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ABSTRACT

We implement a Becke fuzzy cells type space partitioning scheme for the purposes of exchange-correlation within the GPAW
projector augmented-wave method based density functional theory code. Space partitioning is needed in the situation where
one needs to treat different parts of a combined system with different exchange-correlation functionals. For example, bulk and
surface regions of a system could be treated with functionals that are specifically designed to capture the distinct physics of those
regions. Here, we use the space partitioning scheme to implement the quasi-nonuniform exchange-correlation scheme, which is
a useful practical approach for calculating metallic alloys on the generalized gradient approximation level. We also confirm the
correctness of our implementation with a set of test calculations.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5078432

I. INTRODUCTION

Density functional theory (DFT)'? has become a stan-
dard technique for the computation of electronic properties of
molecules and periodic systems. As a theory, DFT is exact, but
in practical calculations, one of the functionals, the exchange-
correlation (XC) functional, has to be always approximated.
One of the great strengths of DFT is that even the simplest
XC approximation, the local density approximation (LDA),>>
turned out to be remarkably useful, albeit mostly for physics
related applications and to a lesser degree for chemistry. The
next family of XC approximations beyond the LDA are general-
ized gradient approximations (GGAs), which offer fairly ubig-
uitous improvements over LDA. One of the most well-known
GGA XC functionals is the Perdew-Burke-Ernzerhof (PBE)
functional,® which has earned itself the rank of a “standard
functional.” Although even more sophisticated XC approxima-
tions, such as meta-GGAs’° and hybrid XC functionals,'!!

are being developed and further improved, GGAs are still
the most sensible choice for many applications due to their
excellent computational speed versus accuracy ratio.

The potential accuracy of GGAs, however, has a certain
ceiling because the information that a GGA functional has
about any given system is limited to the electron density n
and the gradient of the density Vn. This deals with the compu-
tation of periodic and solid-state systems on the GGA level,
and in this realm, there exists evidence that we might be
approaching the accuracy limit. For example, a recent paper
by Tran et al.'? benchmarks various GGAs on their accuracy
for a set of important solid-state properties. Equilibrium lat-
tice constant is one of the most fundamental properties in
solid-state physics, and Fig. 4 of the work of Tran et al. shows
that modern solid-state GGAs (WC,'> PBEsol,'* SOGGA,'>
and SG4'°) are all clustering above a mean absolute relative
error (MARE) of about 0.5%. This suggests that the MARE of
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~0.5% represents an accuracy barrier that has proved diffi-
cult to breach on the GGA level. The accuracy limit of GGA
functionals has important consequences. In the work of Tian
et al.,'” it has been discussed why GGA functionals often yield
poor formation energies for metallic binary alloys, and the rea-
son is connected to the GGA lattice constant accuracy limit.
An accurate formation energy requires that the equation of
states (and therefore lattice constants) of all alloy compo-
nents are described accurately. On the GGA level, this is often
impossible.

In this paper, we utilize the “fuzzy cells” space par-
titioning concept of Becke'® to circumvent the accuracy
limit of the GGA level by implementing a space parti-
tioned GGA XC functional quasi-nonuniform approximation
(QNA)'920 within the state-of-the-art electronic structure
code GPAW.?122 Qur starting point is the PBE-family (PBE,
PBEsol), whose functionality is governed by two parameters
noted as u and B. The parameter u gives the strength of
GGA corrections over LDA exchange and g gives the strength
of corrections over LDA correlation. Thus, in general, an
accurate description of XC effects only with a semi-local
description of PBE-ansatz with energy functional Exc[n(r); i, 8]
= [drn(r)e(n(r), IVn(r)|?, u,B) is not possible, where € is the
XC energy per particle. A generic element within chem-
istry is obviously a single atom, and without any external
fields, the external potential vexc(r) is solely a function of
the atomic positions. Especially in the case of solid alloys
with metallic bonds, we consider improving GGA by explicitly
parametrising it in a volume around each atom species. In this
approach, called quasi-nonuniform approximation (QNA),'9.20
the XC functional is no longer a density functional theory
in a strict sense, but becomes also a function of atomic
positions and information of species EQ[n; {(R%, u%,B8%)}]
= [drn(r)equa(n(r), [Vn(r)[%, {(R%, 1% B%)}), where R® is the
atomic position, and u® and B* are atom-specific parame-
ters described later in the text. The approach has been pre-
viously implemented in the exact muffin-tin orbitals (EMTO)
method,?>2¢ and good results have been obtained for vari-
ous binary alloys.'” However, in the original implementation,
volumes with a strict Voronoi partition were used, rendering
the local PBE-ansatz parameters discontinuous with respect
to r. Here, we overcome the difficulty by employing the fuzzy
cells space partitioning concept of Becke,'® which allows the
computation of analytic QNA forces and stress tensor. For
efficient calculations, we implement the projector augmented
wave method corrections?’2¢ to QNA within the projector
augmented-wave method based DFT code GPAW. Atomic Sim-
ulation Environment (ASE)?°3° is used throughout the article
for handling the atomic geometries and optimizations.

Il. IMPLEMENTATION

The QNA scheme essentially generalizes the x and B
parameters of PBE XC functional® into space dependent u(r)
and gB(r) fields

u) = > waep, 1
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B(X) = > wq(r)B", )
a
where u® and g% are optimized parameters corresponding to a
given element occupying atomic site a. Consequently, the QNA
XC energy can be written in the form
EQ )= [ n@efIn@), WnP u(e). @) dr, (3)

where

2 = %DA(F%zBE[n(r), V(o) ()

g™ Hln(r), IVn(r)I?,B(r)]
YTt LDA )

X

is the PBE-type XC energy density per particle. The u(r) and
B(r) fields should interpolate sharply between atoms and, in
practice, this creates the need to divide space into Voronoi-
type atomic site centered regions. Space division can be
accomplished by appropriate weight fields wg(r). The value of
wq(r) should approach unity close to atomic site a and decay
smoothly to zero away from site a. Additionally, it must always
hold that Y qwq(r) = 1. We define the weights as

Pa(r)
Y Pa (I') '

which follows the fuzzy cells concept first developed by
Becke.'® In the fuzzy cells scheme, P,(r) are atomic site cen-
tered partial weights, which have the value one at the atomic
site R* and decay to zero when the distance |r - R% becomes
large. Py(r) could be defined in many different ways, but here
we will use

®)

wq(r) =

an 2a
Pa(r) = f(r ~ R%)) = exp [—( =5 } ©

which is very similar to the expression developed in Ref. 31.
The parameter A controls the location of the transition from
1 to 0, and a controls the sharpness of the transition. We
have found that values 2 = 1.2 and a = 2.0 give partition-
ing that is very close to the exact Voronoi cells and also the
most accurate formation energies. The calibration of forma-
tion energies has been done by calculating the formation ener-
gies of ordered CusAu and CuAus (L1z), and CuAu (Llp) and
then comparing them to previous EMTO QNA results.>?

For periodic and solid-state calculations, the expression
of Eq. (6), and that of Ref. 31, for Pu(r) is particularly bene-
ficial because the computational load of Eq. (6) scales only
linearly as a function of nuclei. This is in contrast to the
quadratic scaling of the original Becke form and others,>*
which are often used in chemistry. Chemistry calculations
routinely employ a computationally heavy hybrid XC func-
tional, which means a quadratic scaling P,(r) is responsible for
only a fraction of the total computational load. However, in
solid state physics, fast semilocal LDA and GGA XC functionals
are popular, which can easily cause a quadratic scaling P4(r) to
become a computational bottleneck.
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Performing geometric relaxations using the QNA scheme
requires the computation of forces and the stress tensor. For
an all-electron case, the XC potential can be evaluated in the
usual fashion as

SERE" [n(r), p(r), B(r)]
on(r) ’

Vye(T) = ()

where the dependence on u(r) and g(r) is purely parametric as
they are not explicit functions of density but of nuclear coor-
dinates. This equation is now in useful form, as it allows simple
analytical gradients.

We now consider the projector augmented wave method
implementation and begin with a brief introduction of rele-
vant concepts. The general idea in projector aumented-wave
(PAW) methods is that the Kohn-Sham equations are solved
for smooth wave functions (Jn(r)), but retaining one-to-one
mapping with the all-electron wave functions (yn(r)). There
exists a linear PAW transformation operator which defines a
mapping ¢u(r) = Tin(r), and the Kohn-Sham equations are
derived to be T THT i (r) = T T Tifm(r).

Akey quantity is the pseudo electron density (we consider
spin paired systems here for simplicity)

r) = ie(r) + > fildn(r)I, ®)
i
and the corresponding all-electron density is

n(r) = ne(r) + an|Tl/’n r)|2 =n¢(r anh/’n 1')| 9)

where f, are the occupation numbers, 7i; is the pseudo core
density, and n. is the all-electron core density for the frozen
core approximation.

In the PAW-formalism, a local quantity has three useful
definitions varying in domain and whether they are pseudo
quantities or not. For example, to utilize density thoroughly
in all circumstances required by implementation, three quan-
tities are needed. In the case of density, they are the pseudo
density i(r), atom-centered pseudo densities for each atom
{n*(r)}, and atom-centered all electron densities {n%(r)}. The
domains in the GPAW code are such that in the grid, LCAO,
and plane wave modes, the pseudo density 7i(r) is defined in
Cartesian real space grid with grid-spacing typically between
0.07 and 0.15 A. Furthermore, the pseudo (i%(r)) and all-
electron densities (n%(r)) are defined within logarithmic radial
grid and their angular parts are expanded using 50 Lebedev
points. For r > r;, where 1. is the PAW cutoff of an atomic
augmentation sphere, it holds that @%r) = n%(r) with their
derivatives at |r| = r. being also matched. Inside the aug-
mentation spheres, n(r) and A%(r) will of course differ. The
three density definitions are connected to each other by the
equation

n(r) = iu(r) + ) (n*(r) - i(r)), (10)
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which means that the all-electron density is obtained from
the pseudo density by subtracting the atom-centered pseudo
densities and then adding the atom-centered all-electron
densities. From Eq. (10), it is easy to see that outside the
augmentation spheres (r > r¢) n(r) = 7(r). The crux of PAW
implementation of QNA is to define analogous quantities to
the previous density example, which are g(r), a%(r) and p%(r),
and §(r), %(r) and B%(r), respectively. These u and 8 quantities
also fulfill Eq. (10). At later stage, we will perform an approx-
imation a%(r) = u%(r) = u% where u® is the constant optimal
p parameter of an element at atomic site a, and discuss the
accuracy of this approximation. However, for completeness,
we now proceed with the derivation without such approxima-
tions, i.e., a(r), g%r), and u*(r) are all equal to u(r) of Eq. (1)
within the domains they are defined in and similarly for g
quantities.

The energy gradients in the PAW formalism can be in
general written as

dE
a = —_
F = T drR* 6R“ Z(

= 6Ra anfn<lpn dR® |¢n>7 (11)

OE  dijm(r) )
azﬁn(r) aR" +h.c.

where “h.c.” denotes the Hermitian conjugate and S is the
overlap operator 7 T [Eq. (48) of Ref. 21]. The QNA XC func-
tional does not have explicit wave function dependence and
hence we only need to consider the partial derivative —éjlfa.
For local and semi-local functionals, the XC energy in the PAW
formalism can be written as

Exc = Exc[(r), i(r), B(r)] + Z ES[n(r), u(r), BY(1)]
— Ec[(r), 4%(r), B(r)], (12)

where the term
AE® = Exc[n*[D§, ], u%(r), B(r)] - Exc[A*[D§; ], a%(r),5°(r)] (13)

is typically called the PAW-correction and it introduces the
atomic density matrix as defined in Ref. 34. By taking the par-
tial derivative with respect to the nuclear position of Eq. (12),
we arrive at Eq. (Al), which is presented in Appendix A. The
first term in the right-hand side of Eq. (Al) is already han-
dled by GPAW, and it is solved by noting that in Eq. (8), only
the pseudo core density 7i(r) depends on atomic positions,

ie.,
6Exc[n] on
- /dr )Ec[n] onir) = —/dr
oir) AR"

Furthermore, the density functional derivatives of the form
S6E/én in Eq. (14) or via the atomic wise quantities in Eq. (Al)
are readily evaluated in GPAW via the typical Euler-Lagrange
derivation

SExc[1] onc(r)
on(r) oR*

(14)
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v (I') _ 5Exc[n(l‘)] _ B(n(r)exc[n(r), Vn(r)])
XT Tenr) on(r)
v, (a(n(r)fxc n(r), Vn(r)]))
ovn(r)
_ d(n(r)exc[n(r), Yn(r)])
an(r)

. (Ao, o)

Ao (r)

ZVn(r)), (15)

where o(r) = |[Vn(r)]%.

Thus, regarding the new implementation of QNA forces,
we are left with only the partial derivatives with respect to
various u and B parameters. Due to the atomic site centered
u(r) and B(r) fields, EggA has an additional dependency on
the positions of the nuclei, which created the extra deriva-
tive chain rules in Eq. (Al). We have now derived the QNA-XC
force exactly, given that all quantities a(r), 2%(r), and u?(r) are
equal to all-electron definition [Eq. (1)] within their domains of

SExc[ivr), i(x), A1) i(r)

ARTICLE scitation.org/journalljcp

definition. However, it is cumbersome to calculate a%(r) within
the logarithmic radial grid using the definition of Eq. (1). To this
end, we make a typical approximation, where a quantity almost
constant within an augmentation sphere is assumed to be con-
stant. In other words, we set a%(r) = u®(r) = u® Outside the
augmentation sphere, the fact that a%(r) deviates from u® does
not matter, since the correction vanishes because n(r) = i%(r)
there also. Inside the augmentation sphere, where n%(r) and
7%(r) deviate, the region is so close to atom a that the x* term
dominates in Eq. (1). Consequently, we circumvent the need
to use Eq. (1) as defined within the logarithmic radial grids,
which simplifies practical calculations. The argumentation of
this paragraph is trivially extended to B(r), £%(r), and B%(r) as
well.
With these approximations, the QNA XC becomes

Exc = Exc[fi(r), i(r), BI)] + ) B [n(r), u°, 5]

— Exc[i(r), . 5] (16)

and the forces simplify to

SExc[(r), A(r), 5(r)] () )

o _ SExc[A(r), fi(r), A(r)] di(r) |
Fe = / dr ( SA(T) aR®
SES[nY(r), u*, BY] on(r)
N Z ; / ( = oni(r) oD,

At this point, we can readily evaluate the remaining partial
derivatives

{fi(r)=RBP[ii(r), |Vii(r) 2, a(r), A(r)]}

SEPEE 5ji(r) /

Sf(r) 9RT I(r)
oW (r) o
) 200 i (18)
SER 0f(r) / o{ir)egei[a(r), IVir) P, a(r), A1)}
5ﬁ(r) 6R* 8,3(1‘)
x 3 20 g (19)

a

In Egs. (18) and (19), we have the further partial derivatives

a{nefit}  o{nafer)
9u(r) 9(r)

and they have been written out in Appendix A. In order to
get the dwq (r)/6R? derivatives in Egs. (18) and (19), we notice
that

Pule) = f(ire ~REP +(ry Ry P + (=~ REP), (20)

Sa(r) oR* 3p(r) OR*
SES[1%(r), u%, B*] on(r) \ DY, 7
SnYr) oDg, | oR*’ a7

which gives, for example,

APy (r)

(rx = RY)
are = Saf (V)

Ir — R%|

OP,(r)

= -0
a Oy

(21)
The whole gradient with respect to R* (V) is therefore easily
obtained from the gradient of r using the V operator

APy (r)
OR*

OP,(r
= Sgq VgaPu(T) = —8unr ;lf ) _ —6aa VPa(r). (22

Using Eq. (22), we obtain the following expression for the
Swq(r)/SR* derivatives:

owg(r) 9 Pu(r)
OR* ~ HR“ za,, Par(r)
0Py (1) Py (r)
_ TOR Za” Por(r) = Py (1) Xor 3Ra
[Za” Py (r)]

_ ~8aa’ VPa(r) Yo Par(T) +2Pa’ (r)VPa(r). (23)
[Za" 120% (I')]

The stress tensor is needed in order to relax the unit cell.
Analogous to the case of forces, additional terms will manifest
in the stress tensor formula because the u(r) and g(r) fields
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change as a function of strain. The derivations up to the end
of this section make use of Ref. 35 which explores the compu-
tation of various stress tensor contributions in detail. Stress
tensor o is defined as a first order change under a strain € as

1 OEiot
\% 6603 '

(24)

Tap =

Since the XC energy is an integral in real space, it can be
shown that the XC contribution to the total stress tensor can
be written as

JE A[n(r)exc(r)]
xc _ Obxc _
Vogs = eup SapExc + /v v dr. (25)

For simplicity, here we drop the pseudo (~) notation and just
use generic u(r) and B(r). Then the application of the chain rule
to Eq. (25) gives

/ {(n(r)efEn(r), [Vn(r) |, u(r), ﬁ(r)]
\%

06(25

din(r)exe” [n(m), (), u(x). SO onfr) |
B [/ an(r) 66(,,5 (26)
. / dn(r)exe” n(r), IVn(r) 1%, u(r), B(r)]) - avn(r) dr
% avn(r) O€ap -
dn(r)ege [n(r), IVn(r) 2, u(r), B)]} du(r
+/v EWES) aiiﬁ) dr (28)
. / dn(r)exe” n(r), IVn(r) 1%, u(r), B(r)]) 6B(r) (29)
v AB(r) 6eaﬁ

In Egs. (30)—-(33) we expand each term one at a time (func-
tion arguments are dropped for simplicity). Equation (26) is the
LDA-level term and it can be written as

PBE PBE
/M on dr:/ on_| pe na XC_1dr.  (30)
v On Oeup v Oeap | XC on ‘

Equation (27) is the GGA-level gradient term and it can be
written as

/6{11852‘3} o /nasngE o

v OV deap v OV deap
_/nasPBE (a|Vn|2) (BVn)dr
“Jv olvn2\ avn D€ap

(. (a::;)dr, (31)

9 de
- /v awmz(

where we have used the fact that §|Vn|?>/8Vn = 2Vn. These
LDA and GGA terms are already handled by GPAW. Equa-
tion (28) arises from the fact that the u(r) field changes as a
function of strain and it can be written as

ARTICLE scitation.org/journalljcp
/6{ns§gE} M4 _/ 6.9%]': Awg 2 dr
v Ou  Oeap v Ou “d Oeap
OFPE  ow
LDA”"X a a
/v nefPh z SeH (32)

Equation (29) is the B(r) field change and it can be written as

/ dinetty ap dr / nas;gg“? MWaga g
v 6,8 360,'3 v aﬁ afcr[)’

/ Z feLpedr. ()

OFFPE /o and OH /0P terms are derived in Appendix A. The
Owg/€qp derivative can be written as

OP, OPy
oWy o P, Beap Yo Po —PaZa Deap
= = . (34)
O€ap O€ap Yo Pa > Pa,]z
To get the 0P, /e, derivative, we use Eq. (15) of Ref. 35
P r-R* _ of(Ir - R*
660,/3 aea/; or,

P - RO - RY) = - R (36)

Egs. (24)-(36) can be used to implement the needed stress
tensor corrections in GPAW, or any other “stress tensor com-
patible” DFT code for that matter, but it has been shown that
terms like those of Egs. (28) and (29), i.e., the ones that are a
consequence of the fact that the space has been partitioned,
seem to be so small that they fall below the general numerical
accuracy of DFT codes.>>

lll. TEST CALCULATIONS

The correctness of the analytical QNA forces and stress
tensor can be straightforwardly checked by comparing them
against numerically calculated finite-difference forces and
stress tensor. For example, the numerical force of atom a in
the x-direction can be computed by displacing the atom by
+d along the x-direction and then calculating the finite dif-
ference [E(+d) — E(-d)]/2d. As another example, the numeri-
cal o™ component of the stress tensor is similarly computed
by stretching the unit cell vector a; by +d and then taking
[E(+d) — E(-d)]/2dV, where V is the unit cell volume. Figure 1
shows the differences between the analytical and numeri-
cal forces and o** stress tensor component for L1, CusAu.
In Fig. 1, d gives the displacement of the Au atom from its
(0, 0, 0) ideal lattice position along the x-axis. For the o™
stress tensor component, d indicates by how much the opti-
mized lattice vector a; has been increased/decreased along
the x-axis. We see that the differences between the analytical
and numerical QNA forces and stress tensor are very similar
to those of PBE calculated with an unadulterated version of
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FIG. 1. The difference between the analytically and numerically calculated forces and stress tensor for L1, CusAu. For forces, d means that the Au atom at (0,0,0) lattice
coordinate has been shifted by d along the x-axis. For the xx component of the stress tensor, d means that the unit cell vector a; has been increased by d.

the GPAW code. This confirms that the equations derived in
Sec. 11 for the analytical QNA forces and stress tensor work as
expected.

As a first practical test of our implementation, we calcu-
late the formation energies of ordered Cu-Au binary alloys.
The Cu-Au system is a famous prototype in alloy theory, and it
has been shown that GGA-level functionals struggle to predict
the formation energies of Cu-Au binary alloys with acceptable
accuracy.'736 Table [ shows the formation energies of Cu-Au
binary alloys calculated with PBE and QNA using the present
GPAW implementation. We see that the GPAW results for QNA
are in good agreement with the previously published EMTO
results. The present GPAW implementation differs from the
EMTO implementation in the way that in EMTO the space is
by construction divided into Voronoi-cells that surround the
muffin-tin spheres and therefore does not need the fuzzy cells
formalism. Nevertheless, the results between the two codes
agree, which indicates that the QNA results are not sensitive
to the underlying implementation and that the stress tensor
can be successfully used with QNA to optimize the unit cell
geometry.

TABLE |. Formation energies of Cu-Au binary alloys. The VASP, EMTO, and experi-
mental results are from the literature, and the GPAW results are calculated using the
implementation of this paper.
CusAu CuAu CuAu, CuAug
(L12) (L1p) (B2) (L1y)
PBE (VASP)3® —44 —56 —44 —25
PBE (EMTO)'” —45 —57 ... —24
PBE (GPAW) —40 —52 —41 —21
QNA (EMTO)'? —70 —87 ... —41
QNA (GPAW) ! —85 —61 —42
Expt.36 —74 —93 -39

Next, in order to test the implementation of QNA
forces, we calculate mixing energies of random Cug75Aug s,
CugpsAups, and CugasAugzs alloys using 32-atom special
quasirandom structures (SQSs)*23° generated with the Alloy
Theoretic Automated Toolkit (ATAT) package.“-%2 Previous
studies have found that local lattice relaxations (LLRs) are
very important in Cu-Au alloys due to the large atomic size
mismatch between Cu and Au atoms.3? For random Cu-
Au alloys, it is therefore important to be able to relax the
atomic coordinates using forces. Figure 2 shows mixing ener-
gies of Cuj_xAuy alloys as a function of x. It can be seen
that the mixing energies without LLRs (labelled QNA in the
figure) are positive and therefore qualitatively wrong. Mix-
ing energies with LLRs (QNA + LLR) are much improved, and
by adding a short-range order estimate at the experimen-
tal temperature from Ref. 32, we arrive at values (QNA + LLR
+ SRO) that are very close to the experimental values of Ref. 37.

Cuj — yAuy

B
]
8 10
S
[)
E 2
>
>
g -30
[
(=]
c -
£ 740 @ St (720K)
= o -@- QNA
¢ QNA+LLR

QNA +LLR + SRO
-60

0.0 0.2 0.4 0.6 0.8 1.0
Au concentration

FIG. 2. Mixing energies of random Cus_Auy alloys without LLRs (QNA), with
LLRs (QNA + LLR), and with LLRs and a short-range order correction (QNA + LLR
+ SRO). The experimental values are from Ref. 37.
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TABLE II. Formation energies AE (in meV/atom) and magnetic moments Mge/Mge
(in ) of ferromagnetic and paramagnetic Fe3Pt alloys.

FesPt Magnetic XC AE Mre Mpy

LDA 2 1.66 0.10

M PBE 80 2.77 0.34

PBEsol 50 2.62 0.30

QNA 110 2.67 0.32

LDA 21 0.0 0.0

PBE 24 238/-209  0.09

PARA " pREsol 16 220/-158  0.09

QNA 27 226/-18  0.09

Expt.“* FM 2.67 0.27
FM 34
FM 96

The good agreement of the “QNA + LLR + SRO” with experi-
ments confirms that the QNA forces and the stress tensor are
calculated correctly and with good accuracy.

As a third example, we follow Ref. 43 and calculate the
formation energies and magnetic moments of ferromagnetic
and paramagnetic FesPt in L1, structure. In the ferromagnetic
state, all moments point in the same direction, and in order
to simulate the paramagnetic state, one of the Fe moments
is inverted with respect to the other two Fe atoms in the
unit cell. We used Fe and Pt PAW-setups similar to Ref. 43,
where 3d74s1 and 5d96sl are treated as valence electrons for
Fe and Pt, respectively. We also tried both the “MixerSum” and
“MixerDif” density mixing methods that GPAW offers because
in some cases there is a difference between the magnetic
states (and the ground-state energies) to which the two mix-
ers converge. Table II shows our results calculated with four
different XC functionals, which are LDA, PBE, PBEsol, and
QNA. Calculations were run using two different density mix-
ers mentioned above, and in each case, the results in Table 11
correspond to whichever mixer that yielded the lower ground-
state energy. Unlike Ref. 43, all four XC functionals predict
the ferromagnetic state (FM) to be more stable than the
paramagnetic state (PARA), although for LDA the difference

J
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between FM and PARA formation energies is very small. The
magnitudes of LDA formation energy and magnetic moments
are underestimated compared to the available experimental
values. PBE and PBEsol predict FM formation energies that
are between the two experimental values, but PBEsol magnetic
moments are slightly closer to experiments than those of PBE.
QNA predicts a formation energy that slightly overestimates
the available experimental data, but like PBEsol the QNA mag-
netic moments are in very good agreement with experiments.
Overall, we can say that our QNA implementation is viable also
for magnetic alloys.

IV. CONCLUSIONS

We have implemented the Becke fuzzy cells type space
partitioning scheme in GPAW for the purposes of the flexible
GGA-level QNA exchange-correlation functional and tested its

functionality for a few test systems. In general, space par-
titioning allows one to define atomic site specific quanti-
ties or to divide the system at hand into physically different
regions, such as a bulk region and surface regions. Since the
bulk and surface regions could now be calculated with sep-
arate exchange-correlation functionals that are specifically
designed to capture the important physics of those regions,
space partitioning is one possible route to improved DFT
accuracy.
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APPENDIX A: EQUATIONS

By taking the partial derivative with respect to the nuclear
position of Eq. (12), the QNA XC force contribution within the
PAW formalism is of the form

pa_ _9Bxcli] _ / dr(éExc[ﬁ(r),ﬁ(r)ﬁ(r)] on(r)  SExc[i(r), a(r),B([)] 9a(r)  SExc[i(r), a(r),B(r)] Bﬁ(r))
X7 9R* ST(r) IR* sa(r) IR” 5p(r) IR*
SEg [n*(r), u(r), B(r)] on(r) SE3 [N*(r), u(r), B%(r)] on(r)\OD§,
) Za:;/ dr( n on(r) ang, n oni(r) oDy, )5’1‘“

-2 dr(é% ). 1), BT () | OB [ 17(x). ()] aﬂ“(r))f’Dﬁ,

Su(r)

a i

oD%

% da(r) oD%, | HR*

i

o dr(5E§C[na(r)’“a(r)’ﬁa(r)] op°(x) | OB (1), 1(X). 5 ()] aﬁ“(r))aD%,

dpe(r)

a i

In Egs. (18) and (19), the partial derivatives

~ . Al
oDy, age(r) oD%, | oR® (A1)

1w
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A{(r)sfet[A(r), Vi(r) 2, i(r), B(r)]}
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a{(r)sfet[A(r), IVA(r) 2, a(r), B(r)]}

9a(r) ’

when written out, become

a{fi(r)eRBE [i(r), IVA(r) 12, fi(r), B(r)]}

)

9p(r)

6[n(r)£LDA(FPBE[n(r) IVi(e) 2, ()] + { o + HOITP S )

ai(r) )

aFPBE 32
_ 7()cLDA LDA AD
e o = e [(1+ﬂ32//<)2]’ (42)

~ n 23
O{i(r)ePEE (), 1(r) 2, r), (o)) a[n(r)sLDA(FPBEWr) VAW, ) + { S + OISO )|
9B(r) 9B(r)
2 2 1+At?)(At? + 2A%t4
e )aH Yt 1+2A" X ) 7 (A3)
B~ Xy |1+At2 + A2t (1+At2 + A2t4)2
(
where we have used the notation of Ref. 6 as 0.9.20 000 of PAW setups was used. Fermi-Dirac smearing was
used with a width of 0.01 eV.

5 The Fe3Pt calculations used the planewave basis and an
Y = e_y¢;3, (A4)  energy cutoff of 600 eV. We used Fe and Pt PAW-setups
do similar to Ref. 43, where 3d74s1 and 5d96sl1 are treated as
Hevxindl+ étz 1+At? (A5) valence electrons for Fe and Pt, respectively. We used 10 x
- v [1+A2+A2¢4 |’ 10 x 10 and 15 x 15 x 15 Monkhorst-Pack k-point grids for
B 2 1+ A2 L1, (FesPt, bulk Pt) and B, (bulk Fe) structures, respectively.
=1+= 5 [m], (A6)  Fermi-Dirac smearing was used with a width of 0.1 eV. Mixer-
. Sum and MixerDif density mixers used the following settings:
A= é[exp {_SCLDA/Y} _1]7 , (A7) {backend: pulay, beta: 0.02, nmaxold: 1, weight: 100}. In the
Y MixerSum scheme, the spin channels of the density matri-
SA _A (A8) ces are mixed separately and the spin channels of the pseudo
BB electron density is mixed as a sum. In the MixerDif scheme,

where e is the elementary charge, ao is the Bohr radius, y = (1
—In2)/x% and ¢ = [(1+ £)?/3 + (1 = £)*/%]/2, where ¢ = (n,—
n;)/n is the relative spin polarization.

APPENDIX B: COMPUTATIONAL DETAILS

The analytical force and stress tensor test used the
planewave mode with an energy cutoff of 600 eV and a
10 x 10 x 10 grid of Monkhorst-Pack k-points.** The version
0.9.20 000 of PAW setups was used. Fermi-Dirac smearing was
used with a width of 0.01 eV.

The ordered Cu-Au calculations used the planewave
mode and an energy cutoff of 550 eV. The Monkhorst-Pack
scheme was used to generate the k-point grids whose sizes
were 20 x 20 x 20. The version 0.9.20 000 of PAW setups
was used. Fermi-Dirac smearing was used with a width of
0.01eV.

The 32-atom CuAu SQS calculations used the planewave
mode and an energy cutoff of 550 eV. Forces were relaxed until
the largest remaining force was smaller than 0.01 eV, which
ensured that the mixing energies were converged. A 10 x 10
x 10 grid of Monkhorst-Pack k-points was used. The version

both the total density and magnetization densities are mixed
separately.
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