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The Rayleigh-Plesset (RP) equation was derived from the first principles to describe the bubble
cavitation in liquids in terms of macroscopic hydrodynamics. A number of nonequilibrium molecular
dynamics studies have been carried out to validate this equation in describing the bubble inertial
cavitation, but their results are contradictory and the applicability of the RP equation still remains to
be examined, especially for the stable cavitation. In this work, we carry out nonequilibrium all-atom
simulation to validate the applicability of the RP equation in the description of the stable cavitation of
nano-sized bubbles in water. We show that although microscopic effects are not explicitly included,
this equation still describes the dynamics of subnano-bubbles quite well as long as the contributions
of various terms including inertial, surface tension, and viscosity are correctly taken into account.
These terms are directly and inversely proportional to the amplitude and period of the cavitation,
respectively. Thus, their contributions to the RP equation depend on these two parameters. This
may explain the discrepancy between the current results obtained using different parameters. Finally,
the accuracy of the RP equation in the current mathematical modeling studies of the ultrasound-
induced blood-brain-barrier experiments is discussed in some detail. Published by AIP Publishing.
https://doi.org/10.1063/1.5009910

I. INTRODUCTION

A bubble in liquids is a spherical volume of gas. It may
undergo oscillations in size if subjected to external forces. If
the oscillation is slow, then the contraction and expansion of
size are approximately symmetric. This phenomenon, called
stable cavitation, produces rapid flows of liquid around the
bubble and induces shear stress on nearby objects. In contrast, a
fast oscillation may lead to asymmetric contraction and expan-
sion followed by a violent collapse called inertial cavitation.
The well-known equation that describes the bubble dynam-
ics in terms of hydrodynamics is the so-called generalized
Rayleigh-Plesset (RP) equation,1–7
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where Ṙ and R̈ represent respectively the first- and second-
order time derivatives of the bubble radius R(t), pg(R, t) is
the pressure in the bubble, p∞ is the pressure in the liquid at a
large distance from the bubble, and ρ is the liquid mass density.
The first part of this equation was originally derived by Lord
Rayleigh and Plesset.1,2 Then, the surface tension constant of
the bubble, γ∞, was added by Noltingk and Neppiras,3,4 and
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the coefficient of the viscosity of the bulk liquid, η∞, was
introduced by Poritsky.5 The first-order curvature corrections
in the surface tension and viscosity were later suggested by
Dzubiella via the empirical coefficients δT

6 and δvis,7 respec-
tively. Neglecting liquid compressibility effects, this equation
can be derived entirely from first principles using the bubble
radius as the dynamics parameter8 or from the Navier-Stokes
equations under the assumption of spherical symmetry.9

Because the RP equation is a continuum hydrodynam-
ics equation, it should describe well the dynamics of bubbles
from a macroscopic point of view, which is indeed verified
by numerous experiments.10 However, in general, each phys-
ical phenomenon has its own scale below which equations of
continuum hydrodynamics maybe not fulfilled. In this con-
text, it is unclear whether the RP equation is applicable to
describe dynamics of nanoscale or microscale bubbles. Experi-
mental investigation is technically very difficult due to fragility
of bubbles,11 and in addition bubbles with radii .10 nm are
not available for experimental studies. As a remedy, a number
of nonequilibrium molecular dynamics (NEMD) simulations
have been carried out to verify the RP equation for nano-
bubbles. Here, a bubble is formed by heating or removing some
liquid molecules, creating an empty space in the liquid. It is
then compressed by surrounding molecules during the simula-
tion, mimicking the bubble collapse. This way, Okumura and
Ito showed that the formation and collapse of a nano-bubble in
liquid argon are well described by the RP equation.12 Holyst
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and colleagues confirmed this result by large-scale NEMD
simulations of nano-bubbles with radii ranging from 5 to 12 nm
in liquid argon despite the nonuniform profile of the pressure
in the liquid.13,14 Mao and Zhang, however, showed that the
RP equation leads to negative surface tension of bubbles in
water, implying the invalidity of the RP equation.15 Dzubiella
showed that the effect of water viscosity due to high curvatures
of the nano-bubble surface has to be corrected such that the RP
equation can describe correctly simulation data.7 The effects
of temperature and ionic condition on the collapse of bub-
bles in water were also simulated by Lugli and colleagues.16,17

The goal of this work is to verify the RP equation to describe
the stable cavitation of subnano-bubbles (.1 nm); we com-
pare the inner bubble pressure, pg(R, t), calculated directly
from simulation data with that calculated by the RP equa-
tion [Eq. (1)]. This is important because all current NEMD
simulations only study the inertial cavitation, and it is of fun-
damental interest to understand whether the RP equation is also
valid for the stable cavitation. Furthermore, the stable cavita-
tion has a wide range of applications in emerging important
fields such as ultrasound-induced blood-brain-barrier opening
for drug delivery18 and activating neuronal activity.19 Mathe-
matical modeling of these experiments is largely based on the
RP equation,20–25 and thus it is urgent to verify the RP equation
to assess the levels of accuracy of theories.

II. THEORY AND SIMULATION
A. The bubble model and inner pressure

Recently, we have developed a method to simulate the
bubble stable cavitation in water.26 It is useful to briefly sum-
marize the main aspects of the bubble model here. A bubble
is represented by a particle with low mass and no charge,
and interacts with surrounding waters by a time-dependent
Lennard-Jones potential,

V [r,σ(t)] = 4ε
[(σ(t)

r

)12
−
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r

)6]
, (2)

where r is the distance between the center of the bubble and
the oxygen atom or the hydrogen atoms of a water molecule,
R(t) ≡ σ(t) is the bubble radius, and ε is a parameter which is
large enough such that the repulsive part is hard enough, but
simulations are still stable. We found that the results do not
depend much on the value of ε , and in practice, we simply set
ε about ten times larger than that of the water-water interaction.
To mimic the stable expansion and contraction of the bubble,
the time-dependent bubble radius is expressed as a sinusoidal
function,
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where τ is the vibrational period of the bubble radius. The
radius of the bubble varies between Rmin at t = nτ and Rmax at
t = (n + 1/2)τ, where n = 0, 1, 2, 3, . . . is the periodicity. This
way, the time-dependent potential [Eq. (2)] changes harmon-
ically during the simulation, mimicking the stable cavitation.
We should mention that the low mass of the bubble particle
facilitates the translation of the bubble to everywhere in the
system, mimicking the experimental situation.

The velocity and acceleration of the bubble radius are time
derivatives of the radius and given by
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Because of the presence of the dispersion interaction between
the bubble and solvent [Eq. (2)], the RP equation is modified
to include this term as shown by Dzubiella,6,7
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Ṙ2
}

+ p∞ +
2γ∞

R

(
1 −

δT

R

)
+

4η∞Ṙ
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where V (R) is the dispersion interaction between the bubble
particle and a solvent molecule, and ρ0 is the liquid number
density.

Unlike real filled gas bubbles, there exist no gas molecules
in the interior of our model. Instead, the Lennard-Jones poten-
tial [Eq. (2)] maintains the mechanical stability of the bubble
and acts as an encounter to the collisional force that an imping-
ing water exerts on the bubble surface. Therefore, the inner
pressure can be calculated from the reversed momentum of
the colliding water molecules on the bubble surface. Based
on this argument, Takahashi and colleague have developed a
simple method to calculate the inner bubble pressure from the
bubble-water radial distribution function (RDF) gbw(R, t) as
follows:27

pg(R, t) ≈ ρgbw(R, t)kBT , (6)

where kB is the Bolztmann constant, T is the temperature, and
R is the position of the first peak of gbw at time t. For small
bubbles which are surrounded by a few waters, the calculation
via gbw provides better statistics than the conventional method
using the virial expression. We note that because in our model
the bubble particle only interacts with the water oxygen atoms,
gbw is actually the radial distribution between water oxygen
atoms and the bubble.

B. Simulation details

Using this bubble model, we carried out NEMD simu-
lations for a single bubble centered in a cubic box with an
edge of L = 8 nm, containing ≈8000 TIP3P waters at 300 K.
Two cases where the bubble undergoes large (Rmin = 0.3 nm,
Rmax = 0.9 nm) and small (Rmin = 0.3 nm, Rmax = 0.4 nm)
cavitation amplitudes are simulated. The cavitation period
τ = 50 ps is used in all calculations. For each case, 100 NEMD
trajectories, each 100 ps long, starting from different initial
water structures selected from a short 1 ns equilibrium MD
trajectory are carried out. The GROMACS program28 coupled
to our code for simulating bubble vibration is employed. The
bond lengths with hydrogen atoms are fixed with the SHAKE
algorithm,29 and the equations of motion are integrated with a
time step of 0.2 fs using the leapfrog algorithm. Note that this
small step is necessary to maintain the stability of the simu-
lations. The electrostatic interactions are calculated using the
particle mesh Ewald method and a cutoff of 1.2 nm.30 A cutoff
of 1.2 nm is used for the van der Waals interaction between
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water-water, and a time-dependent cutoff, which is equal to
the bubble radius R(t) [Eq. (3)], is used for the van der Waals
interaction between water molecules and the bubble. This guar-
antees that the bubble interacts only with water molecules on
the bubble surface. The nonbonded pair lists are updated every
10 fs. The system volume and temperature are maintained at
equilibrium using the Berendsen coupling procedures.31 Using
the same procedure, we carried out additionally one NEMD
simulation of a system with a large box size of L = 21 nm,
containing 188 354 waters, and all other parameters are the
same for the small system.

III. RESULTS

Our aim is to validate the RP equation via the compari-
son of the inner bubble pressure pg(R, t) calculated directly
from simulation with that calculated by the RP equation
[Eq. (5)]. In particular, we study the contributions of the iner-
tial term, the surface tension, and the viscosity to the accuracy
of the RP equation. In the following, we present results of
two cases where the bubble undergoes large (Rmin = 0.3 nm,
Rmax = 0.9 nm) and small (Rmin = 0.3 nm, Rmax = 0.4 nm)
cavitation amplitudes. The cavitation period τ = 50 ps is used
in all calculations. This period is chosen because of two main
reasons. First, it is short enough such that we can perform mul-
tiple simulations within a time scale of picoseconds, which is
100 ps in this work (we can capture two periods). For short
periods, say τ ≤ 10 ps, the simulations are usually unstable
because fast changes take place in the system. Second, as
shown below, the results depend on the ratio ∆R/τ (∆R ≡ Rmax

� Rmin) [Eq. (4)]; thus, it is sufficient to fix one parameter (in
this case, we fix τ = 50 ps) and study the influence of another
parameter on the RP equation.

A. Bubble dynamics

During the bubble cavitation, waters are pushed back
and forth and redistributed around the bubble. As seen from
Fig. 1(a), the radial distribution function (RDF) between the
bubble and waters, gbw(r), is flat at 25 ps when the bubble is
fully expanded and exhibits a sharp peak at 50 ps when the
bubble is fully compressed. In both cases, the distribution is
vanished at distances smaller than the bubble radius, indicat-
ing that the Lennard-Jones potential [Eq. (2)] is hard enough to
prevent the access of waters into the bubble interior. Although
the radius of the bubble is theoretically defined by Eq. (3),
it is more appropriate to take into account the surface thick-
ness to mimic real bubbles. To this end, we consider the first
solvation shell as the bubble surface and define the bubble
effective radius as the position of the first peak of gbw(r). We
calculate gbw(r) at different time steps along the nonequilib-
rium trajectories and identify the position of the first peaks
whose time-evolution is shown in Fig. 1 [(b), green curve]. As
seen, the effective radius behaves like its counterpart defined
by Eq. (3) (orange curve), but it shifted upward by ∼0.15 nm.
We fit these data to a function of the form of Eq. (3) and
obtain Rmin = 0.43 nm and Rmax = 1.12 nm. To reveal the
bubble dynamics, we calculate analytically the first (veloc-
ity) and second (acceleration) time derivatives of the bubble

FIG. 1. (a) The radial distribution function gbw between the bubble and oxy-
gen atoms of waters when the bubble is fully expanded (t = 25 ps, red) and
fully compressed (t = 50 ps, black). (b) Time-evolution of the bubble effec-
tive radius which is defined as the position of the first peak of gbw (green)
and its fitted curve (blue). The result of the predefined radius, Eq. (3), with
Rmin = 0.3 nm and Rmin = 0.9 nm is shown in orange. (c) and (d) show
the time-evolution of the bubble radius velocity and acceleration. Shown are
results obtained for the cavitation with period τ = 50 ps.

radius, and results displayed in Figs. 1(c) and 1(d) show that
the bubble dynamics are rather complicated. Within the expan-
sion phase (t ≤ 25 ps), the bubble radius velocity increases
initially from 0 to ∼50 m/s, the acceleration decreases from
6 × 1012 m/s2 to zero at 12.5 ps, and then the expansion is
slowed down until the bubble reaches the maximum size at 25
ps, and therefore, during this time the acceleration is shown
to be negative. After 25 ps, the bubble starts to be compressed
with the magnitude of velocity increases to ∼50 m/s at 37.5 ps
before decreasing to zero when the bubble is fully compressed
at 50 ps. Note that the velocity is negative in this phase because
the motion is in the opposite direction with the expansion
motion. This dynamical process is repeated during the stable
cavitation.

B. Bulk water structure and hydrostatic pressure

Next, we wish to examine whether the cavitation induces
any changes in bulk water. Here, bulk water is defined as
all water molecules at distances D larger than 3 nm from
the bubble center. We calculate the RDF between bulk water
atoms gww(r) when the bubble reaches the minimum and max-
imum sizes. As seen from Fig. 2(a), gww(r) in both cases
are virtually identical, with a low peak at r ≈ 0.2 nm, cor-
responding to the hydrogen-oxygen interaction, and a higher
peak at r ≈ 0.3 nm, representing the oxygen-oxygen inter-
action. We then calculate the bulk pressure using the virial
expression,

p =
1

3Vs

〈 Ns∑
i=1

[
mi ṙ2

i + ri.Fi
]〉

, (7)

where 〈· · · 〉 denotes the statistical average, ri and Fi are the
coordinate and the total force of the ith atom with mass mi,
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FIG. 2. (a) The radial distribution function between bulk water molecules
when the bubble reaches the minimum (Rmin = 0.3 nm, black) and maximum
(Rmax = 0.9 nm, red) sizes. (b) The time-evolution of the pressure of the bulk
water during the bubble cavitation.

respectively. V s = 4π[(D + d)3
� D3]/3 with the thickness

d = 0.3 nm, accounting for the diameter of a water molecule
and N s is the number of water atoms in this volume. Here,
we use the virial expression because there are many water
molecules in the bulk, and thus, the statistical average is guar-
anteed. Figure 2(b) shows, as an example, the time-evolution
of pressure of a slab of waters at the distance D = 4 nm from
the bubble center, which is close to the box edge. As seen, the
bulk water pressure is always stable around a reference value of
≈1 bar, despite the cavitation of the bubble. All together, these
results show that the bulk water is hardly affected by the cav-
itation, and therefore, the assumption of constant hydrostatic
pressure, p∞, in the RP equation is valid in our simulations,
and p∞ = 1 bar is used in the calculation of the pressure using
Eq. (5).

C. Verification of RP equation for a large
amplitude of cavitation

In the following, we validate the RP equation for the case
where the bubble undergoes a large amplitude (Rmin = 0.3 nm,
Rmax = 0.9 nm) of cavitation with period τ = 50 ps.

1. Inner bubble pressure calculated
from simulation data

We first calculate the inner pressure pg(R, t) from gbw(R, t).
This function at a time step t during the cavitation is averaged
over 100 trajectories. To reduce the statistical noise, we fit data
points within the first solvation shell of gbw(R, t) to a function
of the form

g(R, t) =
e−(R(t)−µ)2/2σ2

√
2πσ2

[
1 + erf

(
ξ

R(t) − µ
σ

)]
, (8)

where µ, σ, and ξ are three fitted parameters. This functional
form has been shown to be very accurate to fit to RDFs of flu-
ids.32 The height of the first peak is then calculated analytically
from the maximization of Eq. (8), and the inner pressure is cal-
culated from Eq. (6) and shown in Fig. 3 [(a), black curve].

FIG. 3. (a) Time-evolution of the inner bubble pressure pg(R, t) during the
stable cavitation with Rmin = 0.3 nm and Rmax = 0.9 nm. Shown are results
calculated directly from simulation data (black) and from the RP equation
with contribution from different terms: (i) γ∞ = 49 mN/m, δT = 0 nm, and no
viscosity (green), (ii)γ∞ = 49 mN/m, δT = 0.045 nm, and no viscosity (blue),
(iii) γ∞ and δT are obtained from equilibrium simulations and no viscosity
(magenta), and (iv) γ∞ and δT are obtained from equilibrium simulations,
η∞ = 2.91 × 10�4 Pa s, and δvis = 0.67 nm (orange). (b) The same as panel
(a) but for Rmin = 0.3 nm and Rmax = 0.4 nm with pg(R, t) is calculated from
simulation (black) and predicted by the RP equation with: (i) γ∞ and δT are
obtained from equilibrium simulations, and no viscosity (red), and (ii)γ∞ and
δT are obtained from equilibrium simulations, η∞ = 2.91 × 10�4 Pa s, and
δvis = 0.67 nm (green). In all the cases, the period τ = 50 ps is used.

Following the bubble cavitation, the inner pressure oscillates
between ∼2205 bars when the bubble is fully compressed with
radius R = 0.3 nm and ∼1311 bars for the fully expanded bub-
ble with R = 0.9 nm. Interestingly, we note that while the
bubble reaches the maximum and minimum sizes at t = 25 and
50 ps, respectively, [Fig. 1(b)], the inner pressure reaches the
minimum and maximum values about 5 ps later [Fig. 3(a)].
This is due to the solvent viscosity and will be discussed
below.

2. Inner bubble pressure calculated by RP equation

Now, we calculate the pressure pg(R, t) using Eq. (5) con-
sidering the contribution of different terms. First, we calculate
the last term, ρ0V, which represents the interaction between
the bubble and a solvent molecule: ρ0V = ρ0〈V i〉, where V i

is the Lennard-Jones interaction [Eq. (2)] between the bubble
and the ith water molecule, and 〈· · · 〉 denotes the ensemble
average over all waters within the first solvation shell around
the bubble of 100 trajectories.

Second, let us consider the inertial term I = ρ{RR̈
+ 3Ṙ2/2}. It is calculated analytically using the analytical
form of R(t) and its time-derivatives, and the time-evolution
is shown in Fig. 4. As seen, the behavior of the inertial term
is rather complicated due to the complex behavior of both
the velocity and acceleration, as shown in Figs. 1(c) and 1(d).
Nevertheless, to explain qualitatively the positive and negative
behaviors, we should note that the inertial can be considered
as the work done by the bubble.33 As shown above, during
the first phase of bubble expansion the bubble radius velocity
is increased, and this indicates that the inner bubble force is
dominating over the solvent force, which tends to resist the
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FIG. 4. Time-evolution of the inertial term I = ρ {RR̈ + 3
2 Ṙ2 } during the

bubble cavitation with period τ = 50 ps, Rmin = 0.3 nm, and Rmax = 0.9 nm.

expansion. Because the bubble inner force points toward the
solvent, the directions of the total force (sum of the inner and
solvent forces) and bubble wall displacement must be the same,
and this results in the positive work. In the second phase, the
bubble is still expanded but slowed down, indicating that the
solvent force is now dominating over the inner force. Thus, the
directions of the total force and wall displacement are oppo-
site, resulting in negative work. In any cases, the magnitude of
the inertial term is quite small compared to the inner pressure,
pg(R, t), shown in Fig. 3(a). This suggests that the inertial term
plays a minor role in the RP equation.

Third, to study the effect of the bubble surface tension
(third term), we exclude the contribution of the viscosity term
(fourth term) but the first and last terms are included. We
also ignore the curvature correction to the tension by setting
δT = 0 and consider the surface tension γ∞ as a fitting parame-
ter. A best fit of pg(R, t) data to Eq. (5) results in γ∞ = 49 mN/m.
This value is close to the bulk surface tension of the TIP3P
water of 51 mN/m at T = 300 K and P = 1 bar.34 However,
the fitted curve shown in Fig. 3 [(a), green curve] deviates
significantly from pg(R, t). A naive thinking could suggest
us to consider the curvature correction coefficient to the ten-
sion, which should be important for sub-nano-sized bubbles.
Taking γ∞ = 49 mN/m and treating δT as a parameter, a
best fit results in δT = 0.045 nm. Overall, this value is in
agreement with that obtained from the equilibrium measure-
ment of the solvation energy of spherical cavities,35 which is
δT ≈ 0.09 nm. However, the fitted curve shown in Fig. 3 [(a),
blue curve] still deviates from pg(R, t), except small improve-
ments are obtained when the bubble reaches small sizes around
0, 50, and 100 ps.

Alternatively, we try to calculate the bubble surface ten-
sion from our equilibrium simulations. At equilibrium, Eq. (5)
becomes

peq
g (R) = p∞ +

2γ(R)
R
− ρ0V (R), (9)

where the surface tension γ∞ and its curvature correction coef-
ficient δT are now absorbed into a size-dependent tension
coefficient γ(R) which is determined from equilibrium sim-
ulations as follows. We carry out 7 sets of equilibrium MD

simulations where the bubble radii are fixed at R = 0.3, 0.4,
. . ., 0.9 nm. Each set consists of 100 trajectories, each 100 ps
long, starting from the same initial structures used in NEMD
simulations. The static RDFs between water molecules and
the bubble are shown in Fig. 5(a). As usual, the peak of the
RDF is high for small bubbles and becomes flat for larger bub-
bles. We should mention that in most simulations, a bubble is
formed by removing some liquid molecules, creating an empty
space in the liquid.7,12–17,36,37 With this type of model, there
is no interaction between the bubble and surrounding waters;
therefore, the liquid density profile around the bubble surface
is monotonic without peaks and its width has little size depen-
dence.7,36,37 By contrast, the peak seen in the RDF of our model
is due to the interaction between the bubble and waters. The
equilibrium inner pressure peq

g (R) is calculated from the first
peaks using Eq. (6) and shown in Fig. 5(b). The tension coeffi-
cient γ(R) is then calculated for each bubble using Eq. (9) and
shown in Fig. 5(c). As seen, the tension coefficient increases
from 42 mN/m to 76 mN/m for bubbles with effective radii of
0.4 nm and 1.12 nm, respectively. Interestingly, the latter is
quite close to the experimental value of 72 mN/m of the water-
air surface tension at 1 bar and 300 K38 but higher than the pre-
vious simulated value of 51 mN/m of the TIP3P water model.34

Our higher value could be qualitatively understood because
structural relaxation near the hard wall-water interface of our
bubble model is more restricted than that near the free air-liquid
interface.

Using the obtained equilibrium surface tension coeffi-
cients, we calculate pg(R, t) without the viscosity contribution,
and the result is shown in Fig. 3 [(a), orange curve]. Obviously,
the agreement between the pressures obtained by the RP equa-
tion and simulation is better now. However, we still observe a
discrepancy, that is, the pressure in simulation changes slower
than that calculated by the RP equation. For instance, the RP
equation yields to the minimum and maximum pressures at
25 ps and 50 ps, respectively, while these values are obtained

FIG. 5. (a) The radial distribution function between bubbles with different
radii of 0.3, 0.4, . . ., 0.9 nm and water molecules. (b) The equilibrium inner
bubble pressure peq

g (R) as a function of the bubble radius calculated from the
first peaks of the functions shown in (a). (c) The bubble surface tension as
a function of the bubble radius calculated from pressures shown in (b) using
Eq. (6).
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at 30 and 55 ps in simulation. This suggests that the viscosity
plays an important role in slowing down the bubble dynamics.
Therefore, in the next step, we take into account the viscosity
term in Eq. (5) by considering the bulk viscosity, η∞, and the
curvature correction coefficient δvis as parameters. A fit of the
pg(R, t) data to Eq. (5) (with the equilibrium surface tension)
yields to η∞ = 2.91 × 10�4 Pa s and δvis = 0.67 nm, and the
fit is excellent as shown in Fig. 3 [(a), red curve]. The vis-
cosity value differs only 10% from the TIP3P bulk value of
3.21 × 10�4 Pa s.39 This could imply that the dispersion term
which maintains our bubble does not alternate much the gas
bubble dynamics. The same conclusion was also obtained
by Dzubiella in the study of the collapse of a gas cavity in
water.7 We should mention that the calculated viscosity is
much smaller than the experimental value of 8.96 × 10�4 Pa s,
but this is a known problem of this water model and does
not affect our results because the fitted viscosity η∞ and the
pressure pg(R, t) are consistently obtained from the same
simulation using TIP3P water.

D. Verification of RP equation for a small
amplitude of cavitation

Following the same procedure presented above, we now
validate the RP equation for the small amplitude case with
Rmin = 0.3 nm, Rmax = 0.4 nm, and period τ = 50 ps. The inner
pressure pg(R, t) is calculated directly from the simulation
and shown in Fig. 3 [(b), black]. Due to the small ampli-
tude of cavitation, the pressure only undergoes small changes
between ∼2205 bars and 1931 bars when the bubble is fully
compressed and expanded, respectively. The maximum value
of the inertial term is quite small ∼�3.5 bar. We then calcu-
late the inner pressure pg(R, t) [Eq. (5)] using the equilibrium
surface tension [Fig. 5(c)] but without the contribution of the
viscosity term, i.e., η∞ = 0 Pa s and δvis = 0 nm. As seen
from Fig. 3 [(b), green] the agreement between the RP pres-
sure and its counterpart obtained from simulation data is very
good. We should remind that without the viscosity, the RP
pressure is not in good agreement with the simulation data
for the large amplitude of cavitation case [Fig. 3(a)]. Next,
we take into account the contribution of the viscosity by sim-
ply taking the values obtained from the large amplitude case,
η∞ = 2.91 × 10�4 Pa s and δvis = 0.67 nm, and calculating
again the RP pressure. This only leads to a small improve-
ment of the RP pressure [Fig. 3(b), green], suggesting that
for a small amplitude of cavitation the viscosity plays a less
important role.

IV. DISCUSSION

In the following, we focus the discussion on the assump-
tions that underline the RP equation, the finite-size effect, and
the influence of the amplitude as well as the period of cavi-
tation on the contribution of the inertial, surface tension, and
viscosity terms of the RP equation.

A. Basic assumptions of RP equation

The first assumption of the RP equation is the incom-
pressibility of the liquid. As seen from [Fig. 1(c)], the

maximum velocity of the bubble radius is Ṙ(t = τ/4) ∼ 50
m/s for the cavitation with Rmin = 0.3 nm and Rmax = 0.9 nm.
Therefore, the Mach number, Ṙ(t)/c = 0.03, is much smaller
than unity, where the velocity of sound wave in water c is
∼1500 m/s at the ambient temperature. We consider the Keller
equation40,41 which is a version of the RP equation where
the compressibility is taken into account in the inertial term:
I∗ = ρ{(1 + Ṙ/c)RR̈ + 3(1 − Ṙ/3c)Ṙ2/2}. The small value of
the Mach number indicates that the Keller equation does not
lead to any improvement in comparison to the RP equation,
and the assumption of the liquid incompressibility of the RP
equation is basically held.

The second assumption of the RP equation is the spher-
ical deformation. We note that bubbles generated by initially
heating or removing some liquid atoms as in previous cav-
itation simulations7,12–15,36,37 are not necessary to be fully
spherical, and thermal interface fluctuations during the cav-
itation may give rise to non-spherical instantaneous bubble
shapes, thus theoretically violating the assumption of the RP
equation. In our case, the interface is always maintained by a
time-dependent Lennard-Jones potential between the bubble
and surrounding waters, and the least square fit of the bubble
radius data to the analytical form [Eq. (3)] results in a good fit
as shown in Fig. 1, with the standard deviation less than 5%.
This suggests that the bubble surface is more well maintained,
but nevertheless will never be spherical symmetry due to fluc-
tuations and the coarse nature of the solvent. Now, because the
inner bubble pressure is calculated directly from the simulation
data via RDFs [Eq. (6)], it must contain the surface deforma-
tion effect. Which terms in the RP equation can capture this
effect? First, because the inertial term is calculated from the
bubble radius, it must contain the surface deformation effect.
However, as shown, the contribution of this term to the bubble
pressure is very small; thus, the contribution of the deformation
effect via this term is minor. Second, the surface tension and
its curvature correction, δT, were calculated from equilibrium
data; therefore, the surface deformation effect should already
be taken into account. As shown, the viscosity and especially
its curvature correction, δvis, are very important to describe
correctly the bubble inner pressure, and this suggests that the
effect of the surface deformation on the bubble pressure must
be implicitly encoded in the curvature correction, δvis. Because
the deformation is induced by the thermal interface fluctua-
tions, we can therefore interpret δvis as a correction to the cur-
vature effect on the viscosity and capillary waves of the bubble
surface.

B. Effects of finite-size, cavitation amplitude,
and period on RP equation

Because the velocity and acceleration of the bubble radius
depend on the ratio ∆R/τ (∆R ≡ Rmax � Rmin) [Eq. (4)], it
is sufficient to fix one parameter and study the influence of
another parameter on the RP equation. In this study, we fix the
period τ = 50 ps and consider ∆R = 0.6 nm and ∆R = 0.1 nm.
With these conditions, the inertial terms in both cases are small
and their contribution to the inner pressure is minor for the
stable cavitation. This result is consistent with that obtained
by Dzubiella who showed that the inertial term is small,
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although not completely negligible for the inertial cavita-
tion of a bubble with an initial radius of 1.983 nm, but
it is basically vanished for bubbles with radii ≤1 nm.7 To
quantitatively explain this, we calculate the Reynolds num-
ber R = Ṙ(t)R(t)ρ/η∞ with η∞ = 3.21 × 10�4 Pa s being the
bulk solvent viscosity of TIP3P water39 and find that at the
velocity Ṙ = 44 m/s and radius R(t) = 0.9 nm the maximum
value of R is 0.12, which is much smaller than unity, confirm-
ing that the inertial is indeed negligible, and the solvent friction
dominates the bubble dynamics. However, we should note that
this is not always true even for small bubbles undergoing small
amplitudes of cavitation because as seen from the expression
of the inertial term, it can be very large and contributes largely
to the inner pressure, if the period τ is short. In this case,
the liquid could be significantly disturbed and the hydrostatic
pressure p∞ is not necessary constant as in this study. In this
case, the choice of p∞ is very important. Indeed, Holyst and
colleagues have studied an extreme case of cavitation where
the bubble collapse is induced by traveling sound waves. If
the constant ambient pressure is chosen, then a huge discrep-
ancy between the RP equation and simulation was observed.
However, when a pressure at the front of the waves is chosen,
then the RP equation predicts correctly the collapse time of
nano-bubbles.14

We note that the RP equation is derived for an infinite liq-
uid medium; thus, it is theoretically not necessary to describe
well simulation data, where the finite-size effect may suppress
long-ranged hydrodynamics effects, and reduce the inertial.42

To examine this problem from the simulation side, we carry
out additional NEMD simulations with a larger box size of
L = 21 nm, containing 188 354 waters, keeping the same other
parameters. Surprisingly, the inner bubble pressure pg(R, t)
calculated by the simulations of the small and large systems
is almost identical (data not shown), suggesting that the finite-
size effect in the simulation is probably negligible. To study
this effect from the theoretical side, we employ the modified
RP equation43,44 which was developed for a confined liquid to
calculate pg(R, t) from the RP equation [Eq. (5)]. The con-
finement effect is taken into account via the inertial term:
Icon = ρ

{
RR̈(1 − λ) + Ṙ2

(
3
2 − 2λ + λ4

2

)}
, where λ ≡ R/Rc

and Rc = L/2 is the radius of the confinement sphere. With the
box length of L = 7 nm and maximum bubble radius of 1.12 nm,
we obtain λ ∼ 0.25, and the inertial term I = ρ{RR̈ +3Ṙ2/2} in
Eq. (5) is reduced by 25%. Given the fact that I is already small,
the confinement effect is safely neglected in the RP equation,
at least in our cases.

It has been suggested that viscous effects are important
for bubbles with radii smaller than 10�3 m.45 Our results show
that the viscosity plays a major role in the dynamics of stable
cavitation of nano-bubbles only if the velocity of cavitation is
sufficient large, which is ∼50 m/s in our case. For small bub-
bles undergoing slow cavitation (with the velocity of∼6 m/s in
our case), then the viscosity may be negligible. Dzubiella has
studied the inertial cavitation of an empty gas cavity in SPC/E
water and found the collapse velocity of about ∼100 m/s.
It is fast enough and therefore the viscosity together with
the curvature correction coefficient δvis becomes important
to describe correctly the bubble dynamics of inertial cavita-
tion.7 In contrast, Mao and Zhang have studied the collapse

of an empty gas cavity in TIP3P water and obtained a neg-
ative surface tension, which implies the invalidity of the RP
equation.15 The authors attributed this artifact to the studied
water model. However, from their result of the time-evolution
of the bubble radius, we estimate the maximum collapse veloc-
ity of their bubble is about ∼160 m/s. Given this high velocity,
we suggest that the absence of the viscosity term in their RP
equation is the cause that leads to the negative surface tension.
We note that Okumura et al. and Holyst et al. have shown
that the collapse of a nano-bubble in the Lennard-Jones fluid
is well described by the RP equation, although the viscos-
ity is not included.12,14 This is probably due to the fact that
the viscosity is small and less important for Lennard-Jones
liquid.13

Finally, to explain qualitatively the physics behind the
contribution of the viscosity curvature correction, we note
that the bubble reaches the maximum and minimum sizes at
25 and 50 ps, respectively [Fig. 1(b)]. However, as shown in
Fig. 3(b), the bubble pressure reaches the minimum and max-
imum values around 5 ps latter. This delay must be caused by
the liquid viscosity. Indeed, as shown above, to account for
this shift, we must take into account the viscosity curvature
correction δvis into the fit of the RP equation. This suggests
that δvis is necessary to describe correctly the slowdown of the
bubble cavitation. Now, it has been shown by Dzubiella and
colleagues that for sub-nano-sized cavities (≤1 nm, as in our
case) the diffusion of waters in the first solvation shell becomes
slower than that in the bulk.46 We believe that this slowed-down
diffusion is the origin that induces the slowdown of bub-
ble cavitation. Taken together, we suggest that the molecular
physics of the viscosity curvature correction is to account for
the anomalous behavior of the solvent around sub-nano-sized
bubbles.

C. Implications for the applicability of RP
equation in focused ultrasound modeling

As mentioned, the use of microbubbles coupled with
ultrasound is emerging as a promising approach to open the
blood-brain-barrier for drug delivery to treat brain diseases.18

However, the molecular mechanism of the opening is still
unknown. Because direct all-atom NEMD simulations of bub-
ble cavitation under real experimental conditions are currently
prohibited due to large system (µm) and long time (µs) scales,
some mathematical modeling is employed. Basically, in this
approach, parameters are taken from experiments and the RP
equation is used to predict the dynamical pressure needed
for the blood-brain-barrier opening.20–25 Here, based on our
results, we attempt to discuss the accuracy of the RP equation
in the current mathematical modeling studies. In experiments,
bubbles are much larger with the radii ranging from 0.5 to
4 µm and undergo a much slower vibration in size at frequen-
cies ranging from 0.3 to 8 MHz (3333 - 125 ns).47–50 Let us
consider a typical case with Rmin = 2 µm, τ = 2 MHz, and a
relatively large amplitude of vibration of 0.5 µm. With these
parameters, we obtain the largest inertial value I = 0.25 bar
and largest cavitation velocity Ṙ(t) = 1 m/s. We recall that in
our study of the small amplitude of cavitation where the bub-
ble radius varies between Rmin = 0.3 nm and Rmax = 0.4 nm,
we obtain I = 3.5 bars and Ṙ(t) = 6 m/s, which are much
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larger than the above estimated values using experimental
parameters. As shown above, the RP equation with the surface
tension alone can predict accurately the bubble pressure for
this slow cavitation case and thus also for the cavitation using
experimental parameters. Furthermore, for micro-bubbles, the
curvature correction to the surface tension is minor. Taken
together, we argue that under conditions of the ultrasound-
induced blood-brain-barrier opening experiments, the micro-
bubble dynamics described by the RP equation depend insen-
sitively on parameters; thus, the use of the RP equation in the
current mathematical modeling studies of ultrasound-induced
the blood-brain-barrier opening20–25 should be sufficiently
accurate.

V. CONCLUDING REMARKS

We have carried out NEMD simulations to verify, for the
first time, the applicability of the RP equation in the descrip-
tion of stable cavitation of nano-bubbles. We have shown that
this equation describes the bubble dynamics in liquid water
quite well as long as the contributions of three terms, iner-
tial, surface tension, and viscosity, are correctly taken into
account. For subnano-bubbles (.1 nm) studied in this work,
the contribution of the surface tension calculated, using the
bulk water-air surface tension and its curvature correction, is
not accurate, resulting in incorrect description of the RP equa-
tion. The inertial as well as the viscosity terms are directly and
inversely proportional to the amplitude and period of cavita-
tion, respectively. For small amplitudes and long frequencies,
these terms are small and the surface tension term plays a
major role in the RP equation. In contrast, large amplitudes
and short frequencies yield fast cavitation velocity, therefore
the viscous effect becomes important, and the curvature cor-
rection to bulk water viscosity must be considered, especially
for subnano-bubbles. Due to very small bubble sizes, it is gen-
erally accepted that the inertial contribution is small. However,
as shown above, this term may become very large if the period
is short. In this case, the choice of the hydrostatic pressure in
the RP equation is important to describe correctly the dynam-
ics. We also show that the finite-size effect does not affect
bubble dynamics obtained either from simulation or from the
RP equation. In summary, our study together with previous
studies7,12–14 confirm that the RP equation is quite accurate to
describe both stable and inertial bubble cavitation for nano-
bubbles, although microscopic effects are not included in this
equation. We also suggest that the use of the RP equation is
quite accurate to model micro-bubble cavitation in the cur-
rent theoretical modeling studies of the ultrasound-induced
blood-brain-barrier opening experiments.
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