
twice the energy of the 1Q excitation axis. For easy comparison,
the excitation axis of the 2Q 2D spectrum is divided by a factor of
2 and normalized. Integrated excitation spectra, generated by inte-
grating along E3 from 1.8 eV to 2.1 eV, are plotted in Fig. 8(a).
The 1Q excitation projection closely follows the linear absorption

spectrum, as expected. However, the 2Q excitation projection con-
tains a spectral feature that is redshifted relative to the linear
spectrum.

The DSFDs in Fig. 4 predict that the 2Q signal from the band-
edge biexciton state would be redshifted due to the biexciton bind-
ing energy, ΔXX. A similar result was previously reported,50 where
transient absorption experiments and atomistic many-body pseu-
dopotential calculations showed a biexciton absorption spectrum
redshifted relative to the single exciton absorption spectrum. The
magnitude of the shift in Fig. 8(a) is 20 meV, as determined at half
of the peak intensity. This would correspond to a binding energy on
the order of 40 meV, as the 2Q spectrum was divided by a factor
of 2. Transient absorption studies of similar sized CdSe QDs deter-
mine a binding energy in the range of 5 meV–10 meV.37,50 1Q 2DES

FIG. 8. Experimental E1 projections at
t2 = 100 fs and I0 = 35 nJ/pulse. Spectra
are normalized to their absolute maxima,
which changes the sign of the 1Q spec-
trum. (a) Integrated E1 projections show
that the 2Q spectrum is redshifted rela-
tive to the 1Q spectrum. E1 projections at
selected values of E3 reflect inhomoge-
neous broadening in the (b) 1Q 2D spec-
trum and (c) 2Q 2D spectrum. E1 projec-
tions at E3 = 1.87 eV (d) do not show
a shift between the 1Q and 2Q spectra,
while E1 projections at E3 = 2.00 eV (e)
do show a shift.
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studies of CdSe QDs have already identified that there is a manifold
of biexciton states, and some of these states have binding energies as
high as ΔXX = 65 meV.37,38 These biexciton states are only accessible
at early population times and at specific excitation energies, so they
require the high spectral and temporal resolution of 2DES. Figure 9
elaborates on how these biexcitonic states may be observed with 2Q
2DES.

The 2Q excitation spectrum in Fig. 8(a) also features a peak that
is blueshifted relative to the 1Q excitation spectrum. This contradicts
the model presented in Fig. 5 for an inhomogeneously broadened
three level system, which predicted that the peak of the 2Q spec-
trum would be redshifted relative to the 1Q spectrum. We attribute
this to biexciton states above the band-edge. Full modeling of the 2Q
2D spectrum therefore must incorporate the complete array of biex-
citon states that appear in the bandwidth. Additionally, the model
must incorporate pulse spectrum effects that affect third-order and
fifth-order spectra differently due to the different number of pulse
interactions.51,52

Figure 8(b) shows a sequence of 1Q excitation spectra taken at
a range of excitation energies. A corresponding set of spectra are
shown in Fig. 8(c) for the 2Q experiment. These spectra reflect the
same inhomogeneous broadening as the pseudo-TA projections in
Figs. 7(b) and 7(c) but may also reflect different spectral features
originating from GSB, SE, and ESA. Comparison of 1Q and 2Q
excitation spectra at specific emission energies thus may result in
different values for the biexciton binding energy.

The excitation spectra through the peak at E3 = 1.95 eV in
Fig. 8(e) show the same trend as the integrated spectra in Fig. 8(a).
However, the excitation spectra at energies below the peak at
E3 = 1.87 eV in Fig. 8(d) do not show the redshift between the 1Q
and 2Q signals. This reflects the fifth-order 1Q contributions to the

FIG. 9. The transitions in certain fifth-order pathways may change from t2 = 0
to t2 > 0 [panels (a) and (b), respectively] due to population relaxation between
the second and third pulses. Therefore, projections onto the absorption (E1) and
emission (E3) axes may reveal different biexciton binding energies. (c) Simu-
lated fifth-order 2Q spectrum at t2 = 0. (d) Simulated fifth-order 2Q spectrum at
t2 > 0.

1Q spectrum as these would appear at lower values of E1. Compari-
son of E1 projections of 1Q and 2Q 2D spectra theoretically presents
a wealth of information about X and XX states, though inhomoge-
neous broadening and fifth-order 1Q contributions to the 1Q spectra
must be taken into account.

Both the X and XX states feature a fine structure and
therefore cannot be accurately described by a simple three level
system.2,37 Previous 1Q 2D studies have showed that different tran-
sitions between X and XX may be favored as the population time, t2,
progresses.37,38 The low energy states in the 2Q projection in Fig. 8(a)
appear to contradict transient absorption studies, but this may be
understood by considering a population that relaxes through the X
and XX fine structures during t2.

Figure 9(a) shows two fifth-order 2Q pathways at t2 = 0. In R21,
the first pulse raises the ket to an XX state, and the energy of this
transition reflects a certain binding energy, ΔAbs

XX . The second pulse
creates an X population. The third pulse then excites the ket from X
to XX and the energy of this transition also reflects a certain binding
energy, ΔEm

XX . As the time delay between the second and third pulse is
0 fs, one may assume that the system did not change states between
the second and third pulse and that ΔEm

XX = ΔAbs
XX . Figure 9(b) shows

the same pathway at t2 > 0. Between the second and third pulses,
an exciton may relax to another state within the fine structure of X.
After t2, the third pulse would then excite the ket from X to XX but
the energy of this transition may reflect a different binding energy,
ΔEm

XX ≠ ΔAbs
XX . Therefore, excited state absorption processes and 2Q

absorption processes could reveal different binding energies. A sim-
ilar phenomenon would apply to R22, though it is the XX population
that evolves during t2 and the transition induced by the third pulse
is reversed.

Figures 9(c) and 9(d) show simulated fifth-order 2Q spectra at
t2 = 0 and t2 > 0, respectively. The spectra show a single positive
peak for pathways R15, R16, R19, and R20 and a single negative peak
for pathways R17, R18, R21 and R22. Values of ΔAbs

XX = ΔEm
XX(t2 = 0)

= 65 meV and ΔEm
XX(t2 > 0) = 10 meV were used. As t2 progresses,

the E1 positions of both peaks do not change because E1 reflects
pulse interactions that occur before the population time delay. How-
ever, the lineshape along E3 may vary as states that would lead to
lower energy excitated state absorption transitions (i.e., larger bind-
ing energies) become depopulated. At late population times, the neg-
ative peak does not appear as a separate feature but rather an atten-
uation of the positive peak, as in the 2Q spectrum Fig. 6. A biexciton
state with a binding energy of 65 meV has been identified using 1Q
2DES by monitoring the excited state absorption at early population
times before population relaxation, as in Fig. 9(c), and measuring
the position of the excited state absorption peak along E3.37,38 This
same state may be reflected in 2Q 2DES in the form of the ΔAbs

XX peak
shift, which would not vary with population time. This is an advan-
tage of 2Q 2DES over 1Q 2DES as the spectra are less crowded and
the spectra contain information about the 2Q coherences even at late
population times.

The E1 projection seen in Fig. 8(a) therefore may be explained
by a combination of factors: 2D spectra have higher spectral res-
olution than transient absorption spectra; the 2Q 2D spectra pre-
sented here isolate fifth-order signals, while 1Q 2D spectra are
crowded with both third-order and fifth-order contributions; pop-
ulation relaxation through a ladder of fine structure states favors
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different transitions in excited state absorption and 2Q absorption;
fifth-order lineshapes are inherently different from third-order line-
shapes due to pulse shape effects.51,52 Further studies are required to
deconvolve these effects.

The presence of the X and XX manifolds also complicates inter-
pretation of the fifth-order 2Q spectra as some of the transitions
between X and XX may be near-degenerate, resulting in ambiguity
in peak assignment. This is particularly the case for the R21 and R22
pathways as these signals have the same sign and peak position, while
the former reflects dynamics in X and the latter dynamics in XX.
Careful population time studies may be able to isolate these dynam-
ics. Varying the pump pulse intensity could also help in this discrim-
ination as the intensity of R21 should diminish with increasing pump
intensity and vice-versa for R22.

V. CONCLUSION
Fully absorptive third-order and fifth-order spectroscopy was

simultaneously conducted on colloidal CdSe quantum dots using
phase-cycling in the pump–probe geometry. Fifth-order 2Q spec-
troscopy was conducted at population times several times longer
than the pulse duration, avoiding non-resonant artifacts due to the
temporal overlap of pump and probe pulses. Fifth-order 2Q signals
only appeared at high fluences, indicating that the 2Q signal only
appears with substantial intensity when multi-excitons are formed
in the QDs. The fully absorptive lineshape of the 2Q 2D spectrum
allowed for easy comparison with the 1Q 2D spectrum. Comparison
of 1Q and 2Q 2D spectra aligned with theoretical predictions only
when inhomogeneous broadening and fifth-order 1Q contributions
to the 1Q spectra were taken into account. A biexciton excitation
spectrum was measured by projecting the 2Q 2D spectrum onto its
excitation axis, and this spectrum extends to energies lower than
those predicted by excited state absorption signals. Further studies,
at a larger range of population times and a variety of QD sizes, may
reveal more details of dynamics within the biexciton fine structure.
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APPENDIX A: ADDITIONAL EXPERIMENTAL DETAILS
1. Linear absorption spectrum

The energy of the X1 state, 1.94 eV, is determined by fitting the
absorption spectrum as measured in a Cary UV/vis spectrometer in
a 1 cm cuvette (Fig. 10). The spectrum of the laser used in the 2DE
experiment covers the first two excited states, X1 = 1.94 eV and X2 =
2.01 eV, and finite pulse effects are not expected in the region of the
X1 peak.

2. Pulse characterization
The pulse from the pump beam pulse shaper was charac-

terized with transient grating frequency resolved optical gating

FIG. 10. Absorption spectrum and constituent peaks, X1, X2, and X3. Laser
spectrum determined at the sample position.

(TG-FROG), shown in Fig. 11. The pulse was created using the
same conditions as the I0 = 35 nJ/pulse experiment presented above,
though a single pulse was created by the pulse shaper resulting in a
pulse energy of I0 = 70 nJ/pulse. The time marginal of the TG-FROG
trace has a Gaussian shape with a FWHM of 17 fs, corresponding
to a pulse duration of 12 fs. Saturation effects in the pulse shapers
may lead to changes in the pulse shape as the intensity of the pulse
is increased. The TG-FROG confirms that the pulse is compressed
and symmetrical at high intensity. Therefore, it is assumed that pulse
shaper saturation effects do not significantly alter the pulse shape
within the range of pulse intensities used in this study.

3. Apodization
Figure 12 shows the coherences measured in the 1Q and 2Q

experiments. Apodization windows are chosen with a short enough

FIG. 11. Frequency resolved optical gating (FROG) trace and corresponding time
marginal.
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FIG. 12. (a) Coherence during t1 for the 1Q experiment, integrated across emis-
sion energies. Apodization window consisting of a Gaussian distribution centered
at t1 = 0 with σ = 45 fs. (b) Fourier transform of coherence in (a), apodized and
non-apodized. (c) Coherence during t1 for the 2Q experiment, integrated across
emission energies. Apodization window consisting of a Gaussian distribution cen-
tered at t1 = 0 with σ = 22.5 fs. (d) Fourier transform of coherence in (c), apodized
and non-apodized.

width that they will minimize the effect of noise at late coherence
times and a long enough width so that they do not significantly
alter the dephasing of the coherences. This is reflected in the spec-
tral domain as noise is removed from the spectra, but the overall
lineshape is not significantly changed.

4. Pump intensity
Figure 13(a) shows the signal amplitude of the 1Q and 2Q 2D

spectra as a function of the pump energy per pulse, I0, at t2 = 100 fs.
The amplitude is taken at E1 = E3 = 1.94 eV for the 1Q spectrum and
E1/2 = E3 = 1.94 eV for the 2Q spectrum.

The 1Q signal saturates at high pump intensities as the num-
ber of single excitons and biexcitons reaches equilibrium.37 This is
attributed to the band-edge electronic state having a degeneracy of
2. The 1Q signal saturates at around I0 = 20 nJ/pulse. This con-
firms that a significant population of biexcitons is present in the
sample at the pump energies used in the experiments in this paper,

FIG. 13. Signal for the 1Q and 2Q signals at t2 = 100 fs at E1 = E3 = 1.94 eV for
the 1Q spectrum and E1/2 = E3 = 1.94 eV for the 2Q spectrum.

FIG. 14. Top: 1Q 2D pseudo-TA spectra at E1 = 1.95 eV and t2 = 100 fs. Bottom:
2Q 2D pseudo-TA spectra at E1 = 1.95 eV and t2 = 100 fs.

I0 = 35 nJ/pulse. The 2Q 2D signal begins to show signs of saturation
at the same pump intensity. This is consistent with the 2Q 2D signal
in that region primarily originating from the band-edge electronic
state.

Pseudo-TA spectra at E1 = 1.95 eV and E1/2 = 1.95 eV for 1Q
and 2Q spectra, respectively, are shown in Fig. 14. The peak redshifts
with increasing pump intensity in both cases.

APPENDIX B: PHASE CYCLING SCHEME
In the pump–probe geometry, the two collinear excitation

pulses are followed by a non-collinear probe pulse. The desired sig-
nals are therefore retrieved by a combination of wavevector selection
and phase-cycling. Appendix B 1 reviews how the signal wavevec-
tors are used to narrow down the number of detected signals.
Appendix B 2 reviews how phase-cycling is used to retrieve specific
signals.

1. Wavevector selection
A signal field of order K is given by the following equation:

E(K)(α⃗j, ϕ⃗, t1, t2, t3) ∝ ei(α1jϕ1+α2jϕ2+α3jϕ3)R(K)α⃗j (t1, t2, t3). (B1)

The phase of each pulse is given by the vector ϕ⃗ = (ϕ1,ϕ2,ϕ3).
These phases are user-defined and imparted on the signal field by
the pulse shapers. Each signal field is labeled with a coherence trans-
fer vector α⃗j = (α1j, α2j, α3j), with αij ∈ Z. Each coherence transfer
step αij’s represents the number of times excitation field Ei acts on
the right side of the DSFD minus the number of times it acts on
the left side for a given pathway j. The emitted signal field is given
by the sum of the fields corresponding to each coherence transfer
vector α⃗j,
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E(K)(ϕ⃗, t1, t2, t3) =
Nα⃗

∑
j=1

E(K)(α⃗j, ϕ⃗, t1, t2, t3)

=
Nα⃗

∑
j=1

eiα⃗j ⋅ϕ⃗R(K)α⃗j (t1, t2, t3), (B2)

where Nα⃗ is the number of coherence transfer vectors. The num-
ber of terms in this sum can be limited by taking into account
three conditions. Equation (B3) ensures we are not considering con-
tributions due to multiple harmonic generation. Equation (B4) is
the phase-matching condition in the pump–probe geometry, with
k1 = k2. Equation (B5) states that signals above order K will be
neglected,

n

∑
i=1
αij = 1, (B3)

n−1

∑
i=1

αij = 0, (B4)

n

∑
i=1
∣αij∣ ≤ K ∈ N. (B5)

In the preceding equations, i is the pulse index and n is the
number of pulses. The signal fields acquired by expanding Eq. (B2)
and applying the conditions in Eqs. (B3)–(B5) are given in Table I for
a fifth-order, three pulse experiment (K = 5, n = 3). Note: the labels
for the response functions Ri in this appendix do not correspond to
the response functions in the main text.

The third field, R3, describes linear, pump–probe as well as
reverse transient-grating signals from the probe pulse. This contri-
bution is generally undesired and will be removed by phase-cycling.
The fully absorptive 1Q and 2Q signals can be retrieved by isolating
R(3) = R2 + R4 and R(5) = R1 + R5, respectively. These signals will be
separated by phase-cycling.

2. Phase-cycling
When phase-cycling, a phase ϕli is imparted on pulse i at the

phase-cycling step l. In a 4 × 1 × 1 phase-cycling scheme, the first
pulse is cycled through a sequence of four phases, ϕ = (0, π/2, π, and
3π/2). The signal Sabs,j is given by a weighted sum of the intensity
Il(ϕ) at every step in the cycle,

TABLE I. Possible fields of order 5 or less for a three pulse experiment in the pump–
probe geometry. Obtained from solving Eqs. (B2)–(B5) for n = 3 and K = 5.

Signal field Label α1j α2j α3j ψj

Eα⃗1 R1 −2 2 1 −2ϕ1 + 2ϕ2 + ϕ3
Eα⃗2 R2 −1 1 1 −ϕ1 + ϕ2 + ϕ3
Eα⃗3 R3 0 0 1 ϕ3
Eα⃗4 R4 1 −1 1 ϕ1 − ϕ2 + ϕ3
Eα⃗5 R5 2 −2 1 2ϕ1 − 2ϕ2 + ϕ3

Sabs, j(t1, t2,ω3) =Wj1I1(ϕ11 = 0) + Wj2I2(ϕ21 = π/2)
+Wj3I3(ϕ31 = π) + Wj4I4(ϕ41 = 3π/2). (B6)

To retrieve the signal Sabs,j for a specific coherence transfer vec-
tor j, we must find the appropriate weights by calculating the weight
factors matrix W.

Before defining W, we must first build the phase matrix Ψ,
given by Eq. (B7). The coherence transfer step matrix α, where αij is
the net coherence transfer step, is imparted by pulse i in pathway Rj.
The size of α is (n × Nα⃗). The phases of the pulses are user-defined
and are given by matrix ϕ, where ϕli is the phase of pulse i at the
phase-cycling step l. The size of ϕ is (N × n), where N is the number
of phase-cycling steps,

Ψ = ϕα. (B7)

The coefficient Ψlj is the phase of the signal arising from Rj
during the phase-cycling step l. For example, for the 4 × 1 × 1
phase-cycling scheme introduced for the fifth-order, the three pulse
experiment Ψ is expressed as

Ψ =
⎛
⎜⎜⎜
⎝

0 0 0 0 0
π 3π

2 0 π
2 π

0 π 0 π 0
π π

2 0 3π
2 π

⎞
⎟⎟⎟
⎠

.

From Ψ, it is possible to build the weight factors matrix W,

Wjl = e−iΨlj , (B8)

where W is of size (Nα⃗ × N). The weight matrix prescribes the pre-
factors to use when summing the measured intensity, as in Eq. (B6).
For the 4 × 1 × 1 phase-cycling scheme, it is given by

W =

⎛
⎜⎜⎜⎜⎜
⎝

1 −1 1 −1
1 i −1 −i
1 1 1 1
1 −i −1 i
1 −1 1 −1

⎞
⎟⎟⎟⎟⎟
⎠

,

where labels W j denote the row vectors. From Ψ, it is also possible
to build a signal field matrix element-wise,

Elj = Rj ⋅ eiΨlj , (B9)

where E is of size (N × Nα⃗). In this matrix, column j represents the
phases taken by the field associated with pathway Rj throughout the
phase-cycling procedure. The sum of the coefficients over a given
row represents the total signal field emitted from the sample for a
given phase-cycling step, as per Eq. (B1),

E =
⎛
⎜⎜⎜
⎝

−R1 −R2 −R3 −R4 −R5
R1 −iR2 −R3 iR4 R5
−R1 R2 −R3 R4 −R5
R1 iR2 −R3 −iR4 R5

⎞
⎟⎟⎟
⎠

.
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Then, the phase-cycling scheme can be quickly assessed using
matrix multiplication,

Ẽ =W ⋅ E. (B10)

It is easy to verify that for the 4 × 1 × 1 scheme,

Ẽ =

⎛
⎜⎜⎜⎜⎜
⎝

4R1 0 0 0 4R5
0 4R2 0 0 0
0 0 4R3 0 0
0 0 0 4R4 0

4R1 0 0 0 4R5

⎞
⎟⎟⎟⎟⎟
⎠

.

This demonstrates that using weights W1 = W5 = (1, −1, 1, −1)
will simultaneously give R1 and R5, as desired for R(5). The third-
order rephasing and non-rephasing signals are given separately by
weights W2 = (1, i, −1, −i) and W4 = (1, −i, −1, i), respectively.

3. Optical detection
In the fully non-collinear geometry, a weak local oscillator ELO

is emitted in the phase-matching direction of the signal Esig and both
fields mix onto the detector array. In the pump–probe geometry,
the third excitation field or probe field acts as the local oscillator.
Neglecting scatter from other pulses, the CCD receives in this case

I(ω) = ∣Esig(ω) + ELO(ω)∣2

=
RRRRRRRRRRR

5

∑
j=1

Eαj + E3(ω)
RRRRRRRRRRR

2

, (B11)

where ω is the frequency at the detector. Expanding Eq. (B11) results
in 21 terms. We can neglect any term not interfering with the probe
field, E3, as it will have a very low intensity. Five terms remain,
corresponding to the five terms Eα⃗j in Eq. (B11), each individually
interfering with the probe field E3,

I(ω) =
5

∑
j=1

Ij(ω), (B12)

where Ij(ω) = ∣EαjE3∣. We can write out an equivalent of Eq. (B10) in
terms of intensity,

S⃗ =W ⋅ I⃗. (B13)

The S⃗ vector contains the results of the weighted sum as given
in Eq. (B6) and is, in general, a complex signal,

⎛
⎜⎜⎜⎜⎜
⎝

S1
S2
S3
S4
S5

⎞
⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜
⎝

1 −1 1 −1
1 i −1 −i
1 1 1 1
1 −i −1 i
1 −1 1 −1

⎞
⎟⎟⎟⎟⎟
⎠

⋅
⎛
⎜⎜⎜
⎝

I(ω, 0)
I(ω,π/2)
I(ω, π)
I(ω, 3π/2)

⎞
⎟⎟⎟
⎠

.

Following Eq. (B13), one can explicitly compute the signals for
the coherence transfer vectors given in Table I. For example, R(5) is
given by

S1 = I(ω, 0) − I(ω,π/2) + I(ω,π) − I(ω, 3π/2). (B14)

DATA AVAILABILITY

The data that support the findings of this study are available
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