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Abstract

Standard purification interlaces Hermitian and Riemannian metrics on the space of
density operators with metrics and connections on the purifying Hilbert-Schmidt
space. We discuss connections and metrics which are well adopted to purification,
and present a selected set of relations between them. A connection, as well as a
metric on state space, can be obtained from a metric on the purification space. We
include a condition, with which this correspondence becomes one-to-one. Our
methods are borrowed from elementary ∗-representation and fibre space theory. We
lift, as an example, solutions of a von Neumann equation, write down holonomy
invariants for cyclic ones, and “add noise” to a curve of pure states.

1 Introduction

In [35], see also [36], the monotone Hermitian and Riemannian metrics in the (finite
dimensional) spaces of all density operators are classified. Based on the theory of
operator means, [8], they are indexed by a real function, f , operator monotone on
(0,∞). These metrics play an important role in domains like quantum information
geometry, quantum versions of statistical estimation and decision rules, [9], [10], [27].

D. Petz communicated his main results to us prior to publication, and about that time
we started to ask for the effect of a purifying lift to these metrics. There are clear
reasons for this. One of the present authors, (A.U.), had defined 1986 in [15] an
extension of the geometric phase, [13], [12], see also [16], [17], to curves of density
operators by the help of a “parallelity condition”. The condition singles out, up to a
global gauge (or a global partial isometry), a distinguished “parallel lift” within all
purifying lifts of a curve of density operators. It turns out, [21], that a connection form
(a gauge potential), here called ageo, is governing the transport of the purifying vectors,
such that the parallelity condition results from the request for horizontality. In 1992
G. Rudolph and one of the authors, (J.D.), considered a large class of gauge potentials,
including ageo, which rests on a purification scheme and which enables variants of the
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geometric phase along curves of density operators. It seems natural to ask for a link
between these objects: (a) the connection forms just mentioned, (b) certain Hermitian
(Riemannian) metrics on the purification space, and, if respecting the symmetry of the
scheme, (c) metrics induced from (b) on the space of density operators.

Purification is essentially representation theory of observables and of the algebra in
which they are contained. Principally one may use any unital ∗-representation of the
“algebra of observables” over which the states can be defined. Its Hilbert representation
space should only be large enough to allow for a representation of the states by vectors.
If this condition is fulfilled, transport mechanism, its non-commutative phases, metrics,
and other geometric objects can be constructed by relying on their form and appearance
in the pure state case.

In our paper we remain within an elementary setting: Our density operators live on an
Hilbert space H of finite dimension n. In our convention, a density operator should not
necessarily be normalized. We speak of “density operators” whether their trace is one or
not. The algebra of observables is the algebra B(H) of all operators acting on H. The
representation or purification space, W, is identified with the algebra of operators and
equipped with the Hilbert-Schmidt scalar product. (In infinite dimensions W will be the
space of Hilbert-Schmidt operators.) We try to emphasize the different meaning of
operators by different notations: Operators acting on H are denoted by small, those
acting on W often by capital letters. (Some authors call the operators of B(W)
“superoperators”.) The next section is devoted to explain our notation in more details.
In our paper purification takes place in the standard representation of B(H), i. e. in the
GNS-representation based on the trace. For that reason we called it standard
purification. In section 3 the formalism is extended to velocity vectors, i. e. to tangents,
at density operators and at their purifications. Purification defines vertical tangents in a
canonical way. A tangent, orthogonal to the space of vertical tangents, is called
horizontal, provided the tangent spaces carry a real Hilbert space structure, i.e. a
Riemannian metric. Equivalently, within all purifying lifts of a given curve of density
operators, those with the least length are horizontal.

Section 4 exemplifies our task in defining horizontality by the real part of the
Hilbert-Schmidt metric. As one knows, the Bures length of a curve of density operators
and the Hilbert-Schmidt length of an horizontal lift are equal one to another. In deriving
the parallelity condition we meet some peculiarities with tangents of purifying vectors if
they belong to density operators with some vanishing eigenvalues. The reader will find a
short account of the relation between the connection form ageo, [21], governing the
geometric phase, and the Riemannian Bures metric.

Indeed, it last some time to ask and to give an affirmative answer to the question,
whether the topological metric of Bures is Riemannian [26], [25], [22]. Essential
differential geometric properties are in [28], see also [29] for dimH = 3. Relations to
quantum information theory can be seen in [31], [32]. However, a parameterization in
terms of the operators’ matrix elements remains cumbersome, except dimH = 2.

Concerning ageo, which extends the geometric phase to (closed) curves of density
operators, an example is in the last section. There is a further issue, to be mentioned at
least: The gauge potential for the 2-dimensional density operators, [24], living on a
4-dimensional purification space, satisfies the Yang-Mills equations. With a certain
cosmological constant, it even is a solution of the combined Yang-Mills-Einstein
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equations [38]. Meanwhile we know, [39], ageo satisfies the Yang-Mills equations for every
finite dimension of the supporting Hilbert space H. These findings may be seen as
extensions to mixed states of numerous examples relating the original Berry phase to
Dirac monopoles, and the Wilczek and Zee phase, [14], to instantons.

Section 6 is devoted to the class of connections introduced in [23], which are, so to say,
“relatives” of ageo, compatible with the purification scheme. They are characterized by a
function F , defined on (0,∞), and fulfilling F̄ (1/t) = −F (t). Some equations become
more appealing by using the function r, the arithmetic mean of F and 1. The
connections forms a assign to every tangent x at the lift w ∈ W of ̺ = ww∗ a value in
the Lie algebra of U(n). The action of the gauge group induces the “canonical”
connection acan. The canonical connection is gained with the choice F = 0. The
connection ageo is constructed with F (t) = (t− 1)/(t + 1). As we shall see, only a
connections with real F can be obtained from an appropriate Hermitian metric. We
believe, the complete class is a more natural object at the complexified tangents. They
all decompose as θ − θ∗ with θ of type (1,0).

We specify the class of Hermitian metrics by another positive and real valued function,
k, on the positive half-axis. The metrical form for the tangents at a purifying vector, w,
will be given by the inverse of the (“super”)operator k(∆w), where ∆ is the field of
modular operators. There is an antilinear operator, a modification of Tomita-Takasaki’s
Sw-operator, which admits just the horizontal tangents as fix points. The connection
adjusted to the metric is characterized by various relations between the functions k, F ,
and r. Moreover, every one of the Hermitian metrics considered on the tangent space of
W is a lift of exactly one Hermitian form on the space of density operators. The latter
depends on a function f which is related to k. The Riemannian metric on the density
operators is gained as the real part of the Hermitian one, and it corresponds to the
harmonic mean of f(t) and tf(1/t). Further we discuss an additional condition, which
enables us to assign a unique connection form to a given monotone Riemannian state
space metric. These metrics are induced from the Hilbert-Schmidt metric by some
constraints on the purifying vectors replacing the orthogonality condition of the Bures
case.

The starting point has been a set of connections, compatible with the purification
procedure, to define reasonable parallel transports along curves of density operators. We
return to this issue in purifying horizontally solutions of von Neumann equations. Cyclic
solutions give rise to some holonomy invariants. There are constraints on F for
extending the parallelity conditions to the boundary, in particular to pure states. If they
are fulfilled, the holonomy invariants reduce to the well known geometric phase of Berry
for pure states. At the end we ask what happened if “noise” is added to a closed path of
pure states.

2 Standard Purification

We start by reviewing some basic ideas of the purification procedure.

Let H be a complex Hilbert space of finite dimension n. Following the usage in Physics
we call 〈., .〉 its scalar product and assume antilinearity in its left, linearity in its right
argument.
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B(H) denotes the ∗-algebra of linear operators acting on H. A state is a positive linear
form over the algebra which takes the value 1 at the identity of B(H). Generally, a linear
form l over our algebra is uniquely represented by

l(b) = Tr bω, ∀ b ∈ B(H) . (1)

The linear form is positive if and only if ω is a positive element of B(H). We then call ω
a density operator to come in accordance with its usage in physics. A density operator
represents a state iff its trace is one.

A purification of a positive linear form over B(H) is a lift to a pure linear form of a
larger algebra.

A way, to do so, is that: With another, auxiliary Hilbert space Haux, with at least the
same dimension, we consider

H⊗Haux, n = dimH ≤ Haux (2)

and the inclusion (which, indeed, is a ∗-representation,)

B(H) →֒ B(H)⊗ 1aux (3)

into the operator algebra of the Hilbert space (2). Let ̺ be the density operator of a
positive linear form l over B(H). A vector ψ of (2) is said to purify l, and hence ̺, iff

l(b) ≡ Tr b̺ = 〈ψ, b⊗ 1aux ψ〉 ∀ b ∈ B(H) . (4)

A distinguished way to choose the auxiliary Hilbert space is to require

Haux = H∗, W := H⊗H∗ , (5)

which results in the standard purification, based on the standard representation of B(H).
In what follows this choice is assumed, and we have to fix some notations and
conventions at the beginning.

Let φ ∈ H. The element φ∗ ∈ H∗, is defined by φ∗(φ′) = 〈φ, φ′〉. In Dirac’s notation:

φ↔ |φ〉, φ∗ ↔ 〈φ| . (6)

Being in finite dimensions, every operator is Hilbert-Schmidt, and W is canonically
isomorphic to B(H). This can be made explicit with two arbitrarily chosen orthonormal
bases φ1, φ2, . . . and φ

′
1, φ

′
2, . . . of H in writing

w =
∑

|φj〉〈φj , w φ′k〉〈φ′k|, w ∈ W . (7)

The Hilbert Schmidt scalar product on W is

(w2, w1) := Trw∗

2w1 =
∑

〈w2φ
′

k, φj〉〈φj , w1φ
′

k〉 . (8)
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The star operation in B(H) is equivalent with a conjugation in W,

w → w∗ or (φ⊗ φ̃∗)∗ = φ̃⊗ φ∗ . (9)

We need some operators acting on W. The standard representation of B(H) is the
inclusion (4), specified by (3), and acting as follows:

b 7→ Lb, Lbw := bw, b ∈ B(H) . (10)

We also need the right multiplication Rb, i.e. Rbw = wb. The right multiplication can be
used to implement the standard representation of B(H∗). Notice the different meaning of
the ∗-operations on W = B(H) and on B(W) seen in

(Lb)
∗ = Lb∗ , (Lbw)

∗ = (Rb)
∗w∗

and in similar relations after exchanging Lb and Rb. Now, let l̂ be a linear form on B(W)
and l its restriction or reduction onto B(H). The relation

l̂ 7→ l, l(b) := l̂(Lb), b ∈ B(H) (11)

encodes the partial trace over H∗ on W. Focusing our attention to the purification
procedure, we shall apply this well known mapping mainly to linear functionals of rank
one. In that case the essence of the reduction mapping to the factors of W is contained in

(w2, LbRcw1) = Trw∗

2bw1c . (12)

Its left-hand-side defines a linear form B 7→ (w2, Bw1) over B(W), and, varying w1 and
w2 within W, one can get every linear functional of rank one. Presently we need to
consider (12) with w1 = w2 = w and with either c or b the identity operator. Then, for
B ∈ B(W) and b, c ∈ B(H), the left and the right side of (12) may be rewritten

l̂(B) = (w,Bw), l(b) = Trww∗b, l′(c) = Trw∗wc . (13)

̺ = ̺l := ww∗ is called the density or the density operator of l, while w is said to purify
l. In the same spirit, a positive linear functional l̂ of rank one, which reduces to l, is a
purification of l.

From now on, instead of switching forth and back between linear forms and their
densities, we remain mainly with the latter. Accordingly we define the mappings

Πw = ww∗, Π′w = w∗w . (14)

The mapping Π (and similarly the mapping Π′), is slightly more subtle than the
reduction mapping (11). Its domain of definition is W. Thus Π is composed of a Hopf
bifurcation from w to the rank one density operator |w)(w|, representing the linear form
B → (w,Bw), followed by the reduction (11):

w 7−→ |w)(w| 7−→ ww∗ .
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Here we used Dirac’s notation relative to the scalar product (8) in W. Π is a bundle
projection, where the bundle space is W and the base space is the cone of (not
necessarily normalized) density operators (i. e. positive trace class operators). Being in
finite dimension, the base space is the positive cone of B(H). The bundle fibers are
manifolds. However, the dimension of the fibers vary with the rank nw of w ∈ H.
Therefore certain discontinuities occur if the rank is changing.

All this can be seen by the “diagonal” form of (7), which is the Gram-Schmidt
decomposition of w. Let λ1, λ2, . . . be the nw non-zero eigenvalues of ww∗ and φ1, φ2, . . .
their orthonormal eigenvectors,

ww∗ =
∑

λj |φj〉〈φj |, λk > 0 (15)

There exists exactly one other orthonormal basis of vectors, φ′1, φ
′
2, . . . of the same length

nw, fulfilling

w =
∑√

λk|φk〉〈φ′k|, w∗w =
∑

λj|φ′j〉〈φ′j | (16)

and the positive numbers λj sum up to (w,w). From (16) one can read off the polar
decompositions

w =
√
ww∗v = v

√
w∗w, v =

∑

|φk〉〈φ′k| . (17)

The index k runs from 1 to nw. One may call v the phase of w relative to ̺ = ww∗. The
projection operators v∗v and vv∗, attached to the partial isometry v, map H onto the
support spaces of w∗w and ww∗ respectively. Later on we need the operator J = Jw,

Jwx = vx∗v =
∑

|φj〉〈φ′j , x∗ φk〉〈φ′k| , (18)

which, for completely entangled w, is the well known modular conjugation. One easily
establishes

(Jw)
2x = (vv∗)x(v∗v), (Jx, y) = (Jy, x) . (19)

If ̺ > 0 is a density operator, the set Π−1̺ consists of all w satisfying ̺ = ww∗. Along
this fiber the orthoframe φ′1, φ

′
2, . . . in (16) and (17) varies arbitrarily. Thus the fiber at ̺

is isomorphic, though not canonically, to a complex Stiefel manifold. These
isomorphisms are parameterized by the different possibilities to choose an orthoframe for
the non-zero eigenvalues of ̺. The structure or gauge group of Π−1̺ consists of all
unitary u ∈ B(H) acting by Ru.

Iff ̺ is already pure, ̺ = |φ〉〈φ|, its purifications reads w = |φ〉〈φ′|. That is, the purifying
vectors are necessarily product vectors (“unentangled” vectors).

In case the rank of ̺ is larger than one, w is called entangled in the domain of quantum
information theory. Accordingly, complete entanglement of w is reached if the density
operator ̺ is of maximal rank nw = dimH. In this case, in traditional ∗-representation
theory, ̺ is called faithful and w separating. ̺ = ww∗ is faithful iff w is invertible.

The set of all faithful ̺ is the base space of a principal fiber bundle with free action of
the unitaries Ru. The fiber space consists of all invertible w, the projection is Π.
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3 Purification and Tangents

A smooth, oriented curve in W, passing through w, defines at w a tangent or velocity
vector x. Hence the tangent space, Tw at w, may be identified with W if considered as a
real linear space.

Assume that w and the unitaries u depend smoothly on a parameter, and let us use a
dot to show parameter differentiation. The gauge transformation w → w′ := wu induces
the relation

x 7→ x′ = xu+wu̇, x = ẇ, x′ = ẇ′ . (20)

Let us now consider Π, and assume Πw = ̺. Π induces a mapping Π∗ from the tangent
space of W into the density operator’s tangents.

Being a first order problem, it is sufficient for the following to assume a curve as simple as
possible, say w(λ) = w + λx. The curve is projected by Π to a curve of density operators
̺λ = w(λ)w∗(λ) of B(H). Differentiating at λ = 0 results in a tangent Π∗x = ξ at ̺.

ξ = ˙̺, ξ = (ww∗)· = xw∗ + wx∗ . (21)

A tangent vector x at w is called vertical iff Π∗x = 0. The real vector space of the
vertical tangents at w is denoted by T ver

w . It is a straightforward and well known exercise
to show: The gauge transformation x→ x′ of (20) maps vertical tangents at w to
vertical tangents at w′.

We look at vertical tangents as labels for the physical phase. The phase of a single state
or of its density operator is not an observable. Which purifying vector w we choose, is
physically irrelevant. What can be observed are relative phases, for example in
interference experiments. The relative phases should depend on the way a density
operator is changed to become another one. There should be a protocol according to
which the tangents, and hence the phases, are transported along a curve within the space
of density operators. This can be achieved by the help of a parallel transport.

The standard procedure is to split the tangent space at every w into a direct sum of the
vertical and of an horizontal part. Respecting the complex linear structures, we restrict
ourselves to decompositions defined by the real part of an Hermitian metric: We assume
at every w a distinguished positive Hermitian sesquilinear form

w 7→ (x2, x1)w, x1, x2 ∈ Tw . (22)

For completely entangled w it should be positive definite. Now Re (., .)w, the real part of
(22), converts the tangent space at w into a real Hilbert space. The velocity with which a
curve goes through w is the square root of (x, x)w with x the tangent at that point. In
this setting, parallel transport is asking for a minimal velocity lift of a given tangent at
the base space. This, in turn, induces a metrical structure at the base space: One calls
velocity of a base space tangent the minimum of the velocities of all possible lifts.

Thus, the horizontal part, xhor, of a tangent x at w is the unique element of the set
x+ T ver

w with the smallest velocity. This is in accordance with the definition of T hor
w as
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the orthogonal complement of T ver
w in the real Hilbert space Tw, the latter equipped with

the scalar product Re (., .)w .

There is a distinguished real subspace, T Ver
w , within T ver

w containing all tangents

x = wa, a = −a∗ ∈ W , (23)

which are obviously vertical.

If w is invertible (completely entangled), every vertical tangent can be uniquely
expressed in that way. But generally, T Ver

w is a proper subspace of T ver
w . We call a

vertical tangent neutral iff it is orthogonal to T Ver
w with respect to Re (., .)w . Hence,

every tangent x allows for an orthogonal decomposition

x = xhor + xver, xver = xneutral + xVer . (24)

4 Phase transport and Bures Metric

The most natural and simple choice for the Hermitian metric (x2, x1)w of (22) is
certainly the Hilbert-Schmidt scalar product (8). This choice is particularly interesting
for several reasons.

At first it gives a straightforward generalization of the geometric phase by the parallel
transport evolving from this choice. Indeed, one obtains a natural extension of the Fock
[3], Berry [13], Simon [12], Wilczek and Zee [14] parallel transport to density operators.

Transport of state vectors along closed curves generates an holonomy problem. In the
period between V. Fock and M. Berry this has become clear. B. Simons explained how
to calculate the holonomy by the second Chern class of the Hilbert space if considered as
a line bundle. There is an extensive literature on the transport of phases along curves
and loops of pure states, see [1] for a selection of important results, applications, and
references. Particular examples in using and calculating the geometric phase can be
found already in papers decades past.

Secondly, one gets a Riemannian metric, [26], on the (not necessarily normalized) density
operators of B(H). Its distance function is the distance introduced by Bures [6] in
following a similar construction of Kakutani [4] in probability spaces. Being the
infinitesimal version of Bures’ distance, we call this Riemannian metric Bures metric.

And, finally, already the choice

(x2, x1)w = (x2, x1), ∀w (25)

shows essential problems in deviating from a genuine fiber bundle.

We start by enumerating the tangents y orthogonal to T Ver
w

(y,wa) + (wa, y) = 0 ∀ a+ a∗ = 0 .

That condition straightforwardly comes down to

y∗w = w∗y (26)
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and y is orthogonal to all Ver-tangents iff w∗y is Hermitian. (26) is the parallelity
condition [15], which extends the transport condition for the geometric phase from pure
to mixed states.

To decompose y in its neutral and horizontal part, we start by completing the two
orthonormal systems of the Schmidt decomposition (16) arbitrarily and set λj = 0 if
j > nw. By sandwiching (26) between the orthobase {φi} we get

√

λk〈φj , y∗φ′k〉 =
√

λj〈φ′j , yφk〉 .

There evolve two conditions on the matrix elements:

j ≤ nw, k > nw ⇒ 〈φ′j , yφk〉 = 0 .

k, j ≤ nw ⇒ 〈φj , y∗φ′k〉
√

λj
=

〈φ′j , yφk〉√
λk

.

No restriction occurs for j > nw, k ≤ nw. There is an Hermitian g such that

〈φj , gφk〉 =
〈φ′j , yφk〉√

λk
, k ≤ nw . (27)

One may choose the matrix elements of g with indices both larger than nw arbitrarily
but consistent with g = g∗.

The tangent y1 = gw is horizontal, [20], [19], because it is orthogonal to all ver-tangents
x. Indeed, xw∗ + wx∗ = 0 implies (gw, x) + (x, gw) = (g, xw∗ + wx∗) = 0. What remains
to check is the case of a tangent y0, real orthogonal to all gw, g = g∗, and to all
Ver-tangents. From the first condition it follows wy∗0 + y0w

∗ = 0, hence verticality, and
from the second we obtain w∗y0 = y∗0w. This is equivalent with

〈φj , y0φ′k〉 = 0 ∀ j, k ≤ nw

or

y neutral ⇔ w∗y = yw∗ = 0 . (28)

We conclude that every tangent x allows for a unique decomposition

x = gw + x0 + wa (29)

in an horizontal, a neutral, and a vertical part where g is Hermitian, a anti-Hermitian,
and x0 satisfies (28). With the extra conditions

〈φj , gφ′k〉 = 〈φj , aφ′k〉 = 0 , k, j ≥ nw , (30)

both, g and a, are unique. The conditions (30) are equivalent to the choice of maximal
null-spaces, i.e. minimal supports for g and a. They allow to define g and a uniquely.

The transformation property (20) implies

9



w 7→ w′ = wu =⇒ a 7→ a′ = u∗au+ u∗u̇ , (31)

so that x 7→ a is a connection form (gauge potential) a for the gauge group u 7→ Ru.
However, support properties may not change continuously. For parameter values at
which the rank of w is changing, one has to understand g or a as equivalence class with
respect to the kernel of g 7→ gw or a 7→ wa respectively. Then (31) remains meaningful
even in those cases.

In our next step we look at g and a. g, which describes the horizontal part of a tangent
vector x, can be expressed by ξ := Π∗x and ̺ = ww∗ := Πw. We need the pair x and
˜̺ := w∗w to gain a. We get

̺ g + g ̺ = ξ, ˜̺a+ a ˜̺ = w∗x− x∗w . (32)

The first equation ([19], [20]) is obtained from (21). To see the second one ([21]), insert
(29) into its right hand side.

Apart from an obvious restriction on ξ, (32) can be solved to get g or a, and several ways
to do so are well known. A review is in [37] . The restriction in question reads
〈φ, ξφ〉 = 0 whenever φ is in the null space of ̺ for the first equation, and 〈φ′, ξφ′〉 = 0
whenever φ′ is in the null space of ˜̺. Below we assume they are satisfied.

With the solvability conditions in mind we rewrite (32) as equations between operators
in B(W). In order not to overload notations we abbreviate

L ≡ L̺, R ≡ R̺, L̃ ≡ L ˜̺, R̃ ≡ R ˜̺ . (33)

These are families of operators indexed by ̺ or ˜̺.

Let us start now from (32). The equations can be solved by

g = (L + R)−1ξ, a = (L̃ + R̃)−1(w∗x− x∗w) . (34)

The operational defined inverse exists by the solvability condition above. With two
tangents ξj at ̺ and their horizontal lifts xhorj we get the Riemannian metric, [22], [26],
belonging to the Bures distance

(ξ2, ξ1)
Bures := Re (xhor1 , xhor2 ) =

1

2
Tr ̺(g1g2 + g2g1) (35)

or, equivalently,

(ξ2, ξ1)
Bures =

1

2
Tr ξ2g1 =

1

2
Tr ξ2(L + R)−1ξ1 . (36)

There is a similar procedure with the second equation of (34) resulting in the connection
ageo with ageo(x) := wa. The superscript ”geo”, if used, is a reminder for the physical
important geometric phase. From (34) we get

ageo =
L̃

L̃ + R̃
(w−1dw)− R̃

L̃ + R̃
(w−1dw)∗ , (37)
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where w−1dw is the left canonical 1-form with values in the Lie algebra of GL(H). ageo

takes values in the Lie algebra of the gauge group U(H) acting from the right via
u 7→ Ru.

Formula (37) represents ageo as the difference of two Hermitian conjugated parts of type
(1,0) and (0,1) respectively:

ageo = a1,0 − a0,1, a0,1 = a∗1,0 .

Another interesting equation expresses ageo as sum of the canonical 1-form acan of the
bundle GL(H)/U(H) and an horizontal Ad-1-form, [23],

ageo =
w−1dw − (w−1dw)∗

2
+

L̃− R̃

L̃ + R̃

w−1dw + (w−1dw)∗

2
. (38)

Since the second form is horizontal, it can be rewritten in terms of d̺ and we get

ageo = acan + w−1(
L− R

2(L + R)
d̺)(w−1)∗ (39)

= w−1dw − w−1(
R

L + R
d̺)(w−1)∗ . (40)

It becomes immediately clear that ageo(x) = acan(x) iff Lξ = Rξ, where ξ := wx∗ + xw∗,
i. e. iff ̺ commutes with ˙̺.

This observation motivates the decomposition

T̺ = T ‖
̺ + T ⊥

̺ (41)

of the tangent space T̺ into a direct sum, where ξ ∈ T ‖
̺ iff ξ commutes with ̺ = ww∗ or,

equivalently, iff 〈φj , ξφk〉 = 0 for any two eigenvectors φj , φk, of ̺ with different
eigenvalues. On the other hand, ξ ∈ T ⊥

̺ iff it can be written as a commutator i[b, ̺] with
a suitable Hermitian b. (41) is a well known matrix decomposition: Assume ̺ represented
as block diagonal matrix, every block belongs to just one eigenvalue. This induces a
block representation of any matrix ξ. One gets ξ ‖ by setting zero every off-diagonal block
of ξ. If the entries in the diagonal blocks are set to zero, one obtains ξ⊥. In our present
field of interest Hübner, [29], obtained a decomposition (41) of the Bures Riemannian
metric. For larger classes of metrics this has been done by Hasegawa and Petz ([30] [34]).

This brings us back to the metric (35), (36). There is a solution g1 commuting with ̺ iff
ξ1 does so: The support ̺ cannot be smaller than the support of ξ. Hence
2g1 = ̺−1ξ1 = ξ1̺

−1 is operational well defined. Inserting in (36) results in

(ξ2, ξ1)
Bures =

1

4
Tr ξ2ξ1̺

−1, ξ1 ∈ T ‖
̺ . (42)

Comparing this with the Riemannian metric

(ξ2, ξ1)
can :=

1

8
Tr (ξ2ξ1 + ξ1ξ2)̺

−1 = Tr ξ2(L
−1 +R−1)ξ1 (43)

the inequality 4/(L + R) ≤ (1/L) + (1/R) gives, [33],

11



(ξ, ξ)Bures ≤ (ξ, ξ)can (44)

and equality holds if and only if ξ ∈ T ‖
̺ , or, what is the same, if ξ commutes with ̺.

Let φ1, . . . a complete orthonormal eigenvector basis of ̺ = ww∗ and ξ with eigenvalues
λj and λ̇j respectively. Then we get from (42) the following quadratic form

1

4

∑

dλ2j λ
−1
j =

∑

dµ2j , µj :=
√

λj .

This is an Euclidean metric. However, restricted to the state space, where λ1, . . .
becomes a probability vector, we get Fisher’s metric (“Fisher-Rao metric”) [2].

If the Bures metric is restricted to a submanifold of mutual commuting states, the Fisher
metric is obtained.

Moreover, on any submanifold of commuting density operators, whether normalized or
not, the phase transport is holonomically trivial.

Indeed, we can form the lift ̺→ w =
√
̺. The assumed commutativity provides us with

Hermitian and commutative w and x = ẇ, and with ̺ = ww∗ = w∗w = ˜̺. Hence (34)
comes down to a(x) = 0, and the lift is horizontal. There is no room for a non-trivial
phase.

We see, a non-trivial geometric phase is definitely an effect of non-commutativity. We
need for them curves with mutually not commuting density operators.

5 Auxiliary Tools

In order to extend our previous considerations to a large the class of connections, [23],
we need some auxiliary tools.

Looking at equations as (37) or (39) one can identify functions of L/R and L̃/R̃. These
operators are relatives of L/R̃ = ∆w, the Tomita-Takesaki modular operator of the
representation b 7→ Lb with GNS-vector w. The operators are defined if w−1 exists, that
is for completely entangled w. But, as (37) to (39) show, certain functions of these
operators can be defined for every w.

Let t 7→ f(t) be a function defined for 0 < t <∞. We assume the existence of

f(0) := lim
t→0

f(t), f(∞) := lim
t→∞

f(t) . (45)

The assumption is necessary if we like to extend the formalism to density operators
which are not invertible. Without it, we have to restrict ourselves to completely
entangled w, i.e. to faithful density operators.

To treat an example with the assumption (45), we define f(L/R̃) =: f(∆). The positive
operators L and R̃ commute. Let λj be the eigenvalue of ww∗ and of w∗w with the
eigenvectors φj and φ′j . The eigenvectors, suitably choosen, collect in a complete
orthonormal basis satisfying the Gram-Schmidt decomposition (16). λj is zero if j > nw
and positive otherwise. Now

12



Lvjk = λjvjk, R̃vjk = λkvjk, vjk := |φj〉〈φ′k| . (46)

The elements vjk constitute a complete orthonormal basis of the Hilbert-Schmidt space
W. We like f(∆) to be diagonalizable with eigenvectors vjk. Remembering ∆ = L/R̃ we
start with

f(∆) vjk = f(λj/λk) vjk, if λk > 0 . (47)

The remaining possibility is done “by hand” in requiring

f(∆) vjk = f(∞) vjk, if λj > 0, λk = 0 (48)

f(∆) vjk = f(1) vjk, if λj = λk = 0 . (49)

With this convention vjj is an eigenvector of f(∆) with eigenvalue f(1) for all j.

The same game is to play with f(L/R) and f(L̃/R̃). While the spectra of f(L/R) and
f(L̃/R̃) coincide with that of f(∆), their eigenvectors are, respectively,

|φj〉〈φk| = vjiv
∗

ik and |φ′j〉〈φ′k| = v∗jivik . (50)

6 A Class of Connections

Our aim is to describe a class of connections, essential that of Dittmann and Rudolph,
[23]. These objects, as will be seen, are particularly well adapted to the purification of
the H-system by that of W = H⊗H∗. We assume w completely entangled, so that
̺ = Πw is faithful (invertible). Wether it is possible to skip this assumption, either by
calculating modulo neutral tangents or by continuity arguments, depends on the
asymptotic behaviour of certain functions to be introduced below.

Let [0,∞] ∋ s 7→ r(s) ∈ C be a smooth function and r(1) = 1/2. Then

(

r(L̃/R̃)y
)∗

= r̄(R̃/L̃)y∗ . (51)

We get, therefore, a mimicked equation (37) by

a := r̄(L̃/R̃)(w−1dw)− r(R̃/L̃)(w−1dw)∗ . (52)

To transform like a connection it must have the form (38), though with an arbitrary
horizontal Ad-1-form. Thus we need to have

r̄(t) + r(1/t) = 1, F (t) := r̄(t)− r(1/t) = −F̄ (1/t) (53)

to get a genuine connection with respect to the gauge group U(H) acting by u 7→ Ru.
Furthermore, as a consequence of (52) and r(1) = 1/2, one observes rescaling invariance
of the connection form. Indeed, a is invariant under w 7→ λ(w)w, where λ : W → IR:

13



aw(x) = aλw(dλ (x)w + λx) (54)

so that there is no need to normalize w in calculating a. The second equation in (53)
introduces the function F used in [23] to label their gauge potentials, and we are allowed
now to rewrite (52) in a manner already known from (38):

a = acan + F (L̃/R̃)
(w−1dw) + (w−1dw)∗

2
. (55)

One returns to the Bures case by

a = ageo ⇐⇒ r(t) =
t

1 + t
⇐⇒ F (t) = (t− 1)/(t+ 1) . (56)

We may now proceed as in (39) to get the deviation from the connection acan. One
obtains

a = acan + w−1(F (L/R)d̺ )(w−1)∗ . (57)

Before deriving expressions for the vertical and horizontal part of a given tangent x, we
draw an important conclusion:

The value of a connection at the lift of a ‖-tangent is independent of F respectively r.

Indeed, F (1) = 0 and Lx = Rx for these tangents, and we get from (57) immediately

Π∗(x) ∈ T ‖ =⇒ a(x) = acan(x), ∀F (58)

allowing to extend a conclusion of section 4:

On submanifolds with mutually commuting density operators the holonomy of every loop
is trivial for the whole class of connections considered here.

Indeed, the lift ̺→ √
̺ is horizontal along every curve of commuting densities.

Now let us return to (52) and let us multiply this equation by w from the left. We obtain

w a(x) = r̄(∆)(x)− r(∆−1)(wx∗w∗−1)

and, by the help of (53),

xVer = w a(x) = x− r(∆−1)(x+ wx∗w∗−1) . (59)

Reminding (17) and (18), this can be seen by the aid of the identities

v∗(w∗)−1 = v∗(ww∗)−1/2v = (w∗w)−1/2

wx∗(w∗)−1 = ∆1/2Jx = J∆−1/2x .

Another interesting equation, similar to (40), is
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xVer = x−(r(R/L) ξ)(w∗)−1 . (60)

We assumed w separating so that there are no non-vanishing neutral tangents, and
xVer = xver. Hence (60) or, equal well, (59) reflects the decomposition of a general
tangent into a vertical and an horizontal part, see (24). We conclude

xhor =(r(R/L) ξ)(w∗)−1 = r(∆−1) [x+∆1/2J x] . (61)

A connection form a regulates the change of the phase v along an horizontal lift,
wt =

√
̺t vt, of a curve ̺t. We express a by

a(ẇ) = a(
√
̺ v̇ + (

√
̺)· v) = a(

√
̺ v v∗v̇ + (

√
̺)· v) = v∗v̇ + v∗ a(

√
̺ ·) v

= v∗v̇ + v∗ a(
1√

L +
√
R

˙̺ ) v

= v∗v̇ + v∗
1

2

1√
LR

(

F (L/R) +

√
R−

√
L√

R+
√
L

)

( ˙̺) v . (62)

and see that horizontality of wt is equivalent with

0 = v̇ v∗ +
1

2

1√
LR

(

F (L/R) +

√
R−

√
L√

R+
√
L

)

( ˙̺) . (63)

One observes, that there is one and only one connection in our setting with a global
horizontal section, ̺ 7→ √

̺. That connection is given by

F (t) = −1−
√
t

1 +
√
t
, r(t) =

√
t

1 +
√
t
.

7 Connection and Metric

In this section we specify a class of Hermitian metrics (22) on W, which respects the
purification scheme. Our first task is to ask for Hermitian metrics on the complex
manifold W, the real part of which is compatible with a given connection form of the
preceding section. We demand: At every completely entangled w ∈ W, the vertical
tangents are real orthogonal to the horizontal ones. In the case, there exists an Hermitian
metric doing this task, the functions F and r charcterizing the connection, have to be
real. In the next step we describe the Hermitian an Riemannian metric one obtains by
reduction from the purification space to that of (unnormalized) density operators.

Starting with a connection (52), (53), there is some freedom in the choice of the
Hermitian metric. It is an interesting question in its own, whether, by a reasonable
condition, the Hermitian metric becomes unique. We explain in the last part of this
section how this can be done. If we start from a Riemannian metric on the density
operators, the uniqueness problem is more involved. Nevertheless, our additional
condition solves it also, at least for the monotone Riemannian metrics.
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To start our little programm we construct Hermitian metrics (22) by modifying the
Hilbert Schmidt scalar product on W by a function k(∆) of the modular operator. Like
R and L the modular operator ∆ depends on w. Our ansatz for the Hermitian product
in TwW reads

(x2, x1)w := (x2, k(∆w)
−1x1), (64)

where k is a real positive smooth function defined either only on 0 < t <∞ or on the
closed interval 0 ≤ t ≤ ∞. We use the rules explained in the section “auxiliary tools”.
There are two main merits with such a choice of the modified Hermitian metric: The
symmetry group of the metric contains the unitary group U(H)× U(H∗). The second is
the rescaling invariance of ∆ under w 7→ λ(w)w, where λ(w) denotes (a sufficiently
smooth) real function on W. Rescaling invariance is a further reason not to insist in
normalized density operators.

In determining the connection form compatible with (64), we follow the recipe of section
3. We need the real-orthogonal complement of the vertical directions. They are to gain
by the metrical independence of verticality. Namely, if a tangent x is real-orthogonal to
all vertical ones, k(∆)−1xhor is horizontal w. r. to the Hilbert-Schmidt-metric. Therefore,
as shown in section 4, we are allowed to write x = gw with an Hermitian g. Conclusion:

A tangent x is horizontal with respect to (64), iff it can be represented as

x = k(∆)(gw) = k(L/R)(g)w, g = g∗ . (65)

The real space of horizontal tangents is the fix point set of an antilinear operator, Sk
w,

acting on W. Our notation is borrowed from that of the Tomita-Takesaki operator
Sw = J

√
∆, which will be returned if k ≡ 1. Our definition is

Sk
w = Jk(∆−1)k(∆)−1

√
∆ = k(∆)k(∆−1)−1Sw (66)

If this operator acts on x = k(∆)(gw) the result is k(∆)(g∗w). Comparation with (65)
establishes: x is a fix point of Sk

w if and only if x is horizontal.

The square of the operator (66) is J2, compare (19). J2 is the identity of W iff w is
invertible. Further, the adjoint of Sk

w with respect to (64) is
√
∆J and, as it should be,

independent of k. (Tomita-Takesaki theory calls it “Fw”.) Finally we polar decompose
(66) to get the appropriate modifications of the modular operator, ∆ = ∆w, and of the
modular conjugation, J = Jw.

Sk
w = Jk

w|Sk
w, ∆k

w := |Sk
w|2, (67)

∆k
w = k(∆−1)k(∆)−1∆, Jk

w = J
√

k(∆−1)k(∆)−1

We now ask for the connection comming with the metric. The connection form belonging
to (64) annihilates all the horizontal vectors (65). This reasoning, applied to (52) or
(55), determines the function r or F . The calculation shows, in accordance with (53),
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r(t) =
t k(1/t)

k(t) + t k(1/t)
, resp. F (t) =

t k(1/t) − k(t)

t k(1/t) + k(t)
. (68)

Obviously, the functions r and F are real valued if the connection is gained from an
Hermitian metric (64). A cross check of (68) is in setting k ≡ 1. We get r(t) = t/(1 + t)
and F (t) = (t− 1)/(t + 1) as it should be for the Bures case.

On the other hand, given r or F , there is some freedom for k since the induced
connection depends on k(t)/k(1/t) only.

k(t)

k(1/t)
= 1 ⇐⇒ r(t) =

t

1 + t
, F (t) =

(t− 1)

(t+ 1)
, a = ageo

k(t)

k(1/t)
= t ⇐⇒ r(t) =

1

2
, F (t) = 0, a = acan

In particular, there is no modification of the Tomita-Takesaki operators by (66), (67) if
the connection is ageo. More generally, from (68) we get

k(t)

k(1/t)
= t

r(1/t)

r(t)
= t

1− F (t)

1 + F (t)
(69)

and find, remarkably enough, the modified Tomita-Takesaki operators (66), (67)
depending on F only. Further, by (69), the positivity of k enforces the inequality

− 1 < F (t) < 1 (70)

for F to be obtained from a k. In order to invert (69), the inequality is also sufficient.
(According to (53) one needs only to check F < 1 for real F .) Then, given F , the general
solution of the problem is

k(t) :=
√
t (1− F (t)) q(t) , (71)

q being an arbitrary positive function fulfilling q(t) = q(1/t).

We started from an Hermitian metric on W, derived conditions for horizontality, and
determined the connection. Now we go back to H and to its density operators: We ask
for the Hermitian and Riemannian metric induced on the space of density operators.
That is, with two tangents ξ and η at Πw = ̺, we are concerned with

(η, ξ)̺ := (yhor, xhor)w (72)

and

Re (η, ξ)̺ =
(η, ξ)̺ + (ξ, η)̺

2
. (73)

xhor and yhor are horizontal lifts of ξ and η. In the present paper the C-valued IR-linear
form (72) is defined on the real tangents. Nevertheless, for obvious reasons, we call it
“Hermitian”. Relying on (61) we conclude

17



(yhor, xhor)w = Tr r(L/R)(η)
r(R/L)

R k(L/R)
(ξ) = Tr η

r(R/L)2

R k(L/R)
ξ (74)

so that

(η, ξ)̺ = Tr η
R k(L/R)

[R k(L/R) + Lk(R/L)]2
ξ , (75)

where r has been substituted by k in (74) by the aid of (68). The real part of (75) is a
Riemannian metric. By (75) and standard rules we get

Re (η, ξ)̺ =
1

2
Tr η

1

Rk(L/R) + Lk(R/L)
ξ . (76)

Petz, [33], [35], [36], was able to classify all monotone Hermitian metrics on the state
space, i. e. those for which (·, ·)̺ does not increase under the action of completely
positive and unital mappings. On the heart of his result is the characterization of a
monotone metric by an operator monotone function, f , defined on 0 < t <∞, such that

(η, ξ)̺ =
1

4
Tr η

R−1

f(L/R)
ξ . (77)

(The factor 1/4 is a normalization convention.) Note, that this Hermitian metric
becomes symmetric, and hence a Riemannian one, if and only if the function f satisfies
f(t) = tf(1/t). A function with this algebraic property we call selftransposed following
the terminology for operator means introduced in [8]. Presently, however, the
monotonicity of the metric (77) or of its real part is not assumed. We need a more
general frame. Having this in mind, we compare (77) with (75) and obtain

f(t) =
( k(t) + tk(1/t) )2

4 k(t)
. (78)

This equation has a unique solution for k depending on f , therefore, every Hermitian
metric (77) can be reached by exactly one Hermitian metric (64) on the purification
space. Indeed, the harmonic mean of f(t) and its transpose, tf(1/t), yields

1

f(t)
+

1

tf(1/t)
=

4

k(t) + tk(1/t)

so that one can insert this into the right hand side of (78) to express k by f :

k(t) = f(t)
4t2f(1/t)2

[f(t) + t f(1/t)]2
. (79)

Moreover, using (68) we get

r(t) =
f(t)

f(t) + t f(1/t)
and F (t) =

f(t)− t f(1/t)

f(t) + t f(1/t)
. (80)
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These equations describe the relation between the connection on W and the Hermitian
metric living on the density operators. It is Riemannian iff f is selftransposed. (79)
yields f = k in this case, and (80) degenerates to r ≡ 1/2. Hence,
if the induced Hermitian form is Riemannian, the induced connection is necessarily the
canonical one.
This way we do not get an interesting mapping from the class of Riemannian metrics to
the class of connections. Especially, the function f(t) = (1 + t)/2 belonging to the Bures
metric can not be gained from ageo as one might expect.

Moreover, if we like to gain the connection form ageo, r(t) = t/(t+ 1), belonging to the
geometric phase, we need, according to (80), t2f(1/t) = f(t) or, equivalently,
k(t) = k(1/t). If f is operator monotone, so is tf(1/t). Therefore, t2f(1/t) is convex
(lemma 5.2 of [8]). Thus, f is convex and, as an operator monotone function, concave.
Being convex and concave, f it has to be affine. An affine function on the positive real
axis, fulfilling t2f(1/t) = f(t), is a multiple of t.

If a = ageo and f is operator monotone with f(1) = 1, then f(t) = t.

However, considering the real part we obtain for k(t) = 1 (resp. k(t) = 2t/(t+ 1))
a = ageo (resp. a = acan) and

Re (η, ξ)̺ =
1

4
Tr η

R−1

fs(L/R)
ξ (81)

with fs(t) = (1 + t)/2 (resp. fs(t) = 2t/(t+ 1)). These fs are distinguished
(selftransposed) operator monotone functions. Moreover, in these cases the real part of
the Hermitian metrics (64) restricted to the horizontal vectors coincides with the real
part of the Hilbert-Schmidt metric. This is the motivation to deal in the following with
the real part of the Hermitian metric induced on the state space.

First of all, this Riemannian metric is of the form (81) with a certain selftransposed
function fs depending on k. From (76) we get

fs(t) =
k(t) + t k(1/t)

2
. (82)

fs(t) is the harmonic mean of f(t) and tf(1/t), f given by (78).

Clearly, in starting with a selftransposed fs there is some arbitrariness in choosing k
respecting (82). Moreover, given a selftransposed fs, the only restriction for F is
−F (1/t) = F (t) < 1. Indeed, the equations (68) and (82) then have the unique solution

k(t) = fs(t) ( 1 − F (t) ) . (83)

In order to remove the arbitrariness in going from fs to F and vice versa or from fs to k,
we impose an additional requirement on the class (64) of Hermitian metrics (x, y)w. The
aim is to ensure that, given fs, there is only one k and one F fulfilling (68) and (82). We
shall prove that we meet our goal for operator monotone fs by the following natural
demand:

Condition HS : For x and y belonging to the horizontal spaces defined by the Hermitian
metric (64), the real part, Re (x, y)w, of (x, y)w coincides with the real part, Re (x, y), of
the Hilbert-Schmidt product of x and y.
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At first, by the aid of (65), the condition HS becomes

Re
(

k(∆)(gw), g′w
)

= Re
(

k(∆)(gw), k(∆)(g′w)
)

(84)

with arbitrary Hermitian g and g′. It yields the constraint

k(t) + t k(1/t) = k(t)2 + t k(1/t)2 . (85)

Next, we have the following crucial observation, which one verifies straightforwardly:
There is an one-to-one correspondence beetween positive functions k fulfilling the
constraint (85) and functions F with −F (1/t) = F (t) < 1 . The correspondence is given
by (68) and

k(t) =
2t(1− F (t)

(1 + F (t))2 + t(1− F (t))2
. (86)

By (82) or, equally well, by (83) we get the relation between F and fs

fs(t) =
2t

(1 + F (t))2 + t(1− F (t))2
. (87)

Hence, under condition HS, a function fs can be gained from a k iff fs has a
representation (87) with a suitable F , F (t) < 1.

To explain, which functions fs can be reached, we rewrite relation (87) into the
equivalent form

1 + t

2
− fs(t) =

fs(1/t) (1 + t)2

4

(

t− 1

t+ 1
− F (t)

)2

. (88)

Therefore, necessary conditions for fs are fs(1) = 1, fs ≤ (1 + t)/2 and, moreover,
t 7→ (1 + t)/2 − fs(t) must be the square of a smooth function.

Now suppose, we have such a pair fs, F . We define an auxiliary smooth function

δ(t) :=

√

fs(1/t) (1 + t)

2

(

t− 1

t+ 1
− F (t)

)

.

It fulfils

δ(t)2 =
1 + t

2
− fs(t) , and

√
t δ(1/t) + δ(t) = 0 . (89)

The second equation is a consequence of F (1/t) = −F (t) and fs(t) = t fs(1/t). F can be
expressed in terms of δ and fs by

F (t) =
t− 1

t+ 1
− 2

(1 + t)
√

fs(1/t)
δ(t) . (90)

Conversely, for a given selftransposed fs, fs(1) = 1, the possibilities in choosing δ with
the properties (89) enumerate via (90) the solutions F of (87) and −F (1/t) = F (t). But
such an F may not fulfil F (t) < 1 if we did not choose appropriately the signs for δ in
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(89). The wanted choice may be neither unique nor possible. But if so, the function k
defined by

k(t) :=
2

t+ 1

(

fs(t) +
√

t fs(t) δ(t)

)

(91)

satisfies (82) and (68).

The question, which functions fs, f(1) = 1, bounded by 0 < f(t) ≤ (1 + t)/2, can arise
from F or, equivalently, from an Hermitian metric (64), depends also on regularity
requirements on F and k. We do not discuss this in detail. Instead we have the following
uniqueness result:
For every selftransposed operator monotone function f : (0,∞) → IR with f(1) = 1 there
exists exactly one positive function k fulfilling (82) and (85).

We prove this assertion in the Appendix. We will also show, that such a selftransposed
fs is of the form

fs(t) =
1 + t

2
− (t− 1)2 τ(t)2 , (92)

where τ is a strictly positive function or equal zero and the corresponding functions k
and F then are given by

k(t) =
2fs(t)

1 + t

(

1 +
(t− 1) τ(t)
√

f(1/t)

)

(93)

F (t) =
t− 1

t+ 1

(

1− 2 τ(t)
√

f(1/t)

)

(94)

Thus we get:

For every monotone Riemannian metric (81), fs(1) = 1, on the manifold of completely
entangled states there exists exactly one Hermitian metric (64) satisfying the condition
HS such that the real part of the induced Hermitian metric is just the given monotone
metric. For fs given by (92) the Hermitian metric and the corresponding connection
form are obtained from (93) and (94.

The obtained connection we call the connection associated to the monotone Riemannian
metric. For the Bures metric we return to the Hilbert-Schmidt metric and the
connection above called ageo.

Since we used only certain properties of operator monotone functions this assertion
would be true for a larger class of metrics, but we will not deal with this problem.

Although the condition HS seems to be natural, perhaps a short comment would be
worthwhile. The induced Riemannian metrics are obtained, essentially, by taking the
real part of the Hermitian metric of horizontally lifted vectors. But, because of HS, this
is the same as the real part of the Hilbert-Schmidt metric. Forgetting for a moment
about the underlying Hermitian metric, which forced horizontality, we can take the
following point of view: The monotone metrics are obtained from the originally given
Hilbert-Schmidt metric similary to the Bures metric (section 4). The deviation from the
Bures metric is caused by some constraints on the purifying lifts.
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8 Examples

At first we look at curves of density operators satisfying a von Neumann equation

i ˙̺ = [h, ̺], h = h∗, ḣ = 0 (95)

and their lifts. We may think of h ∈ B(H) as of a given Hamiltonian and of the curve
parameter, t, as time. This interpretation is not obligatory: h may be the generator of
any one-parameter group. (The parameter t should not be confused with the use of the
same letter as a dummy variable in several functions like f , k, r, F .) To fix a solution of
(95), we start at an initial time, tin, with an initial density operator ̺in. The solution
may be written

̺t = u∗t ̺inut, ut := exp i(t− tin)h . (96)

Now a general lift wt is polar decomposed, wt =
√
̺tvt, according to (17).

Our aim is to prove the following: Given a connection form and an initial ̺in at tin.
There is a t-independent Hermitian h̃ such that

utvt = exp i(t− tin)h̃ (97)

implies horizontality of wt.

At first we see from (96) and (97) the validity of a Schrödinger equation in W,

iẇ = Hw, Hw := hw − wh̃ . (98)

By the help of our menagerie of equations it is not particular difficult to prove the
statement above and to obtain an expression for h̃. At first let us multiply (98) by w∗

from the right. By (61) the condition for horizontality is in equating iẇw∗ with
r(R/L)i ˙̺. Now (95) yields

r(R/L)(h̺ − ̺h) = h̺− wh̃w∗ . (99)

This equation is sufficient to guarantee horizontality. Now wh̃w∗ can be computed by
(97) to u∗t

√
̺inh̃

√
̺inut. Therefore, our horizontality condition is the Ad-transform with

u∗t of the equation

r(Rin/Lin)(h̺in − ̺inh) = h̺in −√
̺inh̃

√
̺in ,

where R and L at t = tin is indexed by in. In other words, if we choose h̃ t-independent
and v according to (97), we can satisfy the horizontality condition.

To get a unique h̃, we require the support of h̃ to be smaller than that of ̺in. Finally, by
the help of (53), we get the expression

h̃ =
(
√

R/L r(L/R) +
√

L/R r(R/L)
)

h, t = tin . (100)
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Let us consider a solution (96) of (95) from tin to tout. Then woutw
∗
in is a gauge

invariant. Its trace in H,

(win, wout) = (win, [exp i(tout − tin)H]win)

= Tr
√
̺in

√
̺out exp(i(tin − tout)h) exp(i(tout − tin)h̃) , (101)

may be called a relative geometric phase. For pure states that object has been
introduced in [18]. These authors called it “non-cyclic geometric phase”. One may think
of shortcutting the in- and the out-state to a closed curve by a Fubini Study geodesic
arc. Whether one has a similar interpretation in our much more general case remains an
open question.

For a cyclic solution of (95), i.e. ̺in = ̺out, tcycle = tout − tin, the expression woutw
∗
in is a

(pointed) holonomy invariant, i.e. it depends on the choice of ̺in. To change the in-state
of our cyclic curve one has to perform a ut-transformation. Consequently, all eigenvalues
of woutw

∗
in are (absolute) holonomy invariants. of our cyclic curve. They are encoded in

the traces

Tr (woutw
∗

in)
m = Tr [̺in exp(−itcycleh) exp(itcycleh̃)]m , (102)

where exp(−itcycleh) commutes with ̺in.

There are a few examples where on can become more explicit. One of them is in
adding noise to a curve of pure states pt. In this important example one can study the
influence of “noise” on the geometric phase, and the behavior of gauge and holonomy
invariants in coming from the interior to the extreme boundary of the cone of
unnormalized density operators. For this purpose we fix two positive real numbers, α
and β, and consider the curve of density operators ̺

̺ = α p+ β 1l, p = |ψ〉〈ψ|, 〈ψ,ψ〉 = 1 . (103)

α+ β is a simple and β, if n denotes the dimension of H, a (n− 1)-fold eigenvalue of ̺.
ψ, p and ̺ depend on a parameter t, but we will not suppose a v. Neumann equation.

Remark: The line element of this curve w. r. to the metric induced from (64) is

ds2 =
2α(1 − τ)

τk(1/τ) + k(τ)
ds2Bures , τ :=

β

α+ β
,

where ds2Bures denotes the Bures line element of the curve of pure states pt . ✷

All t-derivations will be indicated by a dot, in particular

˙̺ = αṗ, ṗ = ṗp+ pṗ, pṗp = 0 . (104)

˙̺ belongs to T ⊥. As an application one calculates

R̺ṗ = ṗ(αp + β1l) = (α+ β)ṗp+ βpṗ .

In this manner one gets

R̺(pṗ) = βpṗ, R̺(ṗp) = (α+ β)ṗp , (105)

L̺(pṗ) = (α+ β)pṗ, L̺(ṗp) = βṗp (106)
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and, finally, skipping the index of L̺ and R̺,

(L/R)(pṗ) = (
α+ β

β
)pṗ, (L/R)(ṗp) = (

β

α+ β
)ṗp . (107)

For instance, ṗp and ṗp are eigenvectors of LR with the eigenvalue (α+ β)β. At this
stage we do not suppose a von Neumann equation (95) but rely on (63). Reminding
(107) and F (t) = −F (1/t), we get

F (L/R)ṗ = F (
β

α+ β
)(ṗp− pṗ) .

Hence, in solving (63) with (103) we are faced with an equation

v̇ v∗ =
1

2

α
√

(α+ β)β

[

F (
β

α+ β
) +

√
α+ β −√

β√
α+ β +

√
β

]

( p ṗ− ṗ p ) , (108)

which may be rewritten as

v̇∗ = v∗(1− µ)(p ṗ− ṗ p), µ =
1

2

α
√

(α+ β)β
[F (

β

α+ β
) +

α+ 2β

α
] . (109)

Can we go by β → 0 to the pure states? A necessary condition is

F (0) = −1 (110)

or, equivalently, r(0) = 0. To be sufficient we additionally need the existence of

κ := lim
β→0

µ = lim
λ→0

1 + F (λ)

2
√
λ

= lim
λ→0

λ−1/2r(λ) . (111)

Then the limit β → 0 can be performed in (108):

(v v̇∗)pure = (1− κ)(p ṗ − ṗ p) . (112)

With ageo, or, more generally, with s > 1/2 in r = λs/(1 + λs), we get κ = 0. With κ = 0
we obtain the Berry phase for pure states.

Indeed, imposing 〈ψ, ψ̇〉 = 0 a la Berry [13] and Fock [3], we find v̇∗ψ + v∗ψ̇ = 0 from
(109). Hence, with κ = 0, the vector v∗ψ is t-independent. This yields w = |ψ〉〈ϕ|,
ϕ̇ = 0. It then follows

Tr (woutw
∗

in)
m = 〈ψin, ψout〉m .

This is the m-th power of the Berry phase, because we had supposed the validity of
Berry’s transport condition. Remark that this goes not through if κ 6= 0 or if, as for acan,
(111) does not exist.

Something more can be said if (103) satisfies a von Neumann equation (95). Computing
h̃ with this assumptions by the help of (100) ends up with

h̃ = h+ µ [(1l− pin)hpin + pin h(1l− pin)] . (113)

Looking at h̃ as a block matrix with respect of pin and 1l− pin, the deviation from h is in
multiplying the off-diagonal blocks by µ. If (111) exists and κ = 0 then the off-diagonal
blocks become zero at the pure state limit.
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9 Appendix

Every selftransposed operator monotone function fs has a unique integral representation

fs(t) = m({0}) 1 + t

2
+

∫

(0,1]

1 + x

2

(

t

t+ x
+

t

t x+ 1

)

dm(x)

=
1 + t

2
+

∫

(0,1]

{

−1 + t

2
+

1 + x

2

(

t

t+ x
+

t

t x+ 1

)}

dm(x)

=
1 + t

2
− (1− t)2

∫

(0,1]

x(t+ 1)

2(t+ x)(t x+ 1)
dm(x) , (114)

where m is a normalized positive Radon measure on [0, 1] (see [8]). If the measure is not
concentrated at 0, the last integral is strictly positive for all t ∈ IR+. Its positive root, for
the time being denoted by τ , is a real analytic function. Hence,

fs(t) =
1 + t

2
− (t− 1)2 τ(t)2 (115)

and (1 + t)/2− fs(t) has exactly two real analytic roots,

δ+(t) = (t− 1) τ(t) δ−(t) = −(t− 1) τ(t) ,

or is vanishing. The selftransposeness of fs implies τ(1/t) =
√
t τ(t) and both roots fulfill

the condition (89). From(90) we infer: If selecting the root δ+, the condition F (t) < 1,
t > 0, is equivalent to fs(t) > 1/2 for all t > 1. Because fs is monotone increasing and
fs(1) = 1 the latter inequality is true. On other hand, F can not fulfil F (t) < 1 for all
t > 1 if the root δ− is chosen, except , δ− = 0. Otherwise we could conclude fs(t) > t/2
for all t > 1. But the selftransposeness effects f ′s(1) = 1/2 and fs must be concave.
Therefore, δ(t) := (t− 1) τ(t) is the only root leading to an appropriate F and formulae
(91), (90) yield (93), (94).
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