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We generalize our previous theory [Nano Lett. 18, 5015-5023 (2018)] to investigate the influence of electron-phonon
(e-p) coupling and vibrational relaxation on photoinduced anomalous Coulomb blockade, which originates from the
triplet states and the energy level alignment. We derive the master equation for an irradiated molecular transistor
and obtain the relevant rates via the Redfield theory instead of the phenomenological Fermi golden rule approach.
To explore the interplay between e-p coupling and vibrational relaxation, we analyze the charge stability diagrams
and the current-voltage characteristics (both gate voltage and source-drain bias voltage) under different e-p coupling
strengths in two extreme limits of vibrational relaxation (equilibrated and unequilibrated phonon regimes). From the
perspective of energy level alignment, we choose four representative situations and derive the analytical formulas of
the photoinduced current in the equilibrated regime. The analytical solution reveals a new type of photocurrent due
to e-p coupling that does not require the perfect energy level alignment between charged states and triplet states. In
general, our study indicates that photoinduced current and anomalous Coulomb blockade caused by the triplet states
are supposed to be experimentally observed.

I. INTRODUCTION

Molecular electronics attracts broad interest in the field of
chemical physics because it bridges fundamental sciences and
frontier nanotechnology.1–9 During the past two decades, elec-
tron transport through a variety of molecules has been ex-
tensively investigated, and a lot of intriguing physical phe-
nomena has been experimentally observed.10–22. The exper-
imental breakthrough together with theoretical advances has
made molecular electronics thriving and robust. However, for
a practical device, the capability of tuning electric current by
external fields is crucial and necessary. Thus, the manipula-
tion of electron transport, e.g., by means of a back gate23–26,
electrochemical gate6,27, or light12,28,29, is a primary focus for
the whole field of molecular electronics.

Electric current through a molecular junction can be con-
trolled by an optical field via either chemical or physical pro-
cesses. Chemically, the high- and low-conductance states
based on different molecular conformations have been able
to be switched by a laser field at specific wavelengths28,30–32.
Physically, photoelectric current can be generated via the
mechanisms of photon-assisted tunneling18,29,33–37 or elec-
tronic excitation20,38–44 in a molecular junction. From the
theoretical aspects, the Floquet-based methods have success-
fully demonstrated several fascinating phenomena, includ-
ing photon-assisted tunneling45–52, coherent destruction of
tunneling53,54, coherent revival of tunneling55, and quantum
ratchet effect56. For a single-photon process, kinetic ap-
proaches, e.g., quantum master equation approaches41,57–61

or non-equilibrium green’s function (NEGF) approaches62–67,

a)Electronic mail: lyhsu@gate.sinica.edu.tw

offer a clear description of electron current induced by elec-
tronic excitation and optical excitation. However, in these the-
oretical studies, molecular triplet states are not considered in
the modelling because of the slow rate of an intersystem cross-
ing process. In fact, our previous study68 has clearly shown
that the presence of the triplet states is significant for the light-
driven transport properties regardless of whether the rate of
the intersystem crossing is fast or not.

The triplet states play a crucial role in light-driven electron
transport. In the previous study68, we introduce the concept of
renormalized state energy and find that the low bias photoin-
duced current can be maximally achieved when "the renor-
malized state energy of the charged states is aligned with the
energy of the triplet states", in which the triplet dark states
indeed dominate the transport properties. Furthermore, our
study shows that an optical field enables a field-off Coulomb
diamond to be decomposed into three smaller diamonds, and
the presence of the triplet states is revealed by the central di-
amond in the field-on conductance spectra. The concepts of
renormalized state energy, energy-level alignment and pho-
toinduced anomalous Coulomb blockade are general and al-
low us to explore the importance of dark states in light-driven
quantum transport. However, the previous study does not con-
sider the effects of electron-phonon (e-p) coupling and vibra-
tional relaxation, and these two effects may interrupt the ex-
perimental observation of anomalous Coulomb blockade or
photoinduced current attributed to the energy-level alignment
of the triplet states and the charged states. In order to elimi-
nate these concerns, a general theory of light-driven electron
transport involving the triplet states, e-p coupling and vibra-
tional relaxation is required.

Electron-vibration interactions exhibit rich physical phe-
nomena in nanoscale electron transport and inspire extensive
theoretical studies.59,69–84 Among these studies, we would
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like to emphasize the pioneering works by Koch76–78,85 and
May59,79–82,86,87. Koch et. al. first predicted Franck-Condon
blockade77 using a Pauli master equation approach based on
the Fermi golden rule rates, where the effect of the vibrational
relaxation is introduced phenomenologically via the single-
mode relaxation time approximation. May et. al. discussed
the photoinduced removal of the Franck-Condon blockade us-
ing a generalized rate equation approach.59,79,80 The general-
ized rate equation approach is derived based on the electron-
vibrational states using the projection operator method which
includes the 2nd order rates of charge transfer transitions, vi-
brational relaxations, optical transitions and the molecular de-
excitation due to the electrode. Based on the studies above,
we present a Pauli master equation approach involving rele-
vant transitions together with a pedagogical derivation with-
out using the projection operator method.

This article is divided into five parts. In section II, we
introduce our model (including a molecule, two leads, ther-
mal bath, spin-orbit coupling (SOC), and light-matter inter-
actions) and the corresponding Hamiltonians. To adequately
treat the vibronic coupling, we apply the polaron transfor-
mation and analyze the model Hamiltonians in the polaron
frame. In section III, in the framework of the Redfield the-
ory, we derive the rates of charge transfer transition, vibration
relaxation and optical transition together with phenomenolog-
ically including the rate of the intersystem crossing. Finally,
we arrive at the master equation and the current formula in
our model. In section IV, we discuss the rationality of the
parameters in the work. In section V, first, we define the
equilibrated and unequilibrated phonon regimes. Based on
the two regimes, we explore the charge stability diagrams and
the current-voltage curves of an irradiated molecular junction.
Besides, we study the influence of vibronic coupling and bath
relaxation on photoinduced Coulomb diamonds and anoma-
lous Coulomb blockade. Moreover, according to the energy
level alignment, we analyze the origin of the maximal pho-
toinduced current and the unexpected photoresistive behavior.

II. MODEL AND THEORY

A. Hamiltonian

As illustrated in Figure 1, we study the light-driven electron
transport through a three-terminal molecular device, where a
molecule is connected to a source (S) electrode and a drain (D)
electrode under a gate electric field. We particularly focus on
electric current due to the mechanism of incoherent sequential
tunneling in the weak coupling limit, which can be reached
by using a molecule with saturated alkyl linkers12. The total
Hamiltonian of the device is written as

Ĥtot = Ĥ0 +V̂ , (1)

where

Ĥ0 = Ĥmol + Ĥlead + Ĥth. (2)

Ĥmol represents the isolated molecular system, Ĥlead refers to
the isolated leads (electrodes), Ĥth describes the thermal bath,

FIG. 1. An illustration of the three-terminal molecular device em-
ployed in this paper.

and the coupling Hamiltonian is

V̂ = ĤSOC + Ĥfield + Ĥm−th + Ĥm−l, (3)

which consists of the SOC ĤSOC, the coupling to the radiation
field Ĥfield, the coupling to the thermal bath Ĥm−th and the
molecule-lead coupling between the molecule and the elec-
trodes Ĥm−l.

The two electrodes including a source lead and a drain lead
are described by a non-interacting electron gas model as

Ĥlead = ∑
α

Ĥlead,α = ∑
αkσ

ε
αkσ

â†
αkσ

â
αkσ

, (4)

where â†
αkσ

(â
αkσ

) creates (annihilates) an electron with mo-
mentum k, spin σ and energy ε

αkσ
in the electrode α (S for

source lead, and D for source lead). The electronic relaxation
in the electrodes is assumed to be fast compared to all the dy-
namical processes on the molecular system. Therefore, the
electrons in the electrodes are always at the thermal equilib-
rium. The thermal equilibrium density operator of the isolated
electrodes reads

ρ̂lead = ∏
α=S,D

e−β

(
Ĥlead,α −µα N̂lead,α

)
Trlead{e−β

(
Ĥlead,α −µα N̂lead,α

)
}
, (5)

where β = 1/kBT with the Boltzmann constant kB, N̂lead,α =

∑kσ
â†

αkσ
â

αkσ
is the number operator of electrode α , and µα

denotes the chemical potential of electrons in the electrode
α . A source-drain bias VSD applied symmetrically across the
molecular junction is then taken into account by setting µS =
µ0 +VSD/2 and µD = µ0−VSD/2, where µ0 is the chemical
potential of the two electrodes at zero bias.

The inactive intramolecular vibrations with respect to the
electronic transitions, together with the environment, are
treated as the thermal bath and then modelled as a set of har-
monic oscillators in Ĥth,

Ĥth = ∑
α

(
p̂2

α

2mα

+
1
2

mα ω
2
α x̂2

α

)
, (6)
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where p̂α , x̂α , mα and ωα are respectively the momen-
tum operator, the position operator, the mass and the vibra-
tional frequency of the thermal bath mode α . The ther-
mal bath Hamiltonian is diagonalized by introducing q̂α =(
b̂†

α + b̂α

)
`α/
√

2 and p̂α = i
(
b̂†

α − b̂α

)
h̄/(
√

2`α) with `α =√
h̄/(m

α
ω

α
), which results in

Ĥth = ∑
α

(
b̂†

α b̂α +
1
2

)
h̄ωα , (7)

where b̂†
α (b̂α ) creates (annihilates) a vibrational quantum of

mode α with vibrational frequency ωα . Similar to the elec-
trons in the electrodes, the relaxation process of the phonon
bath is also assumed to be faster than all relevant processes in
the molecular system. Therefore, the thermal bath is always
kept at its thermal equilibrium characterized by the density
operator

ρ̂th = e−β Ĥth/Trth{e−β Ĥth}. (8)

The molecular Hamiltonian consists of an electronic part
and a vibronic part, i.e.

Ĥmol = Ĥm−el + Ĥm−vib . (9)

The electronic Hamiltonian of the isolated molecule is ex-
pressed in terms of many-electron states that span the Fock
space F , which reads

Ĥm−el = ∑
|N,a〉∈F

(EN,a−NeVG)|N,a〉〈N,a | . (10)

The |N,a〉 labels a many-electron state with N referring to
the number of excess electrons with respect to the neutral
state of the molecule and a labelling the electronic state for
its spin multiplicity and energy level, which is consistent with
the convention in the community of photophysics. The energy
level of the state |N,a〉 that includes the energy shift caused
by the image charge effect is denoted by EN,a. The effect
of the gate voltage VG is considered by NeVG. Although the
Fock space is constructed by a complete set of many-electron
states, we employ a truncated Fock space which includes a
finite number of states that participate in the relevant elec-
tronic transitions. Our truncated Fock space is spanned by
cation doublet charge states (| −1,Dσ=±1/2

0 〉, anion doublet
and |1,Dσ=±1/2

0 〉), neutral singlet ground state (|0,S0 〉, neu-
tral singlet excited state |0,S1 〉) and three neutral triplet states
(|0,T m=0,±1

1 〉), where the degeneracy of doublet and triplet
states are considered.

We take a molecular vibration mode as the reaction coordi-
nate and write the vibronic part of the molecular Hamiltonian
as

Ĥm−vib = ∑
|N,a

[
p̂2

2mvib
+

1
2

mvibω
2
vib(q̂−qN,a)

2
]
|N,a〉〈N,a|,

(11)

where mvib, ωvib, p̂ and q̂ are respectively the effective mass,
the frequency, the momentum operator and the position opera-
tor of the active vibrational motion, and qN,a is the equilibrium

position of the potential energy surface (PES) associated with
the electronic state |N,a〉. We introduce q̂ =

(
b̂† + b̂

)
`/
√

2
and p̂ = i

(
b̂†− b̂

)
h̄/(
√

2`) with `=
√

h̄/(mvibωvib), and then
transform the Hamiltonian Ĥm−vib into

Ĥm−vib =h̄ωvib ∑
|N,a〉∈F

[
b̂†b̂+

1
2

−λN,a
(
b̂† + b̂

)
+λ

2
N,a

]
|N,a〉〈N,a |, (12)

where b̂† (b̂) creates (annihilates) a vibronic quantum with fre-
quency ωvib, and the dimensionless e-p coupling parameter
λN,a is qN,a

√
mvibωvib/2h̄.

The coupling Hamiltonian V̂ describes the couplings be-
tween the molecular system and the other external degrees of
freedom, which are respectively responsible for the singlet-
triplet transition, the radiation-induced transition, the vibra-
tional relaxation and the charge transfer transition. The SOC
(the origin of the singlet-triplet transitions) is represented as

ĤSOC = ∑
m=0,±1

(
V SOC

0S0,0T m
1
|0,S0 〉〈0,T m

1 |

+V SOC
0T m

1 ,0S1
|0,T m

1 〉〈0,S1 |
)
, (13)

where the transition amplitudes V SOC
0S0,0T m

1
and V SOC

0T m
1 ,0S1

could
be introduced by a relativistic correction to the kinetic terms.
ĤSOC is responsible for the phenomenological rates of singlet-
triplet transitions in the Pauli master equation. The explicit
expression of the SOC and its origin88–91 are not discussed
here.

The spin-allowed transitions between the neutral singlet
states |0,S0 〉 and |0,S1 〉, due to the coupling to a radiation
field, are described by Ĥfield based on the semi-classical radi-
ation theory and the dipole approximation92 as

Hfield =−E(t) · (d01|0,S0 〉〈0,S1 |+h.c.), (14)

where h.c. stands for Hermitian conjugate, d01 is the tran-
sition dipole moment between |0,S0 〉 and |0,S1 〉, and E(t)
the electric field component of the radiation field. The time-
dependent electric field takes the form of

E(t) = E0
(
eiωt + e−iωt) (15)

for a continuous wave laser source.
The vibrational relaxation process within a PES associated

with the electronic state |N,a〉 originates from the coupling
of the molecular vibrations to the thermal bath, i.e., Ĥm−th,
which takes the following bilinear form59,93–96

Ĥm−th = ∑
N,a

∑
α

cα(q̂−qN,a)q̂α |N,a〉〈N,a|, (16)

where cα characterizes the coupling the active molecular vi-
bration to the thermal bath mode α . For convenience of the
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derivation of the master equation, we write Eq. (16) in terms
of a system oporator and a bath operator as

Ĥm−th = Ŝm−thB̂m−th, (17)

where the system operator and the bath operator are respec-
tively given by

Ŝm−th = ∑
N,a

(q̂−qN,a)|N,a〉〈N,a| (18)

and

B̂m−th = ∑
α

cα q̂α . (19)

Finally, we model the molecule-lead coupling in the follow-
ing form,

Ĥm−l = ∑
αkσ ,Nab

(V ∗
αkσ ,NaN−1bâ†

αkσ
|N−1,b〉〈N,a |

+h.c.) , (20)

which leads to the exchange of electrons between the
molecule and the two electrodes, and this coupling is the
origin of the current through the molecular junction. The
coupling parameter V ∗

αkσ ,NaN−1b
(V

αkσ ,NaN−1b) is a scatter-
ing amplitude which describes the tunneling of an electron
from the molecule (electrode α) to the electrode α (molecule)
together with a transition of the molecule from |N,a〉 to
|N−1,b〉 (from |N−1,b〉 to |N,a〉). As detailed in Ref. [
97], the relationship between Ĥm−l and its form based on a
single particle picture reveals a route to evaluate the coupling
parameter V

αkσ ,NaN−1b. The evaluation of V
αkσ ,NaN−1b has

been discussed in the Supporting Information of Ref. [68]
and is briefly reviewed in Appendix A.

The molecule-lead coupling Ĥm−l can also be written in
terms of bath operators and system operators as59,60,62

Ĥm−l = ∑
α

(
B̂+

α Ŝ−α + Ŝ+α B̂−α
)
, (21)

where the definitions of system operators and bath operators
are respectively given by

B̂+
α =

(
B̂−α
)†

= ∑
kσ

M
αkσ

â
αkσ

, (22)

and

Ŝ+α =
(
Ŝ−α
)†

= ∑
N,a,b

T α
Na,N−1b|N,a〉〈N−1,b |, (23)

with the help of the decomposition of the coupling
parameter98

V
αkσ ,NaN−1b = T α

NaN−1bM
αkσ

. (24)

T α
NaN−1b refers to the probability amplitude of a molecular

transition due to electrode α , and M
αkσ

determines the spec-
tral density of electrode α .

B. Polaron Transformation

In order to simplify the subsequent derivation of master
equations, we employ a polaron transformation99–101. We
choose a representation of density matrix operator that is de-
fined with respect to the electron-vibrational states |N,a,µ 〉.
This electron-vibrational state is expressed as a tensor product
of a many-electron state and an associated displaced harmonic
oscillator state, i.e.,

|N,a,ν 〉= |N,a〉⊗ |ν(λN,a)〉, (25)

where the vibrational quantum number ν = 0,1,2,3 . . . and
the corresponding energy level ENaν = EN,a+(ν+1/2)h̄ωvib.
Note that the vibrational operators b̂ and b̂† in Eq. (12) are
defined for {|ν(0)〉}, which is related to the states of a
displaced harmonic oscillator {|ν(λ )〉} through |ν(λ )〉 =

eλ

(
b̂†− b̂

)
|ν(0)〉.102

After a polaron transformation74,77,100, the new molecular
Hamiltonian Ĥ ′mol = ÛĤmolÛ−1 is given in terms of electron-
vibrational states |N,a,µ 〉 as

Ĥ ′mol =

∑
N,a,ν

(
EN,a−NeVG +(ν +

1
2
)h̄ωvib

)
|N,a,ν 〉〈N,a,ν | ,

(26)

where the unitary operator Û is

Û = e∑N,a λN,a|N,a〉〈N,a |
(
b̂†− b̂

)
. (27)

The coupling of the molecule to the thermal bath in Eq. (17)
is transformed similarly as

Ĥ ′m−th = Ŝ′m−thB̂′m−th (28)

with B̂′m−th = B̂m−th and

Ŝ′m−th = ∑
N,a

q̂|N,a〉〈N,a| . (29)

Furthermore, Û allows us to transform the coupling Hamil-
tonians Ĥfield, Ĥm−l and ĤSOC into Ĥ ′field, Ĥ ′m−l and Ĥ ′SOC in
the polaron frame by using the following relationship,

Û |N1,a1 〉〈N2,a2 |Û−1

=e
(
b̂†− b̂

)
λN1 ,a1 |N1,a1 〉〈N2,a2 |e−

(
b̂†− b̂

)
λN2 ,a2 . (30)

The transformed molecule-lead coupling Hamiltonian then
reads

Ĥ ′m−l = ∑
α

(
B̂′+α Ŝ′−α + Ŝ′+α B̂′−α

)
(31)

with B′±α = B±α and

Ŝ′+α = (Ŝ′−α )†

= ∑
Nab

∑
νbνb

(
Mνaνb

(
λN−1,b−λN,a

)
×T α

NaN−1b|N,a,νa〉〈N−1,b,νb|+h.c.
)
, (32)
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where Mνaνb

(
λN−1,b−λN,a

)
absorbs the exponential factor

introduced in Eq. (30) and refers to the vibrational overlap
〈νa(λN,a) |νb

(
λN−1,b

)
〉. Mνaνb(λ ) for real λ is then given

by85,102

Mνaνb(λ ) =〈νa(0) |eλ

(
â†− â

)
|νb(0)〉

=[sgn(νb−νa)]
νa−νbλ

|νa−νb|e−λ 2/2
(

νmin!
νmax!

)1/2

×L|νa−νb|
νmin

(
λ

2), (33)

where sgn(x) returns the sign of x, νmin = min{νa,νb},
νmax = max{νa,νb} and Ln

m(x) denotes the generalized La-
guerre polynomial.

Similarly, one can derive the radiative coupling Hamilto-
nian Ĥfield and the SOC Hamiltonian ĤSOC in the polaron
frame as

Ĥ ′field =−E(t) ·d01

× ∑
ν0,ν1

(
Mν0ν1

(
λ0,S1 −λ0,S0

)
|0,S0,ν0 〉〈0,S1,ν1 |

+Mν1ν0

(
λ0,S0 −λ0,S1

)
|0,S1,ν1 〉〈0,S0,ν0 |

)
, (34)

and

Ĥ ′SOC

= ∑
m,ν ,ν ′

(
V SOC

0S0,0T m
1

Mνν ′

(
λ0,T m

1
−λ0,S0

)
|0,S0,ν 〉〈0,T m

1 ,ν ′ |

+V SOC
0T m

1 ,0S1
Mνν ′

(
λ0,S1 −λ0,T m

1

)
|0,T m

1 ,ν 〉〈0,S1ν
′ |
)
. (35)

III. MASTER EQUATION APPROACH

In this section, we will show that the electron transport
characteristics of an irradiated molecular junction can be de-
scribed using Pauli master equations (rate equations). The
Pauli master equations built upon electron-vibrational states
have been extensively discussed77,85,103. In most studies, the
rate equations of incoherent sequential tunneling are phe-
nomenologically constructed based on the Fermi golden rule
in the framework of a T-matrix approach.77,85,104–110 In our
work, we derive the rate equations for irradiated incoherent se-
quential tunneling explicitly from the reduced density matrix
approach99,101,111,112 via the Redfield theory113, incorporat-
ing the optical transitions, vibrational relaxations and singlet-
triplet transitions.

First of all, the reduced density operator of the molec-
ular system is defined as ρ̂(t) = Trlead+th{ρ̂tot}, where ρ̂tot
is the density operator of the total system and the trace
Trlead+th{· · ·} averages over the states of the lead electrons
and the thermal bath modes. The population of a state
|N,a,ν 〉 is then defined as PN,a,ν(t) = 〈N,a,ν |ρ̂(t)|N,a,ν 〉

We partition the total Hamiltonian Ĥtot as in Eq. (1) and
obtain the Liouville equation of the density operator ρ̂tot in

the interaction picture as,

d
dt

ρ̂
I
tot(t) =−

i
h̄

[
V̂ I(t), ρ̂ I

tot(t)
]

(36)

where an operator in the interaction picture ÂI(t) relates
to its Schrodinger picture counterpart Â(t) through ÂI(t) =
e

i
h̄ Ĥ0t Â(t)e−

i
h̄ Ĥ0t .

Due to different coupling terms, the evolution of the density
operator can be separated into

d
dt

ρ̂
I
tot(t) =−

i
h̄

[
ĤI

m−l(t), ρ̂
I
tot(t)

]
− i

h̄

[
ĤI

m−th(t), ρ̂
I
tot(t)

]
− i

h̄

[
ĤI

field(t), ρ̂
I
tot(t)

]
− i

h̄

[
ĤI

SOC(t), ρ̂
I
tot(t)

]
,

(37)

where the four terms on the right hand side are respec-

tively denoted as dρ̂ I
tot(t)
dt |m−l,

dρ̂ I
tot(t)
dt |m−th, dρ̂ I

tot(t)
dt |field and

dρ̂ I
tot(t)
dt |SOC in the following.
Based on Eq. (37), we will derive the rate equations

of {PNaν} separately according to ĤI
m−l, ĤI

m−th, ĤI
field and

ĤI
SOC. Note that the rate equations due to ĤSOC are not de-

rived explicitly. Instead, we treat the rates due to ĤSOC phe-
nomenologically, because the relevant processes are insignifi-
cant compared to the other electronic transitions.

The molecule-lead rate equations dPNaν

dt |m−l and the vi-
brational relaxation rate equation dPNaν

dt |m−th will be derived
through a 2nd order expansion of the Liouville equation using
Redfield theory, whereas the derivation of the radiative rate
equations dPNaν

dt |field does not require a perturbation expansion
since the radiative coupling is semiclassically treated in Ĥfield.

The rest of this section is organized as follows. In section
III A, we briefly review Redfield theory. In section III B, III C
and III D, we respectively discuss the derivations of charge
transfer transitions, vibrational relaxations and optical transi-
tions. Section III E finalizes the derivation of the Pauli master
equation via phenomenologically introducing the other rele-
vant processes. Finally, section III F presents the current for-
mula provided by the master equation approach.

A. Redfield Theory

We start from a component of the quantum master equation
in Eq. (37), i.e.,

d
dt

ρ̂
I
tot(t)

∣∣∣∣
coup

=− i
h̄

[
ĤI

coup(t), ρ̂
I
tot(t)

]
, (38)

where "coup" refers to the contributions from Ĥm−l or Ĥm−th
by "m-l" or "m-th".

We then substitute the solution of Eq. (36), i.e.,
ρ̂ I

tot(t) = ρ̂ I
tot(t0)− i

h̄
∫ t

t0 du[V̂ I(u) , ρ̂ I
tot(u)], into Eq. (38), ap-

ply Trlead+th{· · ·} on both sides, and employ the Born-Markov
approximation. Finally we arrive at the following Redfield
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master equation,

d
dt

ρ̂
I(t)
∣∣∣∣
coup

=

− 1
h̄2

∫
∞

0
duTrlead+th{

[
ĤI

coup(t),
[
ĤI

coup(t−u), ρ̂ I(t)ρ̂leadρ̂th
]]
} .

(39)

When the molecule is weakly coupled to the electrodes and
the thermal bath, the electrons in the electrodes and the ther-
mal bath modes are supposed to be relaxed significantly faster
than all the other relevant processes, and the two baths are
therefore assumed to be in their thermal equilibrium charac-
terized by ρ̂lead and ρ̂th at all times. As a result, the Born-
Markov approximation required by Redfield theory is valid in
our problem. The Born approximation ρ̂tot(t) ≈ ρ̂(t)ρ̂leadρ̂th
is first invoked to decouple the dynamics of the molecular
system from that of the lead electrons and the thermal bath.
The non-local memory effect is then disregarded by replacing
ρ̂ I

tot(u) with ρ̂ I
tot(t), which is the first Markov approximation.

The second Markov approximation follows by increasing the
upper limit of the integral to infinity after a variable transfor-
mation from u to u = t−u.

In Eq. (39), it should be noted that the first order term
Trcoup{

[
Ĥm−l(t) , ρ̂ I

tot(t0)
]
} has been eliminated by invoking

an uncoupled initial state ρ̂ I
tot(t0) = ρ̂ I(t0)ρ̂leadρ̂th. Besides,

the 2nd order terms including the mix of Ĥcoup and other cou-
pling Hamiltonians are excluded because they do not survive
after the trace operation Trlead+th{· · ·}.

B. Charge Transfer Transition

In order to derive the charge transfer transitions, we first
write down the transformed molecule-lead coupling Hamilto-
nian in the interaction picture as

Ĥ ′Im−l = ∑
α

(
B̂+I

α Ŝ′−I
α + Ŝ′+I

α B̂−I
α

)
(40)

with

Ŝ′+I
α = (Ŝ′−I

α )† = e
i
h̄ Ĥmolt Ŝ′+α e−

i
h̄ Ĥmolt

= ∑
Nab

∑
νbνb

(
Mνaνb

(
λN−1,b−λN,a

)
T α

NaN−1b

×|N,a,νa〉〈N−1,b,νb|e
i
h̄

(
EN,a,νa −EN−1,b,νb

)
t +h.c.

)
,

(41)

and

B+I
α =

(
B−I

α

)†
= e

i
h̄ Ĥleadt B̂+

α e−
i
h̄ Ĥleadt

=∑
kσ

M
αkσ

â
αkσ

e−
i
h̄ ε

αkσ
t
. (42)

A substitution of the Ĥ ′Im−l in Eq. (40) into Eq. (39) results

in the following master equation,

d
dt

ρ̂
I(t)
∣∣∣∣
m−l

=− 1
h̄2 ∑

α

∫
∞

0
du
(

Cα(−u)Ŝ+I
α (t)ρ̂ I(t)Ŝ−I

α (t−u)

+C̄α(−u)Ŝ−I
α (t)ρ̂ I(t)Ŝ+I

α (t−u)

−Cα(u)Ŝ−I
α (t)Ŝ+I

α (t−u)ρ̂ I(t)

−C̄α(u)Ŝ+I
α (t)Ŝ−I

α (t−u)ρ̂ I(t)+h.c.
)
, (43)

where two types of correlation functions for electrode elec-
trons are defined as

Cα(t− τ) = Trlead{B̂+I
α (t)B̂−I

α (τ)}

=
∫ +∞

−∞

dωJα(ω) fβ (ω,µα)e
i
h̄ ω(t− τ) (44)

and

C̄α(t− τ) = Trlead{B̂−I
α (t)B̂+I

α (τ)}

=
∫ +∞

−∞

dωJα(ω)
(
1− fβ (ω,µα)

)
e−

i
h̄ ω(t− τ) .

(45)

The spectra density Jα(ω) of the electrons in electrode α is
specified by

Jα(ω) = ∑
kσ

∣∣M
αkσ

∣∣2δ
(
ω− ε

αkσ
/h̄
)

(46)

and the Fermi distribution function fβ (ε,µ) is given by

fβ (ε,µ) =
1

1+ eβ(ε−µ)
, (47)

where µ is the electron chemical potential.
In order to derive the rate equations, we evaluate the diago-

nal matrix element with respect to electron-vibrational states
{|N,a,ν 〉} on both sides of Eq. (43) and then arrive at

d
dt
〈N,a,ν |ρ̂ I(t)|N,a,ν 〉

∣∣∣∣
m−l

=− 2
h̄2 ℜ∑

α

∫
∞

0
du〈N,a,ν |Cα(−u)Ŝ′+I

α (t)ρ̂ I(t)Ŝ′−I
α (t−u)

+C̄α(−u)Ŝ′−I
α (t)ρ̂ I(t)Ŝ′+I

α (t−u)

−Cα(u)Ŝ′−I
α (t)Ŝ′+I

α (t−u)ρ̂ I(t)

−C̄α(u)Ŝ′+I
α (t)Ŝ′−I

α (t−u)ρ̂ I(t)|N,a,ν 〉, (48)

where ℜ refers to the real part.
We next take the evaluation of the first term in Eq. (48) as
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an example, i.e.,∫
∞

0
duCα(−u)〈N,a,ν |Ŝ′+I

α (t)ρ̂ I(t)Ŝ′−I
α (t−u)|N,a,ν 〉

=
∫

∞

0
duCα(−u) ∑

a1,ν1
∑

a2,ν2

T α∗
N+1a1,NaT α

N+1a2,Na

×Mνν1(λN,a−λN+1,a1)Mν2ν(λN+1,a2 −λN,a)

× e
i
h̄ (EN+1,a2 −EN+1,a1 +(ν2−ν1)h̄ω)t

× e−
i
h̄ (EN+1,a2,ν2 −EN,a,ν)τ

×〈N +1,a1,ν1 |ρ̂ I(t)|N +1,a2,ν2 〉, (49)

which indicates that the evolution of 〈N,a,ν |ρ̂ I(t)|N,a,ν 〉
(the population PNaν ) depends on the off-diagonal density ma-
trix elements (coherence)114.

We assume that the dynamics of the molecular system is
resolved over a time step ∆t during which the reduced den-
sity matrix ρ̂ I(t) does not vary significantly, then the terms
that satisfy ∆t � |EN+1,a2 −EN+1,a1 +(ν2−ν1)h̄ω|−1 does
not contribute to the propagation of ρ̂ I(t) due to fast oscil-
lations. As a result, only secular terms satisfying EN+1,a2 −
EN+1,a1 +(ν2− ν)h̄ω = 0 are kept. The consequence of the
secular approximation differs for molecular systems with and
without degenerate states. When there is no degeneracy in the
system, the corresponding exponential factor with local time
dependence can be replaced by Kronecker functions, e.g.,

e
i
h̄ (EN+1,a2 −EN+1,a1 +(ν2−ν1)h̄ω)t −→ δa1,a2δν1,ν2 (50)

which directly decouples the evolution of the population terms
from the coherence terms of ρ̂ I(t). However, when the
molecular system contains degenerate states, such as the sys-
tem considered in this paper, terms satisfying ν1 = ν2 and
EN+1,a2 = EN+1,a1 are still left after the secular approxima-
tion has been applied, wherein the coherence between degen-
erate electronic states is involved in the evolution of the pop-
ulations. However, considering that the electronic dephasing
is the fastest process in the system, the coherence terms can
be neglected when studying steady-state transport character-
istics. Consequently, we can drop all the terms containing the
off-diagonal density matrix elements in Eq. (49) regardless of
the presence of degeneracy. As a result, the evaluation of the
matrix elements gives us∫

∞

0
duCα(−u)〈N,a,ν |Ŝ′+I

α (t)ρ̂ I(t)Ŝ′−I
α (t−u)|N,a,ν 〉

= ∑
a1,ν1

∣∣T α
N+1a1,Na

∣∣2|Mνν1(λN+1,a1 −λN,a)|2

× e−
i
h̄ (EN+1,a1,ν1 −EN,a,ν)τ PN+1,a1,ν1 , (51)

where the diagonal matrix element has been replaced with the
population term due to the relationship

PN,a,ν = 〈N,a,ν |ρ̂(t)|N,a,ν 〉= 〈N,a,ν |ρ̂ I(t)|N,a,ν 〉 .
(52)

We can use the same procedure as above to evaluate the
other terms in Eq. (49). Finally, we obtain the following

molecule-lead rate equations

dPN,a,ν

dt

∣∣∣∣
m−l

=∑
α

∑
N′,a′

(
δN′,N+1 +δN′,N−1

)
×∑

ν ′

(
kα

N,a,ν←N′,a′,ν ′PN′,a′,ν ′ − kα

N′,a′,ν ′←N,a,ν PN,a,ν

)
. (53)

The rates of electron transport and hole transport processes
are thus given by

kα

N+1,b,ν ′←N,a,ν =γ
α

N+1bν ′,Naν
fβ

(
εN+1bν ′,Naν ,µα

)
(54)

kα

N−1,b,ν ′←N,a,ν =γ
α

N−1bν ′,Naν

(
1− fβ

(
εNaν ,N−1bν ′ ,µα

))
(55)

in which the prefactors read

γ
α

N±1bν ′,Naν
=

2π

h̄2 J̄α

∣∣T α
N±1b,N,a

∣∣2∣∣Mν ′ν
(
λN±1,b−λN,a

)∣∣2,
(56)

where J̄α denotes a constant spectral density of electrode α in
the wide band limit. After evaluating T α

N±1b,N,a as detailed in
Appendix A, we can rewrite the prefactor γα

N−1bν ′,Naν
as

γ
α

N±1bν ′,Naν
=Γα νN±1b,Na

∣∣Mν ′ν
(
λN±1,b−λN,a

)∣∣2, (57)

where Γα = 2π

h̄2 |ζα |J̄α is the characteristic rate of charge trans-
fer transition associated with electrode α , and the dimension-
less coupling νN±1b,Na of the transition |N±1,b〉 ↔ |N,a〉
has been given in Table S1 in Ref. [68] for all relevant tran-
sitions considered in this paper. The meaning of ζα and the
evaluation of νN±1b,Na are also discussed in the Appendix A.

C. Vibrational Relaxation

The derivation of the vibrational relaxation rate equations
follows the same procedure as the above section. In the inter-
action picture, the transformed coupling Hamiltonian Ĥ ′m−th
reads

Ĥ ′Im−th(t) = Ŝ′Im−th(t)B̂
I
m−th(t) (58)

where

Ŝ′Im−th(t) = ∑
A∈F

e
i
h̄ Ĥmolt q̂|A〉〈A|e−

i
h̄ Ĥmolt

= ∑
A∈F

√
h̄

2mvibωvib

(
b̂†eiωvibt + b̂e−iωvibt)|A〉〈A| ,

(59)

and

B̂I
m−th(t) =∑

α

cα e
i
h̄ Ĥtht q̂α e−

i
h̄ Ĥtht

=∑
α

cα

√
h̄

2mα ωα

(
b̂†

α eiωα t + b̂α e−iωα t) . (60)
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For simplicity, we abbreviate |N,a〉 as |A〉 here. We then
plug Eq. (58) into Eq. (39) and obtain the following master
equation,

d
dt

ρ̂
I(t)
∣∣∣∣
m−th

=− 1
h̄2

∫
∞

0
du
(

Cth(u)Ŝ′Im−th(t)Ŝ
′I
m−th(t−u)ρ̂ I(t)

+Cth(−u)ρ̂ I(t)Ŝ′Im−th(t−u)Ŝ′Im−th(t)

−Cth(−u)Ŝ′Im−th(t)ρ̂
I(t)Ŝ′Im−th(t−u)

−Cth(u)Ŝ′Im−th(t−u)ρ̂ I(t)Ŝ′Im−th(t), (61)

where the thermal bath correlation function is defined as

Cth(τ) =Trlead+th{B̂I
m−th(t)B̂

I
m−th(t− τ)}

=
∫

∞

0
dω

h̄
π

Jth(ω)
(
n(ω)eiωτ +(n(ω)+1)e−iωτ

)
.

(62)

The spectral density Jth(ω) of the thermal bath is defined as

Jth(ω) = π ∑
α

c2
α

2mα ωα

δ (ω−ωα) (63)

and the Bose-Einstein distribution function nβ (ω) is given by

nβ (ω) =
1

eβ h̄ω −1
. (64)

A substitution of S′Im−th(t) in Eq. (59) into Eq. (61) leads us
to

d
dt

ρ̂
I(t)
∣∣∣∣
m−th

=− 1
2mvibωvib

Jth(ωvib) ∑
A,A′
|A〉〈A′|

[
(n(ωvib)+1)

×
(

b̂†
Ab̂Aρ̂

I
AA′(t)+ ρ̂

I
AA′(t)b̂

†
A′ b̂A′ −2b̂Aρ̂

I
AA′(t)b̂

†
A′

)
+n(ωvib)

(
b̂Ab̂†

Aρ̂
I
AA′(t)+ ρ̂

I
AA′(t)b̂A′ b̂

†
A′

−2b̂†
Aρ̂

I
AA′(t)b̂A′

)]
, (65)

where rotating wave approximation has been applied, and
ρ̂AA′ = 〈A|ρ̂|A′〉 refers to an electronic block of the reduced
density matrix. Eq. (65) suggests that Ĥm−th not only leads
to the vibrational relaxations within the same electronic state
manifold but also results in the dephasing of coherence be-
tween states associated with different electronic state mani-
fold.

The vibrational relaxation rate equations dPN,a,ν
dt |m−th is de-

rived by taking the diagonal matrix element of Eq. (65), which
gives

dPN,a,ν

dt

∣∣∣∣
m−th

= ∑
ν ′

(
kvib

N,a,ν←N,a,ν ′PN,a,ν ′ − kvib
N,a,ν ′←N,a,ν PN,a,ν

)
,

(66)

where the rates of vibrational relaxation is

kvib
N,a,ν←N,a,ν ′ =γp

(
δν+1,ν ′(ν +1)n(ωvib)

+δν−1,ν ′ν(n(ωvib)+1)
)
. (67)

Here, γp =
Jth(ωvib)
mvibωvib

is the characteristics rate of vibrational re-
laxation. Note that the corresponding characteristic time scale
τp = γ−1

p refers to the life time of the first excited vibrational
state.

D. Optical Transition

In the interaction picture, the transformed radiative cou-
pling Hamiltonian reads

Ĥ ′Ifield =−E(t) ·d01

× ∑
ν0,ν1

(
Mν0ν1

(
λ0,S1 −λ0,S0

)
|0,S0,ν0 〉〈0,S1,ν1 |

× e
i
h̄

(
E0,S0,ν0 −E0,S1,ν1

)
+h.c.

)
. (68)

Since the light-matter interaction is considered semi-
classically, we derive the radiative rate equations without em-
ploying a 2nd order expansion.

We start from d
dt ρ̂ I

tot(t)|field = − i
h̄ [Ĥ

I
field, ρ̂

I
tot(t)], apply the

Born approximation ρ̂tot = ρ̂(t)ρ̂leadρ̂th and the trace operation
Trlead+th{· · ·}. As a result, we have the following equation of
motion of the reduced density operator ρ̂ I(t),

d
dt

ρ̂
I(t)
∣∣∣∣
field

=− i
h̄

(
ĤI

fieldρ̂
I(t)− ρ̂

I(t)ĤI
field
)
. (69)

By substituting Eq. (68) into Eq. (69) and taking the diagonal
matrix element with respect to |0,S0,ν0 〉, one can derive the
rate equation of P0,S0,ν0 ,

d
dt

P0,S0,ν0

∣∣∣∣
field

=
i
h̄

E(t) ·d10

×∑
ν1

(
Mν0ν1

(
λ0,S0 −λ0,S1

)
〈0,S1,ν1 |ρ̂ I(t)|0,S0,ν0 〉

× e
i
h̄

(
E0,S0,ν0 −E0,S1,ν1

)
t − c.c.

)
, (70)

where c.c. stands for complex conjugate. In order to solve
the coherence term 〈0,S1,ν |ρ̂ I(t)|0,S0,ν0 〉, we turn to the
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following equation of motion in the Schrödinger picture,

d
dt
〈0,S0,ν0 |ρ̂(t)|0,S1,ν1 〉

=− i
h̄

(
E0,S0,ν0 −E0,S1,ν1 − ih̄κ0S0ν0,0S1ν1

)
×〈0,S0,ν0 |ρ̂(t)|0,S1,ν1 〉+

i
h̄

E(t) ·d10

×
(

∑
ν ′

Mν0ν ′
(
λ0,S0 −λ0,S1

)
〈0,S1,ν

′ |ρ̂(t)|0,S1,ν1 〉

−∑
ν

Mνν1

(
λ0,S0 −λ0,S1

)
〈0,S0,ν0 |ρ̂(t)|0,S0,ν 〉

)
, (71)

where κ0S0ν0,0S1ν1 describes the pure dephasing of the elec-
tronic coherence which originates from the other coupling
Hamiltonians, i.e., Ĥm−l, Ĥm−th. An explicit evaluation in
Appendix B shows that κ0S0ν0,0S1ν1 is a sum over the rates
of all the processes that start from |0,S0,ν0 〉 and |0,S1,ν1 〉
excluding optical transitions, e.g., charge transfer transitions
and vibrational relaxations.

When only the steady-state dynamics is concerned,
〈0,S1,ν

′ |ρ̂(t)|0,S1,ν1 〉 and 〈0,S0,ν0 |ρ̂(t)|0,S0,ν 〉 in
Eq. (71) are time-independent. In this case, according to
the time-periodicity of E(t), one can take a trial solution of
〈0,S0,ν0 |ρ̂(t)|0,S1,ν1 〉,

〈0,S0,ν0 |ρ̂(t)|0,S1,ν1 〉= eiωt
ρ0S0ν0,0S1ν1(ω). (72)

ρ0S0ν0,0S1ν1(ω) is then solved as

ρ0S0ν0,0S1ν1(ω)

=
1
h̄

E0 ·d10
1

ω−
(
E0,S1,ν1 −E0,S0,ν0

)
/h̄− iκ0S0ν ,0S1ν1

×
(

∑
ν ′

Mν0ν ′
(
λ0,S0 −λ0,S1

)
〈0,S1,ν

′ |ρ̂(t)|0,S1,ν1 〉

−∑
ν

Mνν1

(
λ0,S0 −λ0,S1

)
〈0,S0,ν0 |ρ̂(t)|0,S0,ν 〉

)
, (73)

where we have dropped the fast oscillating terms containing
e±2iω (rotating wave approximation). After substituting the
solution Eq. (72) and (73) into Eq. (70), we obtain the rate
equation of P0,S0,ν0 in the following,

d
dt

P0,S0,ν0

∣∣∣∣
field

=
i

h̄2 |E0 ·d10|2
[
∑
ν1

Mν1ν0

(
λ0,S1 −λ0,S0

)
× 1

ω−
(
E0,S1,ν1 −E0,S0,ν0

)
/h̄− iκ0S0ν ,0S1ν1

×∑
ν

(
Mν0ν

(
λ0,S0 −λ0,S1

)
〈0,S1,ν |ρ̂(t)|0,S1,ν1 〉

−Mνν1

(
λ0,S0 −λ0,S1

)
〈0,S0,ν0 |ρ̂(t)|0,S0,ν 〉

)
+ c.c.

]
.

(74)
The coherence terms 〈0,Sa,ν |ρ̂(t)|0,Sa,ν

′ 〉 in Eq. (74) can
be dropped by transforming Eq. (74) back to the interaction
picture and applying the secular approximation. We finally
obtain the radiative rate equation of |0,S0,ν0 〉, i.e.,

dP0,S0,ν0

dt

∣∣∣∣
field

=∑
ν1

(
kfield

0,S0,ν0←0,S1,ν1
P0,S1,ν1 − kfield

0,S1,ν1←0,S0,ν0
P0,S0,ν0

)
, (75)

with the rates of stimulated optical transitions kfield
0,S0,ν1↔0,S1,ν1

given by

kfield
0,S0,ν1↔0,S1,ν1

=
2
h̄2 |E0 ·d01|2

∣∣Mν0ν1

(
λ0,S1 −λ0,S0

)∣∣2 ∣∣ℜκ0S0ν0,S1ν1

∣∣[
ω−

(
E0,S1,ν1 −E0,S0,ν0

)
/h̄+ℑκ0S0ν0,S1ν1

]2
+
∣∣ℜκ0S0ν0,S1ν1

∣∣2 , (76)

where ℑ refers to the imaginary part.
The rate equation of the other singlet state |0,S1,ν1 〉 could be obtained similarly as

dP0,S1,ν1

dt

∣∣∣∣
field

= ∑
ν0

(
kfield

0,S1,ν1←0,S0,ν0
P0,S0,ν0 − kfield

0,S0,ν0←0,S1,ν1
P0,S1,ν1

)
. (77)

E. Pauli Master Equation

The final form of the Pauli master equations is achieved
by phenomenologically introducing the rates of singlet-triplet

transitions and the rate of spontaneous emission. The
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singlet-triplet transitions include the processes of intersys-
tem crossing |0,S1,ν 〉 → |0,T m

1 ,ν ′ 〉 and phosphorescence
|0,T m

1 ,ν 〉 → |0,S0,ν
′ 〉. We collect all the rates discussed

above and arrive at the following form of Pauli master equa-
tions,

dPN,a,ν

dt
= ∑

N′,a′,ν ′

(
δN′,N+1 +δN′,N−1

)
∑
α

(
kα

N,a,ν←N′,a′,ν ′PN′,a′,ν ′ − kα

N′,a′,ν ′←N,a,ν PN,a,ν

)
+∑

ν ′

(
kth

N,a,ν←N,a,ν ′PN,a,ν ′ − kth
N,a,ν ′←N,a,ν PN,a,ν

)
+δN,0δa,S0 ∑

ν ′

(
kfield

N,a,ν←0,S1,ν ′
P0,S1,ν ′ − kfield

0,S1,ν ′←0,S0,ν
PN,a,ν

)
+δN,0δa,S1 ∑

ν ′

(
kfield

N,a,ν←0,S0,ν ′
P0,S0,ν ′ − kfield

0,S0,ν ′←N,a,ν PN,a,ν

)
+ ∑

m=0,±1
∑
ν ′

(
δN,0δa,T m

1

(
kSOC

N,a,ν←0,S1,ν ′
P0,S1,ν ′ − kSOC

0,S0,ν ′←N,a,ν PN,a,ν

)
−δN,0δa,S1kSOC

0,T m
1 ,ν ′←N,a,ν PN,a,ν

+δN,0δa,S0kSOC
N,a,ν←0,T m

1 ,ν ′P0,T m
1 ,ν ′

)
+δN,0δa,S0 ∑

ν ′
kspon

N,a,ν←0,S1,ν ′
P0,S1,ν ′ −δN,0δa,S1 ∑

ν ′
kspon

0,S0,ν ′←N,a,ν PN,a,ν . (78)

where kSOC
N,a,ν←N′,a′,ν ′ refers to the rate due to SOC and

kspon
0,S0,ν←0,S1,ν ′

refers to the rate of spontaneous emission.

F. Current Formula

The electric current through the molecular junction is de-
fined by the flow of electron through electrode α , i.e.,

Iα(t) =−|e|
d
dt
〈N̂α〉=−|e|

i
h̄

Tr{
[
N̂lead,α , Ĥtot

]
ρ̂tot(t)},

(79)

where the trace Tr{· · ·} includes the average over the electrons
in the electrodes, the thermal bath modes and the electron-
vibrational states of the molecular system. Following the
same procedure for deriving the molecule-lead rate equations,
we obtain the following current formula,

Iα(t) = |e| ∑
N,a,b

∑
v,v′

(
kα

N+1,b,v′←N,a,v− kα

N−1,b,v′←N,a,v

)
PN,a,v .

(80)

Since we study the steady-state current, the population PN,a,v
takes the stationary solution of the Pauli master equation.

The current formula Eq. (80) suggests that the current
through the molecular junction is determined by both the rates
of the charge transfer transitions and the steady-state popu-
lation of the involved states, wherein the population is deter-
mined by the rates of relevant electronic transitions. It is noted
that the source-drain bias VSD and the gate voltage VG control
the rates of charge transfer transitions in Eqs. (54) and (55) by
virtue of the determination of the Fermi distribution function.
In the low temperature limit, the Fermi distribution function
becomes a step function. In this case, the rates of transitions
between a neutral state |0,a,νa 〉 and a charged state |N,b,νb 〉
(N = ±1) can be clearly expressed as a function of VSD and
VG,

kα
N,b,νb←0,a,νa

=γ
α
Nbνb,0aνa

θ

(
E0,a,νa − Ẽα

N,b,νb
(VG,VSD)

)
(81)

and

kα
0,a,νa←N,b,νb

=γ
α
0aνa,Nbνb

θ

(
Ẽα

N,b,νb

(
VG,VVSD

)
−E0,a,νa

)
.

(82)

The step function θ(x) takes a value of 1 for x > 0 and a value
of 0 otherwise. The renormalized state energy associated with
electrode α is defined by

Ẽα
N,a,ν(VG,VSD) = EN,a,ν −N(µ0 +ζα eVSD/2)−NeVG,

(83)

where ζS = 1 and ζD = −1. Eq. (83) combines the energy
level of |N,a,ν 〉 with the Fermi energy on electrode α , i.e.,
µ0 + ζα eVSD/2, and the energy shift caused by gate voltage,
i.e., −NeVG. Eqs. (81) and (82) clearly reveal that the charge
transfer transitions |0,a,νa 〉 ↔ |N,b,νb 〉 (N = ±1) are ex-
plicitly determined by the energy level alignments between
E0,a,ν and Ẽα

N,a,ν(VG,VSD), which provides us with a handy
tool for identifying the dominant transport channels.

IV. PARAMETERS

We compute the electron transport characteristics in the
succeeding section using the system parameters compiled in
Table I. As shown in Figure 2, we consider a model sys-
tem with a specific configuration of PESs. In this config-
uration, the electronic transitions between neutral states are
not coupled to the reaction coordinate, whereas the PESs of
cation states and anion states are displaced oppositely with re-
spect to the PESs of neutral states by the same amount. The
displacement between the PESs is characterized by the e-p
coupling parameter λ . The energies of the involved many-
electron states |N,a〉 ∈ F , which corresponds to the local
minimum of the associated PESs as shown in Figure 2, are
determined by the ab initio calculations of zinc phthalocya-
nine at the level of TDDFT/B3LYP/6-311g(d,p) using Gaus-
sian 16.115 The charged state energies are corrected for the im-
age charge effect, see Supporting Information of Ref. [68]
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FIG. 2. The potential energy surfaces of relevant electronic states
is plotted according to VN,a = EN,a +

1
4
(
Q−QN,a

)2, where QN,a =
2λN,a is the dimensionless equilibrium coordinate of |N,a〉.

for details. A value of µ0 =−5.3 eV is adopted for the chem-
ical potential of Au(111) facet throughout all the computed
transport characteristics. A crossover from weak to strong
e-p couplings will be explored using λ = 0.25,0.5,1.0,2.0.
In order to comply with the weak molecule-lead coupling
limit, we adopt a value of 0.0001 eV for h̄Γ with symmet-
ric molecule-lead couplings ΓS = ΓD = Γ. The energy of
vibrational quanta is chosen as 0.2 eV and 0.02 eV. More-
over, we investigate electron transport characteristics in the
low temperature regime (β = 0.05h̄ωvib) in order to resolve
the Frank-Condon allowed charge transfer transitions in the
stability diagram and the current-voltage characteristics.

Since there is no displacement between electronic mani-
fold |0,S0 〉 and |0,S1 〉, a value of 1012 s−1 is chosen for
kfield

0,S0,ν↔0,S1,ν
such that kfieldΓ−1 & 1, where the rate of op-

tical transition is hereinafter referred to as kfield. Assum-
ing the optical excitation is in resonance with the electronic
transition |0,S0,ν 〉 ↔ |0,S1,ν 〉, the respective electric field
strength takes the value of 100 kV/cm if the transition dipole
moment is 5 Debye. A spontaneous emission rate of 108

s−1 estimated through 4αnω3
10|d01|2/(3c2) is also introduced

phenomenologically, where α is the fine structure constant,
ω10 = (E0,S1 −E0,S0)/h̄, n is the refractive index and c is the
speed of light in vacuum. The rates of singlet-triplet transi-
tions are then chosen for typical values, i.e., 106 s−1 for inter-
system crossing processes |0,S1 〉 → |0,T m

1 〉 and 103 s−1 for
phosphorescent processes |0,T m

1 〉 → |0,S0 〉.

V. RESULTS AND DISCUSSION

In this section, we investigate the influence of e-p coupling
and vibrational relaxation on the transport characteristics un-
der an optical field. Light-driven electron transport is explored
from weak to strong e-p coupling regimes. For simplicity,
the effect of vibrational relaxation is discussed in two lim-
its: the equilibrated phonon and the unequilibrated phonon.
We analyze the transport characteristics from the following

aspects. In section V B, we study the charge stability diagram
(the conductance spectra) of the irradiated molecular junction
in a broad range of source-drain bias voltage and gate volt-
age. Charge stability diagrams have been extensively stud-
ied in nanoscale electron transport and they can provide rich
information about electronic structures. Moreover, consider-
ing that low-bias current-voltage characteristics is accessible
in most experiments, we focus on low-bias transport charac-
teristics in section V C and V D. In section V C, we control
the gate voltage, compute the low-bias current at VSD = 0.1
V, and compare the situations of high- and low-frequency vi-
brational modes in a range of gate voltage VG that covers all
relevant energy level alignment schemes between the charged
states | −1,Dα

0 〉 and the neutral states. In section V D, focus-
ing on four representative schemes of energy level alignments,
we compute the current-voltage characteristics and derive the
analytical current formula. This offers a quantitative point of
view on the light-driven transport when the charge transfer
transitions are coupled to intramolecular vibrations.

A. Equilibrated and Unequilibrated Phonon regimes

These two extreme limits of vibrational relaxation, i.e.,
γp � Γ (equilibrated phonon regime) and γp � Γ (unequili-
brated phonon regime), offer us a clear picture to understand
the role of the vibrational relaxation on the light-driven trans-
port characteristics.

In the equilibrated phonon regime, the vibrational relax-
ation is much faster than all the other transitions about the
molecule. In other words, the vibrational state distribution of
each electronic state manifold instantaneously relax into its
thermal equilibrium upon any electronic transition. As a re-
sult, the vibrational relaxation part of the Pauli master equa-
tion Eq. (78), i.e., dPN,a,ν

dt |m−th, reduces into

dPN,a,ν

dt

∣∣∣∣
m−th

=− lim
γp→∞

γp

(
PN,a,ν −Peq

ν ∑
ν ′=0

PN,a,ν ′

)
, (84)

where Peq
ν = eνβ h̄ω/∑

∞

ν ′=0 eν ′β h̄ω describes the equilibrium
vibrational distribution. The role of Eq. (84) on the Pauli
master equation Eq. (78) is to force the vibrational state dis-
tribution to be kept at the thermal equilibrium distribution at
all times. This matter of fact enables us to derive analytial
solutions for transport characteristics in section V D.

In the unequilibrated phonon regime, on the contrary, we
assume that the vibrational relaxation is slower than any other
processes about the molecule, which simply modifies the Pauli
master equation Eq. (78) by dropping the terms belonging to
dPNaν

dt |m−th. In other words, the non-equilibrium vibrational
excitations brought by other electronic transitions are com-
pletely preserved during the time scale of the relevant pro-
cesses. The role of the non-equilibrium vibrational excitations
are then investigated in this regime.
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Parameter Value Meaning
E0,S0 0 eV Energy level of the singlet ground state |0,S0 〉
E0,S1 2.01 eV Energy level of the singlet excited state |0,S1 〉
E0,T m

1
1.00 eV Energy level of the degenerate triplet states |0,T m

1 〉
E−1,Dσ

0
6.045 eV Energy level of the cation doublet states | −1,Dσ

0 〉, image charge correction included.
E+1,Dσ

0
−2.06 eV Energy level of the anion doublet states | +1,Dσ

0 〉, image charge correction included.
h̄ωvib 0.2, 0.02 eV Energy of the intramolecular vibrational mode

λ 0,0.25,0.5,1.0,2.0 Electron-Phonon coupling
µ0 −5.3 eV Fermi energy in the electrode at zero source-drain bias voltage
h̄Γ 10−4 eV ΓS = ΓD = Γ in a symmetric molecular junction

kBT 0.05h̄ωvib Thermal energy at temperate T
k0,T1←0,S1 106 s−1 Intersystem crossing rate
k0,S0←0,T1 103 s−1 Phosphorescence rate
kspon

0,S0←0,S1
108 s−1 Spontaneous emission rate

TABLE I. Parameters adopted in the computations. Details are discussed in main text.

FIG. 3. The charge stability diagrams are computed for vibrational frequency h̄ωvib = 0.2 eV and the equilibrated phonon regime. The field-off
charge stability diagrams are presented for (a) λ = 0.25, (b) λ = 0.50 , (c) λ = 1.0 and (d) λ = 2.0. The field-on charge stability diagrams are
also presented for (e) λ = 0.25, (f) λ = 0.50 , (g) λ = 1.0 and (h) λ = 2.0.

B. Charge Stability Diagram: Effect of e-p Coupling on
Photoinduced Coulomb Diamond

We explore the influence of e-p coupling (λ ) on the charge
stability diagram, i.e., a plot of differential conductance
dI/dV versus VSD and VG, in the equilibrated phonon regime
and the unequilibrated phonon regime77. We discuss the equi-
librated phonon regime in details. For the unequilibrated

phonon regime, we only discuss the difference from the equi-
librated phonon regime.

We first investigate the equilibrated phonon regime, which
is characterized by the equilibrium vibrational distribution.
As presented in Figure 3, we compute the conductance spectra
for h̄ωvib = 0.2 eV and λ = 0.25,0.5,1.0,2.0 under a field-off
condition kfield = 0 and a field-on condition kfield = 1012 s−1.

When the radiation is off, the conventional Coulomb block-
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FIG. 4. The charge stability diagrams are computed for vibrational frequency h̄ωvib = 0.2 eV and the unequilibrated phonon regime. The
field-off charge stability diagrams are presented for (a) λ = 0.25, (b) λ = 0.50, (c) λ = 1.0 and (d) λ = 2.0. The field-on charge stability
diagrams are also presented for (e) λ = 0.25, (f) λ = 0.50, (g) λ = 1.0 and (h) λ = 2.0.

ade diamonds A, B and C, respectively corresponding to
| −1,D±1/2

0 〉, |0,S0 〉 and |1,D±1/2
0 〉, remain intact for e-p

couplings from λ = 0.25 to λ = 1.0, as shown in Figure 3a-c.
The diamond B, corresponding to |0,S0 〉, exhibits the width
E−1,Dσ

0
+ E1,Dσ

0
− 2E0,S0 and the height-to-width ratio 2 : 1.

From Figure 3a to Figure 3c, as the e-p coupling λ increases,
conductance lines spaced by h̄ωvib along VG axis and 2h̄ωvib
along VSD axis become pronounced. The equally spaced con-
ductance lines arise from the step-wise activation of charge
transport channels. In Figure 3d, when λ becomes 2.0, we ob-
serve a clear Frack-Condon blockade pattern, which has been
reported both theoretically77 and experimentally17. The two
intersections in between the three Coulomb diamonds break
because the low-bias conduction is suppressed by the Frank-
Condon factor (Mν1ν2(λ ) in Eqs. (54) and (55)), i.e., the
transitions between low-lying vibrational states decrease ex-
ponentially in the regime of strong e-p coupling (λ > 1).

When the radiation is on, the anomalous Coulomb blockade
pattern is clearly identified in the weak e-p coupling regime
(λ < 1.0) from Figure 3e to Figure 3g. In the zero e-p
coupling limit, the widths of the diamonds D, E and F are
E0,T m

1
−E0,S0 , E−1,Dσ

0
+E1,Dσ

0
−2E0,T m

1
and E0,T m

1
−E0,S0 , re-

spectively. As the e-p coupling increases, the diamonds D and
F (corresponding to partial charged states) shrink by steps of
∆VG = h̄ωvib/|e| ,while the diamond E (corresponding to the

triply degenerate states |0,T m
1 〉) remains invariant. The con-

ductance lines in the diamonds D and F result from the addi-
tional transport channels activated by e-p coupling, while the
robustness of the diamond E with respect to the e-p coupling
is attributed to the origin of the diamond E, i.e., the presence
of the triplet states.

In the limit of unequilibrated phonon regime, the field-off
and field-on charge stability diagrams (conductance spectra)
are computed for λ = 0.25,0.5,1.0,2.0, see Figure 4. A com-
parison between Figure 3 and Figure 4 shows that the non-
equilibrium vibrational exicitations result in more reduction in
the sizes of diamonds D and F at the same e-p coupling. At a
low bias, the equilibrated and unequilibrated phonon regimes
exhibit the same trend in response to e-p coupling and optical
excitation.

C. Current vs Gate Voltage: Role of Vibrational Frequency
and Vibrational Relaxation

In most cases, the transport characteristics of a molecular
junction is only available at a low bias voltage due to the in-
stability caused by the high-bias electric field. Therefore, in
this section, we concentrate on the field-on current at a low
bias, i.e., VSD = 0.1 V, and explore the current response via
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FIG. 5. Field-on current at VSD = 0.1 V is plotted versus VG for λ = 0, 0.5, 1.0, 2.0. The effect of the vibrational relaxation and the vibrational
frequency is investigated for (a) high-frequency intramolecular vibration (h̄ωvib = 0.2 eV) in the equilibrated phonon regime (γp � Γ), (b)
high-frequency intramolecular vibration (h̄ωvib = 0.2 eV) in the unequilibrated phonon regime (γp � Γ), (c) low-frequency intramolecular
vibration (h̄ωvib = 0.02 eV) in the equilibrated phonon regime (γp� Γ) and low-frequency intramolecular vibration (h̄ωvib = 0.02 eV) in the
unequilibrated phonon regime (γp� Γ).

changing the gate voltage VG. Similar to the previous sec-
tion, we carry out the calculation for both the equilibrated
phonon regime and the unequilibrated phonon regime. Fur-
thermore, in additional to the situation with high frequency
mode h̄ωvib = 0.2 eV, we also consider a situation in which a
low frequency vibrational mode (h̄ωvib = 0.02 eV) dominates.
The results are presented in Figure 5. In view of the symmetry
in the charge stability diagrams, we only present the current
within a range of gate voltages that covers all possible energy
level alignment schemes between Ẽα

−1,Dσ
0 ,0

(VG,0) and neutral
states. For simplicity, we hereafter denote the gate voltage
corresponding to Ẽα

−1,Dσ
0 ,0

(VG,0) = E0,S0,0 as V S0
G and the gate

voltage corresponding to Ẽα

−1,Dσ
0 ,0

(VG,0) = E0,T m
1 ,0 as V T1

G .

Generally, from Figure 5a to 5d, we identify the plateaus
of current centered at the gate voltages that correspond to the
energy level alignments Ẽα

−1,Dσ
0 ,0

(VG,0) = E0,S0,0 +nh̄ωvib (n

is non-negative integer) and Ẽα

−1,Dσ
0 ,0

(VG,0) = E0,T m
1 ,0. At

zero e-p coupling, the electronic transitions | −1,Dσ
0 ,ν 〉 ↔

|0,S0,ν
′ 〉 and | −1,Dσ

0 ,ν 〉 ↔ |0,T m
1 ,ν ′ 〉 are allowed for

ν = ν ′, so we observe the current plateaus only at V S0
G and

V T1
G . As the e-p coupling increases, the current at these two

plateaus decrease monotonically and additional photoinduced
current plateaus show up between V S0

G and V T1
G , because the

e-p coupling suppresses the diagonal vibrational transitions,
i.e., the electronic transitions with ν = ν ′, and invokes the off-
diagonal vibrational transitions, i.e., the electronic transitions
with ν 6= ν ′.

Considering a high-frequency mode, e.g., h̄ωvib = 0.2 eV,
we observe four isolated current plateaus between V S0

G and
V T1

G in Figure 5a and 5b. The current plateaus are isolated
from each other because h̄ωvib/|e| > VSD. A comparison be-
tween Figure 5a and 5b demonstrates that, at the same e-p
coupling, the non-equilibrium vibrational population in the
unequilibrated phonon regime leads to more pronounced cur-
rent plateaus within [V S0

G ,V T1
G ].

In order to find out the origin of the e-p coupling in-
duced current plateaus within [V S0

G ,V T1
G ], we consider a low-

frequency mode, i.e., h̄ωvib = 0.02 eV. In this case, the e-p
coupling induced current plateaus are observed only in the
vicinity of V S0

G and V T1
G , because h̄ωvib �

∣∣V T1
G −V S0

G
∣∣. As

a result, the role of the e-p coupling behaves like a broadening
of the current plateaus at V S0

G and V T1
G . In both extreme lim-



15

its of vibrational relaxation, the additional Franck-Condon al-
lowed transport channels is activated when Ẽα

−1,Dσ
0 ,0

is aligned
with vibrational excitations of the singlet ground state. This
broadens the current plateau at V S0

G toward higher gate volt-
ages. In contrast, the e-p coupling induced current plateaus
due to | −1,Dσ

0 ,ν 〉 ↔ |0,T m
1 ,ν ′ 〉, i.e., the broadening of the

current plateau at V T1
G , requires the nonequilibrium vibrational

population and shows up only in the unequilibrated phonon
regime.

D. Current vs Source-Drain Voltage: Energy Level
Alignment and Analytic Analysis

In our previous work68, we obtained the analytical solutions
to the current-voltage characteristics without considering e-p
coupling in the cases of several specific energy level align-
ments. These analytical solutions provide an in-depth and
quantitative understanding on the transport characteristics of
an irradiated molecular junction.

When the e-p coupling is significant, it is challenging to
derive general analytical solutions, because the Pauli mas-
ter equations are constructed within an enormous Fock space
spanned by the electron-vibrational states. In order to ana-
lyze the effect of e-p coupling, for simplicity, we focus on
the equilibrated phonon regime, which allows us to work on
a smaller Fock space that is spanned by the electronic states.
The equilibrated phonon regime enables the analytical solu-
tions for two reasons. First, this regime excludes the vibra-
tional relaxations, thus allowing us to consider only the tran-
sitions between different electronic manifolds, i.e., |N,a〉 →
|N′,a′ 〉. Second, the equilibrium vibrational state distribution
on each electronic state manifold is dominated by the vibra-
tional ground state, because h̄ωvib� kBT is valid here.

Now we reconstruct the rate equations built upon the Fock
space {|N,a〉} in the equilibrated phonon regime. Consid-
ering that h̄ωvib � kBT , one can equate the population of an
electronic state |N,a〉 to the population of its associated low-
est lying vibrational state |N,a,0〉, i.e., PN,a = ∑ν PN,a,ν =
PN,a,0. Therefore, the effective rate of an electronic transition
|N,a〉 → |N′,a′ 〉 is the sum of the rates of all outgoing pro-
cesses from |N,a,0〉, i.e.,

k(eff)
N′,a′←N,a = ∑

ν ′
kN′,a′,ν ′←N,a,0 . (85)

In this way, the effective rate of the charge transfer transitions
can be expressed as

kα(eff)
N′,a′←N,a = Λ

α

N′,a′←N,aνN′a′,NaΓ, (86)

where

Λ
α

N′,a′←N,a = ∑
ν ′
|Mν ′0|2θ

(
Ẽα

N,a,0(VG,VSD)− Ẽα

N′,a′,ν ′(VG,VSD)
)

(87)

refers the ratio of the effective rate kα(eff)
N′,a′←N,a to its zero e-

p coupling limit. Note that Λα

N′,a′←N,a could be alternatively
expressed as

Λ
α

N′,a′←N,a =
νm

∑
ν=0

∣∣Mν0
(
λN,a−λN′,a′

)∣∣2, (88)

where

|M0ν(λ )|2 = |Mν0(λ )|2 =
1
ν!

λ
2ν e−λ 2

. (89)

and

νm(VG,VSD) = b
Ẽα

N,a,0(VG,VSD)− Ẽα

N′,a′,0(VG,VSD)

h̄ωvib
c (90)

with the floor function bxc returning the largest integer less
than x. Eq. (89) indicates that Λα

N′,a′←N,a ranges from 0
to 1.0. Besides, Λα

N′,a′←N,a reaches its upper limit when
Ẽα

Na0(VG,VSD)� Ẽα

N′a′0(VG,VSD) due to the relationship

ν=+∞

∑
ν=0
|Mν0(λ )|2 = 1. (91)

In order to better understand the effect of energy level align-
ment on light-driven electron transport when coupled to vi-
brations, we analyze the analytical solutions of the current-
voltage characteristics and the corresponding numerical cal-
culations in the four representative cases specified by the
following energy alignments: (1) Ẽα

−1,Dσ
0 ,0

(VG,0) = E0,S0,0,

(2) E0,S0,0 < Ẽα

−1,Dσ
0 ,0

(VG,0) < E0,T m
1 ,0, (3) Ẽα

−1,Dσ
0 ,0

(VG,0) =

E0,T m
1 ,0 and (4) Ẽα

−1,Dσ
0 ,0

(VG,0)> E0,T m
1 ,0.

1. Ẽα

−1,Dσ
0 ,0

(VG,0) = E0,S0,0

In this situation, the relevant electronic state manifolds are
| −1,D↑ 〉, | −1,D↓ 〉, |0,S0 〉 and |0,S1 〉. When the e-p cou-
pling is zero, the energy level alignment Ẽα

−1,Dσ
0 ,0

(VG,0) =
E0,S0,0 leads to a field-off electric current with a zero onset
voltage, similar to the resonant tunneling described by the
Landauer theory. Compared to the field-off transport charac-
teristics, the field-on electron transport in this case exhibits a
suppression in the current, hereinafter referred to as photore-
sistance.

We now move on to the cases with e-p couplings. One can
construct the Pauli master equations based on the electronic
states using the effective rates given in Eq. (86). The rate
equations in a matrix form is

dP
dt

= W ·P, (92)

where the occupation probabilities in the vector form are

P =
(

P−1,D↑0
,P−1,D↓0

,P0,S0 ,P0,S1

)T
. (93)

Moreover, based on the energy level alignment in Figure 7a,
the rate matrix W is constructed as
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FIG. 6. Current-voltage characteristics computed for equilibrated phonon regime, vibrational frequency h̄ωvib = 0.2 eV, field-off and field-on
condition, and e-p couplings of 0,0.5,1.0,2.0 are presented for situations specified by (a) Ẽα

−1,Dσ
0 ,0

(VG,0) = E0,S0,0, (b) Ẽα

−1,Dσ
0 ,0

(VG,0) =

E0,S0,0 + h̄ωvib, (c) Ẽα

−1,Dσ
0 ,0

(VG,0) = E0,T m
1 ,0 and (d) Ẽα

−1,Dσ
0 ,0

(VG,0) = E0,T m
1 ,0 + h̄ωvib.

W =


−ΛS

0Γ 0 ΛD
0 Γ 0.5(ΛS

1 +ΛD
1 )Γ

0 −ΛS
0Γ ΛD

0 Γ 0.5(ΛS
1 +ΛD

1 )Γ
ΛS

0Γ ΛS
0Γ −kfield−2ΛD

0 Γ kfield

0 0 kfield −kfield− (ΛS
1 +ΛD

1 )Γ

 . (94)

For simplicity, we hereinafter denote Λα

0,S0↔−1,D↑/↓0

as Λα
0 ,

Λα

0,S1↔−1,D↑/↓0

as Λα
1 and neglect the insignificant processes,

i.e., the singlet-triplet transitions and the spontaneous emis-
sion.

By solving the steady-state dynamics from W ·P = 0, we
obtain an analytical expression of the stationary current as

IS =−ID = |e|ΓΛ
S
0

(
2Λ

D
0 +Λ

D
1
)
kfield +2ΛD

0 Λ1Γ

(2Λ0 +Λ1)kfield +
(
2Λ

D
0 +Λ

S
0
)
Λ1Γ

,

(95)

where we employ the abbreviations Λ0/1 = ΛS
0/1 + ΛD

0/1.

Since IS + ID = 0 is valid in stationary transport, we
only refer to IS below. It is worth noting that, when
λ → 0, the analytical expression Eq. (95) is reduced to
|e|Γ

(
3kfield +4Γ

)
/
(

6kfield +6Γ

)
, which agrees with our pre-

vious work68.

Since ΛS
0 = ΛD

0 = 0.5Λ0 in the situation Ẽα

−1,Dσ
0 ,0

(VG,0) =
E0,S0,0, the analytical expression of electric current, Eq. (95),
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FIG. 7. The diagrams of energy level alignments corresponding to four situations specified by (a) Ẽα

−1,Dσ
0 ,0

(VG,0) = E0,S0,0, (b)

Ẽα

−1,Dσ
0 ,0

(VG,0) = E0,S0,0 + h̄ωvib, (c) Ẽα

−1,Dσ
0 ,0

(VG,0) = E0,T m
1 ,0 and (d) Ẽα

−1,Dσ
0 ,0

(VG,0) = E0,T m
1 ,0 + h̄ωvib. The source-drain bias is set to

VSD = 0.2 V through (a) to (d).

could be further reduced to

IS =|e|ΓΛ0

2

(
Λ0 +Λ

D
1
)
kfield +Λ0Λ1Γ

(2Λ0 +Λ1)kfield +1.5Λ0Λ1Γ

=|e|ΓΛ0

2

(
2
3
− 1

3

(
Λ0 +2Λ

S
1−Λ

D
1
)
kfield

(2Λ0 +Λ1)kfield +1.5Λ0Λ1Γ

)
, (96)

which clearly reveals that the field-off current (Recall kfield =
0) is

Ioff
S = |e|ΓΛ0

3
, (97)

and the amount of current suppression led by optical excita-
tion is

∆I = Ioff
S − IS = |e|Γ

Λ0

6

(
Λ0 +2Λ

S
1−Λ

D
1
)
kfield

(2Λ0 +Λ1)kfield +1.5Λ0Λ1Γ
. (98)

In Figure 6a, the photoresistivity is clearly identified in all
explored e-p coupled regimes. Obviously, the current de-
creases as the e-p coupling increases, which is also clearly
described in Eq. (95).

Furthermore, the stepwise dependence of Λα

0/1 on VSD and
VG results in the steplike current-voltage characteristics with
width of ∆VSD = 2h̄ωvib/|e| and the equally spaced conduc-
tance lines in the charge stability diagrams. In other words,
from the aspects of the energy level alignment, the current
changes whenever Ẽα

±1,Dσ
0 ,0

(VG,VSD) goes across an electron-
vibrational state |0,S0,ν 〉. Therefore, a change of h̄ωvib in
the energy level alignment corresponds to either a ∆VSD =
2h̄ωvib/|e| or a ∆VG = h̄ωvib/|e|.

2. E0,S0,0 < Ẽα

−1,Dσ
0 ,0

(VG,0)< E0,T m
1 ,0

In this case, we focus on the diamond D and
study the current-voltage characteristics for gate voltages
VG ∈ [V S0

G ,V T1
G ] and source-drain bias voltages VSD ∈

[0,2
(

Ẽα

−1,Dσ
0 ,0

(VG,0)−E0,S0,0

)
/|e|]. At zero e-p coupling,

the field-off and field-on conditions result in the same block-
ade of electron transport but differs in the origin of the block-
ade. The diamond D is associated with |0,S0 〉 when optical
field is off, but it is related to a partial charged state when
the radiation is on68. The blockade under optical excitation is
referred to as anomalous Coulomb blockade in Ref. [68].

In contrast with the situation in section V D 1 where the e-p
coupling suppresses the current, in this case, the e-p coupling
lifts the anomalous Coulomb blockade, resulting in the pho-
toconductivity within the diamond D. The IV curves in Fig-
ure 6b are computed for a representative energy level align-
ment Ẽα

−1,Dσ
0 ,0

(VG,0) = E0,S0,0 + h̄ω which is illustrated in
Figure 7b. In the bias voltage range [0,2h̄ωvib/|e|], i.e., within
the diamond D, Figure 6b shows a current step under opti-
cal excitation when λ > 0. The photoinduced current within
VSD ∈ [0,2h̄ωvib/|e|] does not monotonically change with λ ,
but first increases and then decreases. This dependence of
photoinduced current on λ can be illustrated quantitatively by
the analytical solutions.

In order to derive the analytical solutions, we also choose
the effective electronic states | −1,D↑ 〉, | −1,D↓ 〉, |0,S0 〉
and |0,S1 〉. According to the energy level alignment scheme
in Figure 7b, the rate matrix W is constructed as
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W =


−
(
Λ

S
0 +Λ

D
0
)

0 0 0.5
(
Λ

S
1 +Λ

D
1
)

0 −
(
Λ

S
0 +Λ

D
0
)

0 0.5
(
Λ

S
1 +Λ

D
1
)

ΛS
0 +ΛD

0 0 −kfield kfield

0 0 kfield −kfield−
(
Λ

S
1 +Λ

D
1
)
 . (99)

The stationary solution then gives the populations as

P =
1

(2Λ0 +Λ1)kfield +Λ0Λ1Γ


0.5Λ1kfield

0.5Λ1kfield

Λ0kfield +Λ0Λ1Γ

Λ0kfield

 ,

(100)

and the electric current within the bias voltage range
[0,2h̄ωvib/|e|] as

IS =−ID = |e|Γkfield ΛS
0ΛD

1 −ΛD
0 ΛS

1
(2Λ0 +Λ1)kfield +Λ0Λ1Γ

. (101)

Similar to the previous section, the zero e-p coupling limit
of Eq. (101) reduces to our analytical results in Ref. [68],
i.e., IS = −ID → 0 and the net charge on the molecule |Q| =
2|e|P−1,Dσ

0
→ |e|kfield

3kfield+Γ
.

Eq. (101) reveals that the photoinduced current can orig-
inate from the asymmetry in ΛS

0/1 and ΛD
0/1 in the case of

E0,S0,0 < Ẽα

−1,Dσ
0 ,0

(VG,0)< E0,T m
1 ,0. Under the situation spec-

ified in Figure 7b, this asymmetry is immediately achieved
when a finite VSD is applied.

It is worthy to point out that the asymmetry in Eq. (101)
resembles the Eq. (16) of Ref. [62] which attributes the obser-
vation of photocurrent to the asymmetric molecule-lead cou-
pling, i.e., ΓS 6= ΓD. The Eq. (16) of Ref. [62] is derived
under an off-resonant tunnelling situation using a HOMO-
LUMO model in the single particle picture. The situation of
off-resonant tunneling is similar to the energy level alignment
considered in this section, especially if we consider that Λα

0
and Λα

1 are respectively the analogs of the coupling between
HOMO and electrode α , and the coupling between LUMO
and electrode α . However, it should be clarified that the asym-
metry in Eq. (101) results from the e-p coupling and does not
rely on the symmetry of the molecular system, while the pho-
tocurrent predicted in Ref. [62] requires an intrinsic asymme-
try of the molecule.

For the transport characteristics in the case VSD >
2h̄ωvib/|e| (out of the diamond D), as shown in Figure 6, the
IV curves for λ = 2.0 exhibit a transition from the photocon-
ductive behavior to the photoresistive behavior at the fourth
current step, in contrast with the IV curves for λ = 0.5 and
1.0 that exhibit the same photoresistive behavior as in section
V D 1. The current-voltage characteristics for λ = 2.0 thus
deserves further discussion. When λ = 2.0, the asymmetry
between ΛS

0/1 and ΛD
0/1 dominates the transport characteris-

tics within VSD ∈ [2,6]h̄ωvib/|e| and results in the photocon-
ductive behavior within this bias range. However, as the VSD

increases, the asymmetry gradually disappears due to the acti-
vation of more transport channels, which leads to the photore-
sistive behavior when VSD > 6h̄ωvib/|e|.

Apart from the representative situation given in Figure 7b,
other situations corresponding to Ẽα

−1,Dσ
0 ,0

(VG,0)) = E0,S0 +

nh̄ωvib (n > 1) also deserve further exploration. We high-
light these situations because their zero onset voltage of the
photocurrent is of experimental interest. The current-voltage
characteristics under these situations share a number of key
features with the one given in Figure 7b, i.e., (1) e-p cou-
pling induced photocurrent when VSD ∈ [0,2nh̄ωvib/|e|], (2)
a photoresistive current-voltage characteristics for λ ≤ 1 and
a crossover from photoconductive behavior to photoresistive
behavior for λ = 2.0 when VSD > 2nh̄ωvib/|e|.

In order to gain more insight about the photocurrent un-
der the above situations, we investigate the first current step
with the help of Eq. (101). Note that Eq. (101) encodes the
dependence of VG and VSD in Λα

0/1 and generally applies to

VG ∈ [V S0
G ,V T1

G ] and VSD ∈ [0,2min(
∣∣VG−V S0

G
∣∣, ∣∣VG−V T1

G
∣∣)].

If we only focus on the gate voltages close to V S0
G such that

(E0,S1,0− Ẽα

−1,Dσ
0 ,0

(VG,VSD))� h̄ωvib and Λα
1 → 1, Eq. (101)

is simplified to

IS ∼|e|Γkfield ΛS
0−ΛD

0
(2Λ0 +Λ1)kfield +Λ0Λ1Γ

. (102)

Since we are interested in the first current step, i.e., VSD ∈
[0,2h̄ωvib/|e|], Eq. (102) turns to

IS =|e|Γkfield |M0n(λ )|2

(2Λ0 +Λ1)kfield +Λ0Λ1Γ
. (103)

where n, determined by VG, labels the vibrational excitation
associated with |0,S0 〉 that aligns with Ẽα

−1,Dσ
0 ,0

(VG,0)).
According to Eq. (103), the photocurrent can be ana-

lyzed by the dependence of |M0n(λ )|2 on λ and n, respec-
tively. On one hand, when n is fixed and λ is varied,
i.e., we are dealing with a specific energy level alignment
Ẽα

−1,Dσ
0 ,0

(VG,0)) = E0,S0,0 +nh̄ωvib, the photoinduced current

approximately maximizes at λ =
√

n, which is consistent with
the behavior of the first current step in Figure 6b. Figure 8a
presents the photocurrent as a function of λ for situations of
n = 1 and n = 2. In Figure 8a, the approximate analytical
solution in Eq. (103) agrees well with the numerical calcu-
lation and the exact analytical solution in Eq. (101), where a
slight deviation is observed under the situation of n = 2 when
λ exceeds 2.0. It should be pointed out that the peak of the
I−λ curve in Figure 8a slightly deviates from

√
n due to the
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monotonous decline of the denominator of Eq. (102) with re-
spect to λ . On the other hand, when λ is fixed and n is varied,
the photoinduced current peaks at n∼ λ 2. This explains why
the most pronounced conductance lines within the diamond
D in Figure 3 shift towards larger gate voltage as the electron
phonon coupling increases.

3. Ẽα

−1,Dσ
0 ,0

(VG,0) = E0,T m
0 ,0

Under this situation, we restrict ourselves to the bias range
VSD ∈ [0,2

(
E0,T m

1 ,0−E0,S0,0

)
/|e|]. In this bias range, the

field-on transport characteristics is activated when VSD > 0,
while the field-off transport characteristics in this range is
completely blocked. The photoinduced current is attributed
to the energy level alignment between Ẽα

−1,Dσ
0 ,0

(VG,0) and
E0,T m

0 ,0.

The influence of the e-p coupling on the photoinduced
transport characteristics is presented in Figure 6c. Among all
the explored values of λ , with the IV curves at λ = 0 as a
reference, the e-p coupling suppresses the first three photoin-
duced currents steps but enhances the subsequent two current
steps. These observations are also quantitatively explained by
the analytical solution.

Next, we derive the analytical current expression using
the effective electronic states | −1,D↑ 〉, | −1,D↓ 〉, |0,S0 〉,
|0,S1 〉, |0,T+1

0 〉, |0,T 0
0 〉 and |0,T−1

0 〉. The vector form of
the occupation probabilities is

P =
(

P−1,D↑0
,P−1,D↓0

,P0,S0 ,P0,S1 ,P0,T+1
0

,P0,T 0
0
,P0,T−1

0

)T
.

(104)

According to the energy level alignment illustrated in Fig-
ure 7c, the rate matrix W is constructed as

W =



−
(
Λ

S
0 +Λ

D
0 +1.5Λ

S
T
)
Γ 0 0 0.5

(
Λ

S
1 +Λ

D
1
)
Γ ΛD

T Γ 0.5ΛD
T Γ 0

0 −
(
Λ

S
0 +Λ

D
0 +1.5Λ

S
T
)
Γ 0 0.5

(
Λ

S
1 +Λ

D
1
)
Γ 0 0.5ΛD

T ΛD
T Γ(

Λ
S
0 +Λ

D
0
)
Γ

(
Λ

S
0 +Λ

D
0
)
Γ −kfield kfield 0 0 0

0 0 kfield −kfield−0.5
(
Λ

S
1 +Λ

D
1
)
Γ 0 0 0

ΛS
T Γ 0 0 0 −ΛD

T Γ 0 0
0.5ΛS

T Γ 0.5ΛS
T Γ 0 0 0 −ΛD

T Γ 0
0 ΛS

T Γ 0 0 0 0 −ΛD
T Γ


,

(105)

where we further abbreviate Λα

−1,Dσ
0←0,T m

1
as Λα

T for simplic-
ity.

The stationary current corresponding to the situation in Fig-
ure 7c is then solved as

IS =
|e|ΓkfieldΛD

T
(
3Λ1Λ

S
T +2

(
Λ

S
0Λ

D
1 −Λ

D
0 Λ

S
1
))(

(4Λ0−Λ1)Λ
D
T +3Λ1ΛT

)
kfield +2Λ0Λ1ΛD

T Γ
, (106)

whose zero e-p coupling limit also agrees with the results in
Ref. [68], i.e.,

lim
λ→0

IS = 3|e|Γkfield/
(

4Γ+9kfield
)
. (107)

Since the energy level alignment diagram in Figure 7c in-
dicates ΛS

T = ΛD
T = 0.5ΛT , we can further simplify Eq. (106)

into

IS = IT + Ias (108)

with

IT = |e|Γkfield 3Λ1ΛT/4
(2Λ0 +2.5Λ1)kfield +Λ0Λ1Γ

(109)

and

Ias = |e|Γkfield ΛS
0ΛD

1 −ΛD
0 ΛS

1
(2Λ0 +2.5Λ1)kfield +Λ0Λ1Γ

, (110)

where IT and Ias reveal two origins of the photoinduced current
under this situation. First, the component IT originates from
the energy level alignment between Ẽα

−1,Dσ
0 ,0

(VG,0) and the
triplet states, so it exactly reduces to Eq. (107) as λ → 0 and
also contributes to the suppression of the first three photocur-
rent steps in Figure 6c. Second, the component Ias originates
from the asymmetry in Λ

S/D
0/1 . Ias resembles Eq. (101) which

describes the photocurrent in section V D 2 and vanishes at
λ = 0. It is worth noting that Ias contributes to the enhance-
ment of 4th and 5th photoinduced current steps in Figure 6c.

Figure 8b offers more insights about IT and Ias, where the
first photoinduced current step in this case, together with first
field-on current step in section V D 1 is plotted as a function
of the e-p coupling λ . In Figure 8b, the numerical calcula-
tions agrees well with the analytical solutions in Eq. (95) and
(108). The I − λ calculated at VSD = 0.2 V and VG = V T1

G
first displays an exponential decay due to IT and then exhibits
a maximum led by Ias nearby λ = 2.0, while on the contrary
the situation of VG =V S0

G shows a monotonous decrease in the
field-on current with respect to λ .

Furthermore, the decomposition of the photocurrent into
IT and Ias also explains the role of the e-p coupling on the
photoinduced current as shown in Figure 6c. Within VSD ∈
[0,6h̄ωvib/|e|], i.e., during the first three current steps, IT dom-
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inates the photoinduced transport characteristics. In this bias
range, IT is responsible for the e-p coupling induced suppres-
sion in the photocurrent, while Ias offers negligible contri-
bution because the asymmetry between ΛS

0/1 and ΛD
0/1 is in-

significant. The energy level alignment in Figure 7c clearly
reveals that the extent of the asymmetry required by Ias grows
with VSD. Meanwhile, as VSD increases, the e-p coupling in-
duced photocurrent suppression due to IT is also lifted and
will be completely eliminated when more transport channels
are activated. Henceforth, the gradual elimination of the pho-
tocurrent current suppression given by IT, together with the
increase in Ias, finally results in the e-p coupling enhanced
photoinduced current at the 4th and 5th current step in Figure
6c.

4. Ẽα

−1,Dσ
0 ,0

(VG,0)> E0,T m
0 ,0

Our discussion for this situation focuses on the bias range
VSD ∈ [0,2(Ẽα

−1,Dσ
0 ,0

(VG,0)−E0,T m
0 ,0)/|e|], beyond which the

transport characteristics is governed by Eq. (106). The ranges
of VG and VSD we specified correspond to the diamond E,
where the electron tranport is blocked under both field-off and
field-on conditions.

Unlike the photoinduced current described in section V D 2,
the e-p coupling does not lift the blockade under this situation,
which has been clearly revealed in the charge stability dia-
grams. According to the representative energy level alignment
diagram in Figure 7d, the transport characteristics in this case
is completely blocked by the triplet states. Figure 7d shows
that there is no outgoing electronic transitions from triplet
states, therefore the triplet states accumulate all the population
of the molecular system in the steady state. The analytical so-
lution under this situation is straightforward and obvious, i.e.,
P0,T+1

1
= P0,T 0

1
= P0,T−1

1
= 1/3. Note that the relevant singlet-

triplet transitions is insignificant and negligible because the
optical excitations dominate in this situation.

VI. CONCLUSION AND PERSPECTIVE

In conclusion, we have examined the influence of e-p cou-
pling and vibrational relaxation on electron transport through
an irradiated molecular junction. Moreover, we have shown
that the roles of the triplet states and the energy level align-
ment between charge states and neutral states are crucial for
the transport characteristics. Our main findings are summa-
rized as follows:

(1) In the charge stability diagram, the width of the mid-
dle diamond (corresponding to the triplet states) is robust to
the e-p coupling. In contrast, the two side diamonds (corre-
sponding to the partial charged states) gradually shrink with
the increasing e-p coupling due to the activation of transport
channels induced by vibrational transitions. In addition, the
effect of the e-p coupling is more pronounced in the unequili-
brated phonon regime than in the equilibrated phonon regime

because of the vibrational transitions caused by the nonequi-
librium vibratinal population.

(2) We have demonstrated a new type of photoconduction
mechanism due to the e-p coupling. Our previous study shows
that, in the absence of the e-p coupling, the energy level align-
ment between the charge states and the triplet states uniquely
leads to the photocurrent. In this study, in the presence of the
e-p coupling, the asymmetry in the rates of charge transfer
transitions also results in the photocurrent when the renormal-
ized state energy of a charge state falls between E0,S0,0 and
E0,T m

1 ,0. This photoconduction mechanism is also significant
when the triplet states come into play.

(3) Our study can be used as a guide for the selec-
tion of photoconductive molecules. When a high-frequency
vibrational mode is coupled to the charge transfer transi-
tion, the observation of photocurrent requires Ẽα

±1,Dσ
0 ,0
∼

E0,T m
1 ,0,E0,S0,n(n ≥ 1), i.e., the renormalized state energy of

charged states approximately aligns with the triplet states
|0,T m

1 〉 or the excited vibrational states of |0,S0 〉. When a
low-frequency vibrational mode dominates, the observation of
photocurrent requires Ẽα

±1,Dσ
0 ,0

&E0,S0,0 or Ẽα

±1,Dσ
0 ,0

.E0,T m
1 ,0,

whereas the required proximity of the alignment is determined
by the e-p coupling.

(4) Compared with the photoinduced current in the zero
e-p coupling limit, the presence of the e-p coupling can ei-
ther enhance or suppress the photocurrent. In the case of
Ẽα

±1,Dσ
0 ,0

(VG,0) = E0,T m
1 ,0, the influence of the e-p coupling on

the photocurrent changes from suppression to enhancement as
the source-drain bias increases.

Although we have conducted a comprehensive study on the
effect of e-p couplings and vibrational relaxation on an irra-
diated molecular junction, several issues deserve further dis-
cussion. First, the master equation approach cannot include
the level broadening due to the molecule-lead coupling and
thus fails to describe the tunneling current within the block-
ade region. Our future work will address this issue through
two routes, i.e., the master equation approaches that go be-
yond 2nd order expansion116 and the Hubbard operator NEGF
approach65 that intrinsically considers the level broadening at
the lowest order expansion. Second, the energy level align-
ment of molecular systems can be adjusted not only by a gate
electrode but also by the functionalization of molecules (e.g.,
changing the substituent group117), electrochemical gating22

and molecular orbital gating118,119. Finally, we hope that
our work can motivate further studies on irradiated molecular
junctions and promote the development of molecular electron-
ics.
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FIG. 8. The current is plotted versus the e-p coupling λ for four different energy level alignment schemes, i.e., (a) Ẽα

−1,Dσ
0 ,0

(VG,0) = E0,S0,0 +

h̄ωvib and Ẽα

−1,Dσ
0 ,0

(VG,0) = E0,S0,0 + 2h̄ωvib, (b) Ẽα

−1,Dσ
0 ,0

(VG,0) = E0,S0,0 and Ẽα

−1,Dσ
0 ,0

(VG,0) = E0,T m
1 ,0. In (a), the current is computed

by the numerical solution of the Pauli master equation, the exact analytic solution in Eq. (101) and the approximate analytic solution in
Eq. (103). In (b), the current is computed by the numerical solution of the Pauli master equation, the analytic solution in Eq. (96) for
Ẽα

−1,Dσ
0 ,0

(VG,0) = E0,S0,0 and the analytic solution in Eq. (108) for Ẽα

−1,Dσ
0 ,0

(VG,0) = E0,T m
1 ,0.

Appendix A: The Evaluation of V
αkσ ,NaN−1b

For the purpose of evaluating the scattering amplitude
V ∗

αkσ ,NaN−1b
(V

αkσ ,NaN−1b), we recast the molecule-lead cou-
pling Hamiltonian in Eq. (20) in terms of single particle basis
as,

Hm−l = ∑
n,αkσ

(
t∗nαkσ

â†
αkσ

d̂nσ + tnα,kσ
d̂†

nσ â
αkσ

)
, (A1)

where d̂nσ (d̂†
nσ ) is the annihilation(creation) operator of an

electron with spin σ on the single particle level |n〉, and t∗
nαkσ

(tnαkσ
) is the scattering amplitude that describes the hopping

of an electron with momentum k and spin σ from |n〉 (elec-
trode α) to the electrode α (|n〉). In principle, the single par-
ticle basis could be any complete orthonormal basis, hereafter
we choose the molecular orbitals for convenience.

We next denote a many-body electronic state |N,a〉 as |A〉
and insert the relationship 1̂ = ∑A |A〉〈A | into Eq. (A1),
which results in

Hm−l = ∑
n,αkσ

∑
A,B

(
t∗nαkσ

â†
αkσ
|B〉〈B |d̂nσ |A〉〈A |+h.c.

)
.

(A2)

By comparing Eq. (A2) with Eq. (20), we obtain the identities

V ∗
αkσ ,AB = ∑

n
t∗nαkσ

〈B |d̂nσ |A〉 (A3)

V
αkσ ,AB = ∑

n
tnαkσ

〈A |d̂†
nσ |B〉 (A4)

which relates the V
αkσ ,AB(V ∗

αkσ ,AB
) in the picture of molec-

ular many-electron states with the tnαkσ
(t∗

nαkσ
) in the single

particle basis.

Similar to the factorization in Eq. (24), we assume that
tnαkσ

(t∗
nαkσ

) could factorize as98

tnαkσ
= ζnα M

αkσ
(A5)

t∗nαkσ
= ζ

∗
nα M∗

αkσ
. (A6)

where ζnα (ζ ∗nα ) characterizes the overlap between the molec-
ular orbital |n〉 and the electrons in the electrode α .

Plugging Eq. (A5) and (A6) into Eq. (A3) and (A4), we
arrive at the definitions of Tα,AB and T ∗

α,AB as

T ∗α,AB =∑
n

ζ
∗
nα〈B |d̂nσ |A〉 (A7)

Tα,AB =∑
n

ζnα〈A |d̂†
nσ |B〉 . (A8)

Therefore, it is obvious that Tα,AB and T ∗
α,AB survive only

when |A〉 differs from |B〉 by one electron.

In order to explicitly evaluate Tα,AB and T ∗
α,AB, we approx-

imate the many-electron states considered in the main text in
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terms of the Kohn-Sham orbitals,

|0,S0 〉= ĉ†
H↑ĉ

†
H↓|χ 〉

|0,S1 〉=
1√
2

(
ĉ†

H↑ĉ
†
L↓− ĉ†

H↓ĉ
†
L↑

)
|χ 〉

|0,T 0
1 〉=

1√
2

(
ĉ†

H↑ĉ
†
L↓+ ĉ†

H↓ĉ
†
L↑

)
|χ 〉

|0,T+1
1 〉= ĉ†

H↑ĉ
†
L↑|χ 〉

|0,T−1
1 〉= ĉ†

H↓ĉ
†
L↓|χ 〉

| −1,D
+ 1

2
0 〉= ĉ†

H↑|χ 〉

| −1,D
− 1

2
0 〉= ĉ†

H↓|χ 〉

|1,D+ 1
2

0 〉= ĉ†
H↑ĉ

†
H↓ĉ

†
L↑|χ 〉

|1,D−
1
2

0 〉= ĉ†
H↓ĉ

†
H↓ĉ

†
L↓|χ 〉 (A9)

where ĉ†
nσ and ĉnσ are respectively the creation operator and

the annihilation operator of an electron on Kohn-Sham orbital
|n〉 with spin σ , H refers to HOMO, L refers to LUMO, and
|χ 〉 is a reference state with empty HOMO and LUMO. Here
we assume that all the many-electron states could be con-
structed from the same set of Kohn-Sham orbitals.

Note that, in Tα,N±1b,Na, only up to one term survives
in the summation over orbital index n, i.e. either ζ1α or
ζ2α . We suppose that ζ1α = ζ2α = ζα , and then reorganize
2π

h̄2

∣∣Tα,N±1b,Na
∣∣2J̄α into Γα νN±1b,Na, where the characteristic

rate of charge transfer transition Γα is defined as

Γα =
2π

h̄2 |ζα |2J̄α (A10)

and the dimensionless coupling coefficient νN±1b,Na of the
transition |N±1,b〉 ↔ |N,a〉 has been given in Table S1 of
Ref. [68].

Appendix B: Derivation of κ0S0ν0,0S1ν1 in Eq. (71)

According to Eq. (37) and (71), κ0S0ν0,0S1ν1 is defined as

dρ0S0ν0,0S1ν1

dt

∣∣∣∣
m−l

+
dρ0S0ν0,0S1ν1

dt

∣∣∣∣
m−th

+
dρ0S0ν0,0S1ν1

dt

∣∣∣∣
SOC

=−κ0S0ν0,0S1ν1ρ0S0ν0,0S1ν1 , (B1)

where ρ0S0ν0,0S1ν1 = 〈0,S0,ν0 |ρ̂(t)|0,S1,ν1 〉.
In order to derive κ0S0ν0,0S1ν1 , we follow the same proce-

dure as we used to derive the rate equation. Since the SOC-
induced transitions are significantly slower than the other pro-
cesses, we restrict ourselves to contributions from Ĥm−l and
Ĥm−th, which are hereafter referred to as κ

m−l
0S0ν0,0S1ν1

and
κ

m−th
0S0ν0,0S1ν1

respectively, i.e.,

κ0S0ν0,0S1ν1 = κ
m−l
0S0ν0,0S1ν1

+κ
m−th
0S0ν0,0S1ν1

. (B2)

The derivation of κ0S0ν0,0S1ν1 starts from taking the off-
diagonal matrix element of Eq. (43). Unlike the derivation

of charge transfer rate equation, not all the terms in Eq. (43)
contribute to κ

m−th
0S0ν0,0S1ν1

. In the following, we take the deriva-
tion for the 1st and 4th terms in Eq. (43) as examples, one of
which contributes to κ0S0ν0,0S1ν1 and the other does not.

The matrix element of the 1st term in Eq. (43) with respect
to |N,a,νa 〉 and |M,b,νb 〉 is derived as

∑
α

∫
∞

0
du Cα(−u)〈N,a,νa |Ŝ+I

α (t)ρ̂ I(t)Ŝ−I
α (t−u)|M,b,νb 〉

=∑
α

∫
∞

0
du Cα(−u) ∑

b1,b2

∑
ν1,ν2

T α
Na,N−1b1

T ∗αMb,M−1b2

×Mνaν1

(
λN−1,b1 −λN,a

)
Mν2νb

(
λM,b−λM−1,b2

)
× e

i
h̄

(
EM,b,νb −EM−1,b2,ν2

)
u

× e
i
h̄

(
EN,a,νa −EN−1,b1,ν1 −EM,b,νb +EM−1,b2,ν2

)
t

×〈N−1,b1,ν1 |ρ̂ I(t)|M−1,b2,ν2 〉 . (B3)

Similar to the Section III B, the secular approximation leads
to

e
i
h̄

(
EN,a,νa −EN−1,b1,ν1 −EM,b,νb +EM−1,b2,ν2

)
t

−→δN,Mδa,bδνa,νbδb1,b2δν1,ν2 , (B4)

which means that Eq. (B3) does not contribute to κ
m−l
0S0ν0,0S1ν1

.
Note that we here neglect the possibility of EN,a,νa−EM,b,νb =
EM−1,b2,ν2−EN−1,b1,ν1 when EN,a,νa 6= EM,b,νb , which is a rea-
sonable assumption when considering the electronic structure
of a molecular system.

We next derive the matrix element of the 4th term in Eq.
(43), which gives

∑
α

∫
∞

0
du C̄α(u)〈N,a,νa |Ŝ+I

α (t)Ŝ−I
α (t−u)ρ̂ I(t)|M,b,νb 〉

=∑
α

∫
∞

0
du C̄α(u) ∑

b1,b2

∑
ν1,ν2

T α
Na,N−1b2

T ∗αNb1,N−1b2

×Mνaν2

(
λN−1,b2 −λN,a

)
Mν2ν1

(
λN,b1 −λN−1,b2

)
× e

i
h̄

(
EN,b1,ν1 −EN−1,b2,ν2

)
ue

i
h̄

(
EN,a,νa −EN,b1,ν1

)
t

×〈N,b1,ν1 |ρ̂ I(t)|M,b,νb 〉 . (B5)

With the help of the secular approximation, we have

e
i
h̄

(
EN,a,νa −EN,b1,ν1

)
t → δa,b1δνa,ν1 , which leads to

∑
α

∫
∞

0
du C̄α(u)〈N,a,νa |Ŝ+I

α (t)Ŝ−I
α (t−u)ρ̂ I(t)|M,b,νb 〉

=h̄2
κ

m−l(4)
Naνa,Mbνb

〈N,a,νa |ρ̂ I(t)|M,b,νb 〉 , (B6)

where κ
m−l(4)
Naνa,Mbνb

refers to the contribution from the 4th term
in Eq. (43). In order to find out the physical meaning of
κ

m−l(4)
Naνa,Mbνb

, we apply the wide band limit and the formula

∫
∞

0
dteiωt = πδ (ω)+ iP

1
ω

, (B7)
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where P refers to the Cauchy principal value. As a result, we
obtain

κ
m−l(4)
Naνa,Mbνb

=
1
h̄2 ∑

α

∫
∞

0
du C̄α(u) ∑

b2,ν2

∣∣T α
Na,N−1b2

∣∣2∣∣Mνaν2

(
λN−1,b2 −λN,a

)∣∣2
× e

i
h̄

(
EN,a,νa −EN−1,b2,ν2

)
u〈N,a,νa |ρ̂ I(t)|M,b,νb 〉

=
1
h̄2 ∑

α

∫
∞

0
du
∫

∞

∞

dω J̄α(1− fβ (ω,µα) ∑
b2,ν2

∣∣T α
Na,N−1b2

∣∣2
×
∣∣Mνaν2

(
λN−1,b2 −λN,a

)∣∣2e
i
h̄

(
EN,a,νa −EN−1,b2,ν2 −ω

)
u

=∑
α

∑
b2,ν2

(
1
2

kα
N−1,b2,ν2←N,a,νa

+ i∆α
N−1,b2,ν2←N,a,νa

)
, (B8)

where

∆
α
N−1,b2,ν2←N,a,νa

=
1
h̄2 P

∫
∞

∞

dω
1

EN,a,νa −EN−1,b2,ν2 −ω
J̄α(1− fβ (ω,µα)

×
∣∣T α

Na,N−1b2

∣∣2∣∣Mνaν2

(
λN−1,b2 −λN,a

)∣∣2 (B9)

is an energy shift caused by the charge transfer transition
|N,a,νa 〉 → |N−1,b2,ν2 〉.

We can similarly evaluate the other terms in Eq. (43) and
then obtain

κ
m−l
0S0ν0,0S1ν1

=
1
2 ∑

α,a,ν

(
kα
−1,a,ν←0,S0,ν0

+ kα
1,a,ν←0,S0,ν0

+ kα
−1,a,ν←0,S1,ν1

+ kα
1,a,ν←0,S1,ν1

)
+ i ∑

α,a,ν

(
∆

α
−1,a,ν←0,S0,ν0

+∆
α
1,a,ν←0,S0,ν0

+∆
α
−1,a,ν←0,S1,ν1

+∆
α
1,a,ν←0,S1,ν1

)
. (B10)

Next, we move forward onto the derivation of κ
m−th
0S0ν0,0S1ν1

, which starts from taking the off-diagonal matrix element of Eq.
(65). We then obtain

d
dt
〈N,a,νa |ρ̂ I(t)|M,b,νb 〉

=− 1
2mvibωvib

Jth(ωvib)

[
(n(ωvib)+1)

(
(νa +νb)〈N,a,νa |ρ̂ I(t)|M,b,νb 〉−2

√
νa +1

√
νb +1〈N,a,νa +1 |ρ̂ I(t)|M,b,νb +1〉

)
+n(ωvib)

(
(νa +νb +2)〈N,a,νa |ρ̂ I(t)|M,b,νb 〉−2

√
νa
√

νb〈N,a,νa−1 |ρ̂ I(t)|M,b,νb−1〉
)

≈− 1
2mvibωvib

Jth(ωvib)

[
(n(ωvib)+1)(νa +νb)〈N,a,νa |ρ̂ I(t)|M,b,νb 〉+n(ωvib)(νa +νb +2)〈N,a,νa |ρ̂ I(t)|M,b,νb 〉

=κ
m−th
Naνa,Mbνb

〈N,a,νa |ρ̂ I(t)|M,b,νb 〉 , (B11)

where the terms 〈N,a,νa−1 |ρ̂ I(t)|M,b,νb−1〉 and 〈N,a,νa +1 |ρ̂ I(t)|M,b,νb +1〉 are dropped because they introduce
higher order terms of the coupling Hamiltonian Ĥm−th, which is reasonable in the limit of weak system-bath coupling. Ac-
cording to Eq. (67), we can express κ

m−th
0S0νa,0S1νb

as

κ
m−th
0S0νa,0S1νb

=
1
2

(
kvib

0,S0,νa+1←0,S0,νa
+ kvib

0,S0,νa−1←0,S0,νa
+ kvib

0,S1,νb+1←0,S1,νb
+ kvib

0,S1,νb−1←0,S1,νb

)
. (B12)
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