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Here presented a systematic study of superconductor-constriction-superconductor contacts 

realized by a break-junction technique in layered superconductors. Depending on the constriction 

transparency the tunneling and SnS-Andreev spectroscopies could be used, for the direct 

determination of values of superconducting gaps, characteristic BCS-ratios and gap temperature 

dependences in cuprate superconductors, magnesium diboride, novel pnictides and 

chalcogenides. Basing on these data, one can estimate the gap anisotropy magnitude as well as 

values of electron-boson coupling constants. We discuss the advantages and difficulties of the 

break-junction technique and demonstrate this method is powerful enough for high-resolution 

investigation of optical phonon modes in high-temperature superconducting cuprates and for 

creating of the contacts with the selective transparence in Mg1–xAlxB2 compounds. 
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Introduction 

 

The experimental determination of an extremely important property, the superconducting 

order parameter, is one of the key problems in superconductivity physics. A simplified but 

demonstrative description of the physical meaning of this value is offered by the theory 

presented by Bardeen, Cooper, and Schrieffer (BCS), in which the forbidden energy band (for 

conventional charge carriers, i.e., normal electrons), which appears as a gap in the dependence of 

the electron density of states on energy, is considered to be the superconducting order parameter 

[1]. The accurate and unambiguous measurement of the superconducting gap affects not only the 

development of the theoretical understanding of the nature and mechanisms of high-temperature 

superconductivity (HTSC), but also the possibility of developing advanced HTSCs. The 

spectroscopic methods based on Josephson effects, quasiparticle tunneling, and Andreev 

reflection effects [2,3] are considered to be the most useful instruments in superconductor 

studies. Tunneling and Andreev spectroscopy allow us to measure not only the value of the 

superconducting gap [4–6] but also to study other properties of the material (the electron-

phonon, for example see Refs. [7] and [8]), with a high degree of accuracy. This review is 

dedicated to the unique technique of creating (nano)contacts on a microcrack (“break-junction”). 

This method has a number of advantages in comparison to traditional tunneling techniques, 

which allow it to locally determine the bulk value of the order parameter using different 

spectroscopic methods on the same cryogenic cleaved surface. 

This study consists of 5 parts. The first is a brief survey of the main stages involved in 

creating break junctions, as well as other tunneling techniques. The second provides a detailed 

description of how the “break-junction” experiment on layered materials is set up and conducted. 

The third section is a discussion of the Andreev and intrinsic Andreev spectroscopies of the 

obtained break-junctions; we provide the expected form of the current-voltage characteristics 

(CVC) and dynamic conductance spectra of the contacts for the case of a multiple gap 

superconductor as well as the anisotropic order parameter. The fourth section is dedicated to the 

implementation of the spectroscopic methods considered above in “break-junction” experiments 

on HTSC cuprates, magnesium diboride and iron superconductors. The fifth chapter briefly 



presents the main conclusions regarding the benefits of the techniques involved in creating break 

junctions, and their applicability to a variety of samples. 

 

1. The history of how the tunnel experiment was developed 

By the time the scanning tunneling microscope (STM) was invented [9,10]., classic SIS 

and NIS contacts (S is a superconductor, N is a non-ballistic layer of normal metal, I is the 

insulator) were usually constructed using a natural (oxidation) or artificial (mesa structure) oxide 

layer between two superconducting electrodes, as well as a vacuum barrier [11–13]. Along with 

the likes of “solid” tunnel junctions, squeezable contacts [14–18] also enjoyed a lot of 

popularity, in which the role of the tunnel barrier was played by a gap with a thickness about 

equal to the interatomic distance between two tightly pressed superconducting electrodes made 

of the studied material, immersed in liquid helium. Precise adjustment of the contact force 

between two electrodes changed the contact resistance, which in turn, affected only the 

amplitude of the tunnel characteristics of the dI(V)/dV-spectrum, without shifting their position 

and the value of the determined superconducting gap. 

In order to implement Andreev reflection spectroscopy,3 Andreev point NS contacts were 

used, which were created by compressing a metal needle [19,20], or by “pinning” the metal wire 

to the surface of the superconducting sample using current pulses [20]. This technique is usually 

referred to as “PCAR” (point contact Andreev reflection). Such tunneling and Andreev contacts 

have a number of benefits: sufficient mechanical stability for the study of superconducting 

properties using the corresponding methods of spectroscopy, the opportunity to study samples 

that are microscopic in size, a controllable configuration (creating a contact along the ab and c-

directions of the single crystal lattice), but they also have evident drawbacks: the 

superconducting order parameter near the surface exposed to degradation is often reduced in 

comparison to its bulk value (as demonstrated in Refs. [21] and [22], for magnesium diboride, 

within the scanned surface with an area 0.5·0.5 μm2 the amplitude of the quasi-two-dimensional 

order parameter varied from zero to the maximum value); the point at which the measurement 

occurs is also the location where the current is injected (since the sample is connected via a 

three-point circuit), which can lead to an uncontrolled local increase in the temperature. 

Moreover, the poorly-controlled geometry of the barrier in a NS contact leads to the formation of 

micro short-circuits and the appearance of hundreds of thousands parallel nanoscale contacts 

having different configurations (including tunneling) [20,23]. To this day, the question of 

whether or not PCAR methods are applicable to the study of two-gap superconductors remains 

unanswered: the proximity effect gives rise to the formation of Cooper pairs with two different 

binding energies in the metal part of the NS contact, which correspond to the respective values of 



the superconducting gaps. As a result of scattering by defects, there is a mixing of these induced 

pairs within the metal, which leads to the convergence of two desired binding energies, up to 

their unification with a gap magnitude resembling the rms value. 

The concept of tunneling break-junctions was first proposed in the early 1980s [24], almost 

at the same time as the invention of the STM [9,10]. In the simplest configuration the fragile 

wire from the test superconducting material (in the initial studies it was Nb) is fixed to a flexible 

substrate, and immersed in liquid helium. At T = 4.2K the mechanical deflection of the substrate 

split the wire in halves, creating two equal superconducting banks. Further on, by adjusting the 

deflection of the substrate, the ends of the wire were separated by a few angstroms in order to 

obtain a SIS tunnel contact. The paper authored by Moreland and Ekin [18] opened a new level 

in the development of tunnel research: this group was able to create experimental techniques that 

not only preserved all advantages of the classical methods, but also practically eliminated the 

shortcomings thereof. According to estimates in Refs. [18] and [23], the mechanical stability of 

“broken” contacts did not yield to the strength of the squeezable contacts, structures with natural 

oxide barriers or STM contacts. At the same time the experimenters solved two important 

problems that are typical for classical SIS, NIS, and NS contacts:  

(1) significant weakening of studied surface degradation due to the creation of a cryogenic 

cleavage in an inert atmosphere, which ensured a high purity of superconducting electrodes; 

(2) an absence of mechanical pressure on the contact area, which prevented the distortion 

of the superconducting properties of the material. 

Several years after Moreland’s study was published, more sophisticated “break-junction” 

setups were created, which implemented both rough and fine adjustment of the substrate deflec-

tion, as well as systems that allowed the researchers to work in vacuum with non-brittle materials 

(such as simple metals) and films [23,25–27]. The main feature of this new generation of break 

junctions was the ability to transfer the contact between the low capacity (so called “constric-

tions” [23]), high capacity (“tunneling” contact [23]), and intermediate regimes using mechanical 

regulation of the tunnel barrier thickness. Later the technique of creating break junctions for the 

implementation of SIS and SnS spectroscopy was successfully applied in studies pertaining to 

the properties of HTSC cuprates [8,28–45] (for a review, see Refs. [46,47]), magnesium dibori-

des [36,48–59] (for a review see Refs. [60,61]), iron pnictides and chalcogenides [53,62–77]. 

At the present time, regardless of the obvious advantages over the traditional tunneling 

methods, the “break-junction” technique is used quite rarely. This is most likely based on a lack 

of application possibilities, and the prospect of commercializing this technique for superconduc-

ting materials usage. In particular, experiments with SnS Andreev break-junctions (high transpa-

rency of barrier) are carried out only by our group. However, in 1997 Reed et al. suggested the 



idea of implemented break-junctions (based on mechanically controlled contact configuration 

used by Muller et al. [23]) in which broken electrodes were weakly bound by individual molecu-

les [78]. Thus, the unique opportunity provided by “break-junction” technique to create ultrapure 

break junctions has found wide application in molecular electronics: in particular, in studies of 

vibrational and transport properties of separate organic molecules (see Ref. [79] for a review). 

 

2. The break-junction technique 

2.1. The configuration of a “break-junction” experiment 

Our group uses the “break-junction” technique that was perfected by Ponomarev [28,29], 

with respect to layered superconductors. In these materials the “break-junction” technique allows 

for the realization of four methods of investigating the superconducting order parameter on 

cryogenic cleavages of the same sample: tunnel (Josephson), intrinsic tunnel [80], SnS Andreev, 

and intrinsic Andreev spectroscopies [81]. 

A layered single crystal (or polycrystalline sample with crystallites oriented along the c-

direction) superconductor is prepared using a thin rectangular plate parallel to the ab-plane of the 

crystal lattice, with sizes of about (3–5)·(1.5–2.5)·(0.1–0.4) mm3. For especially solid samples 

(MgB2, for example), it is necessary to also make a notch which demarks the sample into two 

squares and serves as an additional stress concentrator. An insulating substrate (3) with four cop-

per contact pads (5) is fixed on the U-shaped spring measuring table (8 on Fig. 1) made of beryl-

lium bronze 0.2 mm thick. The substrate also has a sufficiently deep cross-section, which is the 

mechanical stress concentrator. Along the edges the substrate is further fixed to the table using a 

bandage (4). Two current and two potential contacts are fed to the pads in order to implement a 

standard four-point measurement scheme. Sample (7) is fixed in the middle of the contact pads 

using massive drops of indium-gallium solder (6) (spreadable paste) that is liquid at room tempe-

rature, at the sample corners. The use of a eutectic protects the thin plate of the sample from pre-

mature breakage at inevitable deformations of the substrate during the process of mounting and 

at the initial cooling of the insert. The configuration of the measuring table can also be succes-

sfully used for mounting the whisker single crystals up to 5mm long, as shown in Fig. 1(c): in 

order for a whisker not to “fall down” into the gap between the copper pads, a substrate made out 

of tissue paper is used, and four In-Ga contacts are applied parallel to each other and perpendi-

cular to the single crystal needle across the length of the sample. 

After fixing the table to the insert, a screw with a micrometer thread (1) is applied to the 

former; indentations are made at the end of the micro screw and at the center of the table, into 

which the needle is inserted tightly (2). The needle is used to transfer only the translational 

displacement of the microscrew to the surface of the table. For the successful creation of cryoge-



nic cleavages it is extremely important to ensure that the sample is not prematurely cracked du-

ring cooling. Therefore, it is necessary to slightly strain the table spring using the needle in ad-

vance (by making a half-turn with the microscrew, for example), and gradually weaken the de-

formation during the cooling process. Microcracks are created in the crystals at helium tempera-

tures by applying precise mechanical pressure to the measuring table, which bends the substrate 

made of polyepoxides bonded paper (FR-2 or getinax) with the sample along the stress concen-

trator (see Fig. 1(a)); at small displacements this corresponds to the sample split in a direction 

perpendicular to the concentrator. The layered sample is held firmly by frozen In-Ga solder, and 

stratified in the stress concentrator region along the ab-plane. In general, two cryogenic clea-

vages are created in the sample, which represent steps and terraces separated by a weak coupling 

region, i.e., we get an ScS contact (where c is a constriction). In the experiment the c-region can 

formally exhibit properties of insulator (I), a normal metal (N), or of a thin (in comparison to the 

length of the carrier mean free path) normal metal (n), depending on the barrier transparency Z. 

This parameter can be regulated in STM experiments [82]. Given a minimum substrate defor-

mation the current across the break-junction flows along the crystallographic axis c.  

It is well-known that the surface of many layered HTSCs either does not carry any infor-

mation about the bulk properties of the material (for example, HTSC cuprates are sensitive to 

oxygen doping loss, iron pnictides LiFeAs are highly susceptible to degradation in the presence 

of water vapor, etc.), or hinders the process of conventional surface techniques, for example, due 

to the formation of a Schottky type barrier (so in oxypnictides LnOFeAs, Ln is a lanthanide and 

the surface turns out to be charged [83]). The values of the gap and the critical temperature Tc on 

the surface of the crystal can be markedly different from those in the bulk of the sample. In our 

experiments on layered materials, in contrast to the procedures proposed in Refs. [23] and [24], 

in the process of creating microfractures the superconducting banks of the sample are not separa-

ted by a significant distance; the microcrack is formed in the bulk of the sample and is not visible 

on the surface. Given this type of the “break-junction” technique, the cryogenic surfaces are na-

turally protected from degradation caused by the penetration of “dirt” from the atmosphere into 

the sample, precisely because they are in the bulk; the cleavages remain as clean as possible. We 

identify the onset of the crack dividing the sample plate into two halves in real time according to 

the appearance of a slope along the current-voltage characteristics, at currents of about 5–10 mA. 

We observed that given a considerable separation of the sample halves and a full opening of the 

cryogenic cleavages, the surface degrades, which leads to an increase of both normal scattering 

Γ, and a decrease in the amplitude of the superconducting gaps Δ. The emergence of Schottky-

type barriers is sufficiently rare and is easily controlled according to the preservation of the CVC 

symmetry. 



Break-junctions are located between massive superconducting banks of the sample, which 

ensure reliable heat sink from both sides (in contrast to NS contacts and especially mesa structu-

res). Moreover, since the microcrack is located away from the potential and current contacts of 

the sample, then the heat generated by the latter does not lead to the heating of the studied point. 

Therefore, the experiment configuration we used almost completely eliminates the chemical, 

thermal, and mechanical affecting on the region of the ScS contact. The resulting values of the 

superconducting gaps, therefore, are as close as possible to the bulk value of the order parameter. 

According to our estimates, the radius of the break junctions a ~ 1.2–30 nm [51,71], thus, the su-

perconducting properties are studied locally (i.e., within the contact area). In particular, this ma-

kes it possible to accurately determine the local critical temperature Tc
local, which is the transition 

temperature of the contact area into the normal state. In the experiment, Tc
local is determined 

according to when the dI(V)/dV-spectrum becomes linearized (which corresponds to the ohmic 

CVC). Due to the natural inhomogeneity of the samples, the local critical temperature could be 

significantly different from the average over the bulk of the sample Tc
bulk (determined, for exam-

ple, in resistive measurements or the temperature dependence of the magnetic susceptibility of 

the sample). Knowing Tc
local can help us determine the real (local) value of the characteristic 

2Δ/kBTc ratio, which is the key to the fundamental conclusions as to the nature of super-

conductivity in a given material. 

It is known that steps and terraces form on the cryogenic cleavages of any layered 

compounds. The height of these steps is a multiple of the lattice parameter c; for cuprates it is c/2 

due to the half-period “shift” of the lattice structure in the ab-plane. Given a small deformation 

of the substrate, the cryogenic cleavages slide relative to each other with precision along the 

terraces (in the ab-plane), which implies the creation of a tunneling current through the fracture 

in the c-direction, and enables a smooth and reversible mechanical regulation of the contact area. 

On the contrary, if we assume that the superconducting banks touch along the c-direction (i.e., 

there is a tunneling current in the ab-plane), this contact would not be subject to a smooth 

regulation: a backtrack of the banks would cause an abrupt increase in contact resistance. As 

such, the orientation of the contact (j||c) can be accurately determined throughout the experiment. 

The steps and terraces of the cryogenic cleavages often exhibit properties of stack contacts such 

as ScSc-…-S. Since they in fact are natural mesa structures, such arrays are electrically 

equivalent to a chain of series-connected identical (single) ScS contacts. Thus, the position of the 

singularities caused by the bulk effects on the CVC and the dynamic conductance spectrum of 

stacks made of m contacts (m is a natural number) will be multiplied by an m times in 

comparison to the I(V) and corresponding dI(V)/dV of a single contact. The “break-junction” 

technique can be used to achieve both tunnel SISI-…-S, and Andreev SnSn-…-S structures. 



A unique advantage of the break-junction is the possibility of its precise regulation during 

low-temperature experiments, i.e., studying the properties from one point on the surface of a 

cryogenic cleavage, to another. Mechanical readjustment can be used to obtain dozens of single 

and stack contacts in the same sample by scanning cryogenic cleavages, which brings the 

possibilities of this technique closer to those of STM, in this respect. A set of large statistical 

data allows us to confirm the absence of any dimensional effects influence on the results of the 

studies (since the dimensions and normal resistance of each contact are random) and to assess the 

uniformity of the superconducting properties of the sample. 

 

2.2. The methods of recording the dynamic conductance spectra of tunnel junctions 

Using a source of current rather than voltage when studying tunnel junctions implemented 

on superconductors solves at least two problems: firstly, it gives the opportunity to record 

supercurrent at zero bias, and secondly, if we have the appearance of (ohmic) contacts connected 

in parallel to the junction under the study (which is typical for “break-junction” technique), the 

dynamic conductance spectrum dI(V)/dV shifts strictly vertically (i.e., the bias of any spectrum 

singularities remain unchanged), which is very important for the accurate determination of the 

superconductor energy values. For the same reasons a hardware-based determination of the 

dI(V)/dV-dependence instead of dV(I)/dI is also preferable. 

In order to measure the dI(V)/dV characteristics we use the standard current modulation 

technique and a hardware control system over the measuring bridge balance. The source of the 

current fixes the current through the sample, while the DC gets mixed with a small amplitude AC 

having a frequency of about 1 kHz from the external oscillator. The multiplying digital-to-

analogue converter (DAC) mounted on a digital IO board can scale the current modulation 

amplitude, while the automatic computer tracking system using the bridge unbalance signal 

coming from a selective nanovoltmeter (lock-in amplifier) controls the multiplying DAC and 

withholds the response modulation amplitude for voltage equal to a certain reference amplitude 

from the same generator of the sinusoidal signal. The scaling factor of the modulation signal 

amplitude (with respect to current) is established using the final balance of the electric bridge, 

recorded in the multiplying DAC, and is proportional to the slope of the CVC at the measured 

point. It is only after the system has determined the CVC derivative at the desired point that the 

current through the sample is changed, and the measurement cycle is repeated. By measuring the 

second harmonic of the modulation signal, it is also possible to obtain the second derivative 

d2I(V)/dV2 using hardware. 

 



 
Fig. 1. The design of the table and a diagram of the sample mounting onto the substrate 

using a four-point scheme for obtaining break-junctions (a). The general form of the table 

with the sample attached (b). A mounting example of a whisker onto the table contact pads 

(c). 1 is the screw with a micrometric thread, 2 is the needle for transmitting translational 

displacement, 3 is the insulating substrate, 4 is the bandage, 5 are the copper contact pads, 6 

is the indium-gallium solder, 7 is the sample, 8 is the spring table made out of beryllium 

bronze, 9 is the flexible insulating lining, 10 is the whisker.  



 

2.3. On the possibility of creating break junctions in polycrystalline samples of layered 

compounds 

The process of forming microcracks in the non-oriented polycrystalline compound that has 

a layered structure and a significant in-plane to out-of-plane strength anisotropy, is shown 

schematically in Fig. 2(a). As a result, cracks within the polycrystalline sample can form grain-

grain contacts (mainly for crystallites with ab-planes perpendicular to the direction of the 

fracture; crystallite No. 1 in Fig. 2(a)) and as junctions that are formed by terrace contact of split 

crystallites, the ab-planes of which are about parallel to the direction of the cleavage (crystallite 

No. 3 in Fig. 2(a)). In general the likelihood of crystallite fracture depends on the ratio of the 

mechanical coupling strength between the crystallites Pig and the coupling between the ab-layers 

of the lattice Pil. Strictly speaking, the probability that a crystallite (grain) will be split depends 

on both the Pig/Pil ratio and of the spatial orientation of the ab-plane of that grain relative to the 

plane of the microcrack formation. If the value Pig/Pil increases slightly, the share of the split 

crystallites increases significantly. For example, if Pig/Pil increases from 1.1 to 1.2, nearly 2 times 

as many randomly oriented crystallites will split (the corresponding area is highlighted by 

hatching in Fig. 2(b)). 

It is obvious that for polycrystalline samples synthesized by re-annealing, we should 

expect a high percentage of stratified crystallites. A simple calculation shows that already at 

Pig/Pil = 1.1 we should expect the cleavage of up to 6% of the stratified grains (solid line on Fig. 

2(b)), whereas at Pig/Pil = 2.5 about half of the grains will split. The image obtained at the 

cleavage of the polycrystalline Sm0.7Th0.3OFeAs using an electron microscope (Fig. 2(c)), clearly 

shows the steps and terraces at the surface of the split crystallite. Our estimated diameter of the 

ScS break-junction 2a = 10–60 nm is several orders of magnitude less than the average grain size 

and the average width of the terraces (~100–200 nm), such a contact will not yield to a contact 

created in a single crystal. Moreover, the use of “break-junction” technique in polycrystalline 

samples is preferable since the crystallites tend to be more homogeneous than single crystals 

with millimeter dimensions, especially those synthesized under conditions of temperature 

gradient and/or pressure. 

Is it possible for stack ScSc-…-S structures to form in polycrystalline samples of layered 

superconductors? The attempt to explain the serial ScSc-…-S contacts that are obtained in the 

experiment as chains of crystallites connected through grain boundaries, and not using intrinsic 

effects (which are implemented in natural stack structures), cannot withstand criticism. Due to 

the lack of equivalence between such borders the resistance of these stacks will not scale with 

number of grains m, thus, the position of the main gap singularities will be random, instead of 



being a multiple of 2Δ/e; the shape and fine structure of the singularities will not reproduced 

given a mechanical readjustment of the junction. Moreover, as the number of grains m and 

intergranular boundaries having non-equivalent resistance in the normal state increases in the 

chain, the severity of the singularities in the spectra will drop dramatically. In our experiments 

we observed quite the opposite: in both single crystals and polycrystalline samples of similar 

compounds a typical resistance of ScS contact was reproduced, and the singularities of the 

dynamic conductance became sharper with increasing m [71]. Note that the position and shape of 

the singularities along the dI(V)/dV spectra (caused by bulk effects such as gap and phonon 

singularities) are reproduced when scaling the bias of the electric potential by a natural number 

m in order to normalize the conductance features to a single junction spectrum 

[36,51,66,68,69,71,74,75,77], and coincide with the single contact characteristics. Similar data 

were obtained for single crystals of layered superconductors [30,67,72,76,81]. 

Thus, we can assume that the quality of the spectra obtained on stack contacts increases 

due to a decrease in the contribution from surface defects to the dynamic conductance of a break 

junction. It should also be noted that an important feature of these tunnel structures in 

comparison to artificially created mesa structures, is the minor and controllable influence of local 

overheating effects due to the significant remoteness of the current injection site into the stack, 

and the good heat sink on both sides of the array. 
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Fig. 2. A diagram of microcrack formation in the polycrystalline sample. The hatching shows the 

direction of the ab-planes in the crystal grains (a). The dependence of the part of split crystals 

on the ratio of the intergranular and interlayer bond strength Pig/Pil for samples in which the 

crystallites have a mechanical bond with all neighboring grains (solid line) and with half the 

neighboring grains (for loose samples, for example; dashed line) (b). The steps and terraces on 

the surface of the ruptured crystallite on the cleavage of the layered polycrystalline 

Sm1-xThxOFeAs; the image is obtained with an electron microscope (c). 

 

 

 



3. Andreev and intrinsic Andreev spectroscopy of superconductors 

3.1 The effect of multiple Andreev reflections 

It is well known that the effect of multiple Andreev reflections [3] of electron is observed 

in SnS contacts (wherein n is a thin normal metal), when they are ballistic, i.e., when their 

diameter 2a is less than the mean free path of the carriers l. Ballistic contacts are also called 

Sharvin contacts, named after Yuri Vasilievich Sharvin, who described the physical properties of 

point contacts with a diameter 2a < l in Ref. [84]. The resistance of such a contact is 

approximately l/a times greater than the ohmic and is equal to R = 4ρl/(3pa2) [84]. Note that the 

lower limit of the 2a range, in which the physics of such point contacts is fully implemented, is a 

Fermi electron wavelength λF < 2 nm. Therefore, at 2a < λF the electron-wave interactions start 

to play a deciding role; these types of contacts are usually called quantum ballistic. In contrast, in 

the SnS contacts considered by us, λF,ξ < 2a < l is fulfilled (wherein ξ is the superconductor 

coherence length) and the ballistic case of electron flight through the contact is realized, which 

consists of two SN interfaces. For each Andreev reflection from an SN interface the quasiparticle 

provides a transfer of Cooper pair through the metallic layer, which leads to the appearance of an 

excess current on the CVCs of Sharvin contacts. 

Fig. 3 shows the theoretical dynamic conductance spectra (in reduced coordinates) and the 

CVC of a SnS Andreev contact, calculated based on the different models for a single-gap 

superconductor with an isotropic gap (s-wave symmetry). The contact resistance is assumed to 

be unity. The dI(V)/dV-spectrum for SnS contacts was first calculated by Octavio with Tinkham, 

Blonder and Klapwijk as coauthors in Ref. [6] (the so-called OTBK model); the corresponding 

spectrum (T= 0, barrier transparency Z = 1) is shown in Fig. 3 with a black dashed line. Octavio 

et al. Qualitatively demonstrated that on the dI(V)/dV-spectrum, the effect of multiple Andreev 

reflections causes a subharmonic gap structure (SGS), which is a series of dynamic conductance 

minima at bias:  

Vn = 2Δ/en, wherein n is a natural number.     (1) 

It is obvious that the position of the Andreev features Vn is linearly dependent on the inverse 

subharmonic number 1/n. 

In more recent theoretic studies [85–87] it was shown that at low bias on the CVC of the 

SnS contact a significant excess of quasiparticle current was observed, the conductance was 

several times higher than normal, and the I(V)-dependence of such a contact tends toward ohmic 

at V >> 2Δ/e (see Fig. 3). The CVC region at V→0 is referred to as “foot.” We note for the sake 

of comparison that when one is dealing with NS contact conductance (which is typical for point 

contact techniques) at low biases there is an expected two-fold increase of normal ohmic 

conduction, which occurs at bias above the gap values V>Δ/e [5]. 



The SGS along the dI(V)/dV-dependence for an SnS contact with high transparency (95%–

98%), a diameter 2a, and subject to the condition λF < 2a < l, is a series of conductance minima 

[85–87]. The spectrum calculated according to the Arnold model [85] is shown on Fig. 3 in a 

thick, light-green line (T=0, probability of overcoming the barrier T2=0.83). The Averin-Bardas 

model [86] and the calculations performed by Cuevas et al. that are based on it [87] predict a 

weakly expressed first gap singularity with n=1, and subsequent subharmonics n=2,3,… are 

sufficiently intense minima, with positions that are also described by Eq. (1). The results of 

studies conducted by Arnold [85], and Averin-Bardas [86] for ballistic SnS contacts with a high 

transparency are in great agreement between one another both in terms of predicting the type of 

singularities of the subharmonic gap structure along dI(V)/dV, and in terms of general 

exponential course of this relationship at V→0.  

The model composed by Kümmel et al. [88] also considers the ratio of the mean free path 

of the carriers to the contact diameter l/2a, and the existence of Andreev quasiparticle band 

within the gap. A curve corresponding to the case of l/2a=5 and T=0.8Tc is obtained using 

numerical differentiation of the CVC from Ref. [88] and is shown by a dash-dot line in Fig. 3. 

The presence of such an Andreev band leads to the appearance of satellite minima that 

accompany each Andreev subharmonic. We will not go into the details of this result from Ref. 

[88], but will only note that the intensity of the Andreev minima decreases as the number of the 

singularity n increases, and the amount of observed subharmonics corresponds approximately to 

the ratio n ≈ l/2a. One of the most important conclusions from Ref. [88] is that the position of the 

SGS minima continues to follow the above formula for Vn at any temperature 0 < T < Tc. As 

such, the multiple Andreev reflection spectroscopy method allows us to determine the value of 

the superconducting gap directly from the positions of the Andreev subharmonics without 

additional calculations and fitting of the dI(V)/dV-spectrum. This significantly increases the 

accuracy of determining the superconducting order parameters and the accuracy of the 

experimental data for two-gap superconductors in comparison to SIS or N(I)S contact 

spectroscopy, which involve fitting the dynamic conductance by using adjustable parameters 

[4,5]. Consequently, the temperature dependences of the superconducting gaps are preferably 

obtained using SnS contacts, which gives us the possibility of accurate estimating the electron-

phonon (in general, the electron-boson) interaction constant [52,53]. 

We would like to underscore that the CVC and dynamic conductance spectra of SnS 

contacts with a high transparency and foot at V→0, the preparation of which is typical for the 

“break-junction” method, are different from I(V) and dI(V)/dV of the quantum point contacts 

with a low transparency and a current deficit at V→0. In Refs. [86,87] it is shown that as the 

transparency decreases the series of minima turns into a series of maxima. If the diameter of a 



contact with a high transparency becomes comparable to the length of the mean free path (2a ≈ l) 

then SGS become blurred: one observes a limited number of features all the way up to a single 

one at V=2Δ/e. In the case of superconductors such as cuprate HTSCs, with hole-like Cooper 

pairs, the mechanism of multiple Andreev reflections does not change. 

An important feature of SnS contacts in the c-direction on layered superconducting 

materials is the fact that since the Fermi surfaces for both electron and hole bands are usually 

slightly corrugated cylinders, the normal current carriers pass toward the SN interface almost 

tangentially. This is not typical for classical theories describing the CVC of Andreev contacts, 

and in the case of Z<5 the probability of the quasiparticles having a normal reflection from the 

SN interface should noticeably increase, which is defined as Z2/(Z2 + cos2α), wherein α is the 

angle to the normal. Note that at α → π/2 the value of cos2α is proportional to the bias voltage of 

the contact. Of course this case requires further theoretical study. 
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Fig. 3. The theoretical dI(V)/dV-spectra (right vertical axis) of SnS contacts, obtained based on 

the OTBK model (black dashed line, Z=1) [6], Arnold (thick light green line, probability of 

passing the barrier T2=0.83) [85], Cuevas et al. [87] and Averin–Bardas [86] (thin solid pink 

line; barrier height h=0.23, transparency 95%; the corresponding CVC is shown by a thick line, 

left vertical axis), Kümmel et al., dash-dot line; the ratio of the mean free path to the diameter of 

the contact l/2a=5, T=0.8Tc) [88]. The position of the SGS minima is denoted by n=1,2,… 



 

3.2. Superconductors with an anisotropic order parameter: Andreev spectroscopy of SnS 

contacts 

Multiple gap superconductors have been widely known since the discovery of MgB2 in 

2001 [89], and have been studied intensely since then [54,55,90–95], even though two-gap 

superconductivity was theoretically predicted in the middle of the last century [96,97].  

We will note that two-gap superconductivity was experimentally observed by Ponomarev 

et al.: they found that the dynamic conductance of tunnel break-junctions in single-crystals 

Y(Yb)BaCuO could not be described using a single gap model, and reproducibly two series of 

features were demonstrated [98], which was confirmed by theoretical calculations [99,100].  

As is known, the anisotropy of a superconducting order parameter Δ can be caused by the 

following factors: basic deviation of the symmetry type from the s-wave, i.e., by the presence of 

an angular gap amplitude distribution Δ(θ) in the k-space [101,102]; the splitting of the gap 

amplitude, due to degeneracy removing for condensate, realized on the Fermi surfaces with 

similar geometry and slightly different momentum modules (e.g., nested); by the variation of the 

gap in the real space, for example due to an inhomogeneous distribution of impurities or dopant. 

Understanding the causes and consequences of gap anisotropies is extremely important for the 

determination of HTSC mechanisms [103,104], and therefore interest in this subject has been 

revived with the study of iron-based superconductors. For example, Ref. [20] contains an 

analytical investigation of how the gap anisotropy in the k-space affects the shape of the Andreev 

spectra of NS contacts; unfortunately for SnS Andreev contacts in the c-direction, such detailed 

theoretical calculations still have not been performed.  

We will now consider the process of multiple Andreev reflections and subharmonic 

structures in dI(V)/dV-spectra of the SnS contact in a multi-gap superconductor, in more detail. 

A diagram detailing how the carriers are transported across the n-layer of the SnS contact is 

shown in Fig. 4(a). By applying the bias V, Andreev current will start to flow, in which electrons 

and holes with any momentum corresponding to the Fermi surfaces of the studied material, will 

participate. If such an SnS contact is organized in the c-direction (which is exactly the case when 

using the break-junction) and V is small, then pz << px,py. Since in a ballistic Andreev contact (l 

>> 2a) the electron momentum is preserved, then the mixing of quasiparticles belonging to 

different bands does not occur. We can say that each of the bands witnesses the realization of 

their own Andreev transport channel. Therefore, in the dI(V)/ dV-spectrum of an Andreev 

contact in a multi-band superconductor we should expect the appearance of several SGS, 

corresponding to each of the gaps. 



In the case of a single-gap superconductor having gap anisotropy in the k-space, the sha-

pe of the Andreev singularities along the spectrum for such a contact in the c-direction can 

reflect the anisotropy of the order parameter in the kxy-plane (see Fig. 4(a)). Due to the stratifica-

tion and multiorbital nature of the zones, HTSCs most often have Fermi surfaces that are close to 

cylindrical, and a characteristic anisotropy of the order parameter Δ in the kxy momentum space, 

that corresponds to the ab-plane of the real space, in which its value depends on the direction of 

the momentum Δ = f(kx,ky). The angle h is usually used in order to consider the type of the order 

parameter anisotropy, such that tg(θ) = ky/kx. Theoretical studies of this problem were initiated 

rather long ago: for example, in Refs. [101,102], a gap amplitude function that is symmetrical 

with respect to kx and ky was proposed for SIS and NIS contacts based on HTSCs with an 

anisotropic gap and a van Hove singularity close to EF, Δ = Δ0 + Δ1cos(4πθ) with four amplitude 

maxima Δ = Δ0 + Δ1 in the ±kx and ±ky directions. We did not want to introduce one more energy 

parameter (Δ1), since it does not appear to have any real physical meaning, therefore we will 

introduce the function Δ(θ) in another form: Δ(θ) = Δmax(1 + 0.5A·[cos(4πθ) − 1]), wherein Δmax 

is the maximum amplitude, and the coefficient A represents the gap anisotropy in percentages.  

Fig. 4(b) shows the collected dynamic conductance curves (in relative coordinates) for 

highly transparent SnS contacts, with current in the c-direction, which were qualitatively estimat-

ed by us using the Devereaux and Fulde [105] calculations for a superconductor with an isotropic 

order parameter. The background exponential course of all spectra is suppressed, and the calcula-

tion is conducted for an “ideal” ballistic contact with l >> 2a at T=0. In the case of a supercon-

ductor with an isotropic gap (pure s-symmetry), the Andreev minima are more intense and sym-

metrical. Since dI(V)/dV is the sum of partial conductivities of each of the bands, then for a two-

gap superconductor with order parameters developed in different bands and having similar amp-

litudes (we have taken values Δ1=1 and Δ2=0.9) SGS will be a series of doublet features 

(spectrum No. 1 in Fig. 4(b)). It is clear that both minima that make up the doublet are also 

sufficiently sharp and symmetric, and the conductance reaches background in eVn intervals 

between 2Δ1/n to 2Δ2/n. The spectrum No. 2 shows how the shape of the doublet changes with 

10% gap anisotropy in the k-space, i.e., for a distribution that looks like 

Δ(θ) = 1 + 0.05·[cos(4πθ) − 1]. We can see that the anisotropy in the momentum space leads to 

the appearance of sufficiently sharp minima having a fine structure, corresponding to the 

minimum and maximum value of the gap, according to the angular distribution of Δ(θ). Both 

minima are asymmetrical and connected by an arch, but it does not reach the background of the 

spectrum. The strong anisotropy of the order parameter (Spectra 3–5 in Fig. 4(b)) complicates 

the interpretation of dI(V)/dV-spectra. 



The SGS intensity on spectra 3–5 is highly suppressed relative to the features on Curves 1 

and 2 (Fig. 4(b)). Curve 3 corresponds to 50% gap anisotropy in the k-space. Here, in compa-

rison to spectrum 2, the doublet arches become wider: for example, for the main subharmonic 

with n=1 the minimum corresponding to the lower extremum of the gap merges with the more 

energetic part of the extremum of the second harmonic 2Δmin/e = 2Δmax/2e; thus visually the 

spectrum retains SGS that are comprised of asymmetric minima, and the even Andreev minima 

are more pronounced than the odd. For an arbitrary gap anisotropy that is greater than 50%, the 

components of the nth Andreev minimum will overlap with features having an of order n+1. It is 

obvious, when there is 100% anisotropy (i.e., when the order parameter retains the sign, but has 

nodes in the k-space) there will be a series of asymmetrical features, the position of which will 

correspond to the maximum amplitude of the gap (spectrum 4). This case is reminiscent of 

implementing d-wave (sign alternative) gap symmetry (see spectrum 5; obtained in Ref. [105]), 

with the exception of slightly different shape of the minima and relative amplitudes thereof, 

which becomes minimal in the case of d-symmetry. In general, unlike the strengthening of the 

even subharmonics in spectrum 3, in two of the last cases the SGS amplitudes gradually decrease 

with increases in n. 

To summarize, we would like to note that the high quality of the Andreev spectra 

obtained using the “break-junction” technique allows us to reproducibly observe the fine 

structure of the Andreev minima and make conclusions concerning the type of gap symmetry. In 

our experiments it is possible to identify SGS that correspond to gaps with pure s-wave 

symmetry, and those with anisotropy up to ~40%, as well as gaps with nodes in the angular 

distribution. It is virtually impossible to distinguish between strong anisotropy, which is greater 

than ~40%, d-symmetry, and the presence of nodes without changes in the sign of the order 

parameter (fully anisotropic s-type) using SnS Andreev spectroscopy. In the hypothetical case of 

the order parameter anisotropy in the c-direction, there will be a broadening and blurring of the 

Andreev minima with the preservation of both their symmetry and asymmetry. 
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Fig. 4. A diagram of carrier transport through the SnS contact in the c-direction for the case of a 

superconductor having an anisotropic gap in the ab-plane. The letter M denotes the center of the 

electron band (orange), the hole band is arbitrarily denoted by the letter Γ and a blue oval (a). A 

qualitative calculation of the Andreev features along the dynamic conductance of the SnS contact 

(based on the results obtained by Deveraux and Fulde in Ref. [105] for a superconductor with 

an isotropic order parameter): with two independent order parameters with similar amplitudes 

(Spectrum 1), with 10% gap anisotropy in the kxy-plane (extended s-type symmetry) (2), with 

50% gap anisotropy in the kxy-plane (3), with 100% gap anisotropy in the kxy-plane (with nodes, 

no sign change) (4), with d-wave gap symmetry from Ref. [105] (5) (b). 

 



 

4. “Break-junction” experiments on layered hightemperature superconductors 

4.1. Tunneling spectroscopy of HTSC cuprates. Intrinsic Josephson effect 

In our experiments on layered HTSCs the constriction can be electrically equivalent to the 

insulator (SIS contact) as well as to a normal metal (SnS contact). Stratifying the cuprate 

samples using the technique shown in Fig. 1 is very simple; during this process the microcrack 

usually separates those blocks of the crystal structure (along the c-direction) that are most 

weakly bound. Thus, for example, in compounds Bi2Sr2CanCun+1O2n+6, two BiO-layers turn out 

to be separated, located in the middle of the spacer that acts as an insulator. As such, the micro-

crack creates a contact with a so-called constriction that is electrically equivalent to the SIS 

tunnel contact. The current-voltage characteristics of the resulting contact usually exhibit a 

strictly vertical section at V=0, i.e., a Josephson supercurrent, the amplitude of which demonstra-

tes Fraunhofer-type oscillations even in a relatively weak magnetic field according to the law 

|sin(x)/x| [31], which is the unambiguous proof of the Josephson nature of the supercurrent. The 

CVCs also exhibit a gap singularity, which is a sharp increase in quasiparticle current at V=2Δ/e, 

wherein Δ is the order parameter. At T<<Tc the value of the superconducting gap can be 

accurately determined directly from the position of the maximum; as the temperature increases 

the position of the tunneling peak does not correspond to 2Δ(T)/e and the gap should be 

determined by approximating the experimental dI(V)/dV-spectrum using the Dynes model [4].  

It is experimentally [106–108] and theoretically [109] proven that HTSC cuprates are natu-

ral SISI-…-S superlattices in the c-direction: the superconducting CuO2 planes (intercalated with 

calcium) play the role of the “S”, whereas the oxide spacers act as insulator. Therefore, the 

crystal behaves like a stack (in the c-direction) of series-connected Josephson junctions. The in-

trinsic Josephson effect [80,110] was first observed in such stack structures, created in Bi-2212: 

the dI(V)/dV-spectra had tunneling maxima located at multiples of the total gap energy 

V=2Δ·m/e, wherein m is the natural number of the contacts in the stack. Thus, a unique layered 

structure of HTSC cuprates makes it possible to study the properties thereof using a method 

based on the intrinsic Josephson effect, which is intrinsic tunneling spectroscopy. Subsequently, 

the presence of the intrinsic Josephson effect was confirmed in studies of mesa structures based 

on HTSC cuprates, by observing CVC branching at a current in the c-direction [106–108], 

Fraunhofer oscillations of the Josephson mesa structure supercurrent [111] and geometric Fiske 

resonances [112]. 

Fig. 5 shows a typical CVC of a tunnel junction (red curve), created in a slightly overdoped 

Bi-2212 sample with a critical temperature Tc ≈ 88K and an order parameter Δ ≈ 25 meV, as well 

as dI/dV-spectra of tunnel SISI-…-S stacks containing m=7 and m=12 contacts (black and 



magenta curves, respectively). The given CVC refers to the black dI(V)/dV-curve, and the inset 

on Fig. 5 shows an enlarged fragment of it near zero bias, containing Josephson supercurrent 

(markedly suppressed by the magnetic field of the Earth). Sharp tunneling maxima 

corresponding to energies eV = 7·2Δ ≈ 343 meV and eV= 12·2Δ ≈ 596 meV are clearly visible 

in the dynamic conductance spectra. Note that the position of the main features of the tunneling 

spectra is symmetric, which excludes the existence of a charge along the surface of the cryogenic 

clefts. The absence of hysteresis and CVC branching indicates that the SIS contacts that make up 

these two stacks obtained using the “break-junction” technique, are equivalent. It is obvious that 

in order to determine the number of contacts in the stack we must normalize the bias voltage axis 

to the corresponding natural numbers m; after such a normalization the position of the features 

on the dI(V)/dV-spectra coincides. 

It is known that in single crystals of cuprate HTSCs there are screw dislocations, wherein 

the supercurrent flowing over them shunts the tunneling transport in the c-direction through the 

SISI-…-S structure. This is why in break-junction experiments on cuprates the step on the 

cryogenic cleavage that forms the arrays is usually shunted by superconducting banks, a so-

called base-to-base contact. The parallel base-to-base contact also makes a significant 

contribution do the dynamic conductance of the break junction in the form of tunneling peaks at 

the bias voltages |V| = 2Δ/e and therefore, corresponds to a single SIS contact. Once again we 

will note that the use of the current source and hardware recording of the dI/dV and not dV/dI 

dependence guarantees the constancy of the scale for the bias V in the case of contacts being 

formed in parallel to the studied one. 

Similar features of the shunting base-to-base contact at eV ≈ 52 meV are clearly visible on 

dI(V)/dV-spectra of the stacks shown in Fig. 5 and are marked by gray arrows. Note that the 

position of the peaks of the quasiparticle tunneling current for the base-to-base contact is not 

scaled with the number of contacts m in the stack under study and does not change during the 

process of mechanical readjustment, in contrast to the main gap features of a stack contact. First 

of all, this suggests that the peaks at 53 mV cannot be interpreted as gap singularities from the 

second order parameter (because in that case their position would also scale in sync with m). 

Secondly, these singularities are the manifestation of the bulk superconducting gap; during the 

measurement of the dI(V)/dV-spectrum over 0 < T < Tc, the maxima of the base-to-base contact 

define the temperature dependence of the gap, corresponding to the data for the stack contact. 

Consequently, the impact of the base-to-base contact can always be uniquely identified in the 

experiment. At the same time, the observation of features related to the SIS base-to-base contact 

allows us to directly obtain the value of 2Δ, which significantly simplifies the determination of 

the number of contacts in the studied stack.  



During the process of mechanical readjustment the cryogenic surfaces slide along the ab-

planes: the touch point “hops” from one terrace to another; the height of the steps changes, as 

does the number of “acting” layers and therefore, so does the number of contacts in the stack m. 

If the bend of the substrate is varied with precision, we are able to get SISI-…-S structures with 

different m; in this case the position of the tunneling peaks along dI(V)/dV-spectra will change 

in multiples of 2Δ. In the study authored by Ponomarev et al. [30,43], arrays consisting of m = 

2–25 contacts were observed on the same sample; a typical resistance R = 2–2000Ω per SIS 

contact allowed us to record I(V) and dI(V)/dV-characteristics of the stacks with a large number 

of contacts, virtually eliminating overheating.  

In Fig. 5 the features of the stack tunnel junction (m=12) and of the single base-to-base 

contact have been fitted for the magenta curve as an example. An approximation according to the 

Dynes [4] model does not take into account the anisotropy of the superconducting gap in the 

momentum space Δ(θ), but nevertheless, it allows for a satisfactory description of both the tunnel 

features and to estimate the broadening parameter Γ. Since for a stack contact Γ = 2%–4% of 

energy Δ, whereas for a base-to-base contact Γ ≈ 25%, which originates from defectiveness of 

what seems like an ideal cryogenic surface, we have reason to conclude that natural arrays are 

much more reliable objects for the study of the physical properties of layered superconductors in 

comparison to the surface of cryogenic cleavages. 

In our experiments the values of the order parameter and their temperature dependences 

that are obtained using Josephson spectroscopy of single SIS contacts and intrinsic Josephson 

spectroscopy of SISI-…-S structures coincide, are reproducible, and do not depend on the 

dimension and resistance of the contacts, or on the number of contacts in the stack. 
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Fig. 5. Dynamic conductance spectra dI(V)/dV (left axis) of stack tunnel SISI-…-S structures 

(black and magenta curves correspond to the arrays consisting of 7 and 12 consecutive 

junctions) in overdoped Bi-2212 with Tc ≈ 88 K. T = 4.2 K. The current-voltage characteristics 

(red curve referring to the right vertical axis) are given for the stack made of 7 junctions (black 

dI(V)/dV-dependence). The gray arrows indicate the tunneling peaks that correspond to 2Δ/e in 

single SIS base-to-base contacts. The inset depicts the enlarged CVC fragment that shows the 

Josephson supercurrent. The dashed and dash-doted lines correspond to fragments of 

theoretical dI(V)/dV, calculated based on the Dynes model [4]. Adapted from Ref. [119]. 

 



4.2. The break-junction method as an instrument of studying the optical phonons in HTSC 

cuprates 

The high quality of the CVC and dI(V)/dV-characteristics of the Josephson junctions and 

stack structures obtained via “break-junction” experiments has provided the opportunity to 

resolve not only the main gap singularities, but also the fine structure of the spectra. In Refs. 

[8,30,36,37], a clear reproducible structure that corresponds to the excitation of optical phonons 

was observed. Fig. 6 (Ref. [113]) can serve as example of obtaining the fine structure that 

corresponds to the energy of optical Raman-active phonon modes. For underdoped Bi-2212 

samples with Tc = 21 K, a set of features at biases V < 2Δ/e is clearly visible. The fact that these 

resonances are caused specifically by the alternating Josephson supercurrent is easy to verify: as 

the amplitude of the latter is suppressed by a relatively weak magnetic field, the amplitude of the 

features along the dI(V)/dV-spectrum also decreases. The experiment shows that changes to 

these amplitudes are proportional, and with complete suppression of the Josephson supercurrent 

the features that can be associated with optical phonons, disappear. A reliable test is also the 

variation of the temperature: in Fig. 6 and the corresponding temperature dependence of the 

peculiarities in Fig. 7(a) we can clearly see that the position of the fine structure is not affected 

by this variation. The phonon energy is determined by the position of the fine structure features 

such as 2eVph and corresponds to the position of the optical phonon modes in HTSC cuprates, 

which are determined according to Raman studies [114–117]. 

Ponomarev et al. have shown [8,30,37] that the resulting phonon frequencies do not depend 

on the temperature (see Figs. 6 and 7(a)), the dopant concentration (see Fig. 7(b)), and the 

number of CuO2 planes, and are reproducible via different families of cuprate samples. Thus, we 

conclude that in SIS contacts obtained in the c-direction of the crystal lattice, the AC Josephson 

supercurrent resonantly excites the coherent Raman-active optical phonons, which points to the 

importance of a strong electron-phonon interaction in the high temperature superconductivity 

mechanism of cuprates [30,36,37,118]. Note also that we did not discover any resonant 

excitation of magnons in SIS break-junctions [8,30,37]. 
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Fig. 6. A fragment of the dynamic conductance spectrum of a SIS break-junction in an 

underdoped Bi-2201(La) sample with Tc ≈ 21K within the 5.9–12.8K temperature range. The 

position of the singularities caused by the interaction of the AC Josephson current with the 

optical phonon modes is marked by vertical lines. Derived from Ref. [113]. 
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Fig. 7. The temperature dependence of the superconducting gap 2Δ(T) (■) and the positions of 

the features along the dI(V)/dV-spectrum, caused by the interaction of the AC Josephson current 

with the optical phonon modes (circles, triangles, diamonds) (according to data from Fig. 6) (a). 

A comparison of the fine structure of a portion of the dI(V)/dV-spectra (T = 4.2 K) of SIS 

contacts obtained in underdoped (1) and optimally doped (2) Bi-2212(La). The positions of the 

phonon resonances are reproduced and shown by vertical lines (b). Derived from Ref. [113]. 

 



4.3. The manifestation of the effect of multiple Andreev reflections in the experiment 

In samples BiSr(La)CaCuO [30,31,81] the lanthanum dopant atoms changed the structure 

of the spacer, as a result of which the constriction region of the break-junction often exhibited 

properties of a thin (ballistic) normal metal layer. In the experiment we observed CVC and 

dI(V)/dV-spectra that are typical for pure SnS Andreev regime with a high transparency [6,85–

88]. Later the Andreev contacts were obtained in YBaCuO [29,44,45]. 

If under certain conditions the spacer formally exhibits properties of a normal metal, then 

by analogy with the intrinsic Josephson effect we can assume that the layered structure of the 

crystal is implemented as an SnSn-…-S stack of equivalent Andreev contacts. Indeed, the group 

led by Ponomarev first observed the effect of intrinsic multiple Andreev reflections82 by making 

the break-junction on BiSr(La)CaCuO samples. The position of the Andreev subharmonics on 

the dynamic conductance spectrum was scaled by an integer multiple compared to dI(V)/dV-

single SnS contact: 

Vn = 2Δ×m/en,           (2) 

wherein m is the number of contacts in the stack; m, n are the natural numbers.  

Subsequently the intrinsic multiple Andreev reflections effect is repeatedly observed in 

other layered materials: cuprates of different families [30,36,37,119], Mg1−xAlxB2 

[36,48,49,51,52], both single crystal and polycrystalline iron-based superconductors [66–

69,71,72,74–77]. Note that the features created by the contribution of base-to-base contacts in 

the SnS Andreev regime were observed very rarely. This could be associated with the fact that a 

large size of base-to-base contacts (comparable to the width of the terraces) at times exceeds the 

mean free path of the carriers, i.e., it does not ensure ballistic transport and prevents the 

observation of Andreev reflection. 

A large number of observed Andreev subharmonics (up to n=5) in cuprate samples allowed 

us to accurately determine the amplitude of the gap, while obtaining both the tunnel and Andreev 

dI(V)/dV-spectra on one sample allowed us to collect data statistics on four methods and 

provided reproducibility. After normalizing the spectra to the corresponding number of contracts 

m in the stack, the position of the main gap features, which were a maximum in the tunnel 

regime and a minimum in the Andreev regime, coincided at the 2Δ/e bias. Thus, four methods of 

tunneling spectroscopy (two surface and two bulk) implemented using the “break-junction,” 

demonstrated the identical values of the superconducting gaps, thereby confirming the bulk 

nature of the observed order parameters Δ and the accuracy of the obtained results [36,37]. The 

scaling Δ and Tc was observed for both under and overdoped cuprates based on Bi, Hg and Tl 

[13,30,36,37,119]. As such, in “break-junction” experiments we probed namely the 

superconducting order parameter, and not the pseudogap. 



 

4.4. Tunneling and Andreev spectroscopy of Mg1−xAlxB2 

Magnesium diboride, having a layered crystal structure and the highest critical temperature 

(in a stoichiometric state and under the normal pressure) for binary compounds Tc ≈ 40 K [89], is 

in many ways similar to HTSC cuprates [36,37,120]. However, since the strong isotope effect of 

boron clearly points to the phonon nature of the pairing mechanism in MgB2 [121] then for many 

researchers the desire to describe the superconductivity phenomenon in MgB2 only using the 

strong electron-phonon interaction and the values of the characteristic ratio 2Δ/kBTc < 5, is 

especially attractive [122–124]. As we already know, the most surprising result of the theoretical 

studies involving magnesium diboride was the prediction of two-gap superconductivity 

[125,126]. Two types of bands cross the Fermi level of MgB2 (quasi-2D hole σ-band close to the 

Γ point of the Brillouin zone, formed by the s-orbitals of boron, and three-dimensional electron 

and hole π-bands, formed by the p-orbitals of magnesium close to the M point), in which at T<Tc 

at least two independent superconducting condensates are developed. Reference [126] accounted 

for the splitting of the Fermi surface sheets in the σ- and π-bands that caused the appearance of 

doublet peaks in the theoretical quasiparticle density of states and the implementation of a four-

gap approximation (i.e., the presence of two close σ-gaps and two almost identical π-gaps). 

In our experiments the crystal lattice of the Mg1−xAlxB2 samples formally exhibited both 

insulator and normal metal properties, and SIS and SnS stacks formed on the steps and terraces 

of the cryogenic clefts due to the layered structure [36,37,48–62]. As such, we got the 

opportunity to apply four types of spectroscopy to the study of the structure of superconducting 

order parameters, just as we did with cuprates.  

The break-junction spectra we obtained for Mg1−xAlxB2 are not describable by the single-

gap model. The dI(V)/dV-spectra of the junctions in MgB2 samples with a maximum Tc ≈ 40K 

had gap singularities from a large gap Δσ = (10.5 ± 1) meV and a small gap Δπ = (2 ± 0.5) meV. 

We observed scaling of the σ-gap and the Tc within Tc = 11–40K during both increases in the 

concentration of aluminum dopant and increases in the degree of disorder of the crystal structure; 

the amplitude of the π-gap remained nearly constant under these conditions, all the way to Tc ≈ 

15K (which corresponds approximately to the “eigen” critical temperature of a 3D π-condensate 

in the hypothetical case of a zero interband interaction), after which at Tc < 15K it decreased 

monotonically. We did not observe the isotropization of the order parameters (transition to the 

“dirty limit”) until Tc ≈ 11 K [36,48,51], which was expected in Refs. [127,128]. 

Fig. 8 shows fragments of the dI(V)/dV-spectra of break junctions, containing singularities 

caused by a π-gap and obtained in a polycrystalline sample MgB2 with Tc ≈ 35K using a 



sequential mechanical readjustment [113]. The bottom dI(V)/dV-spectrum in Fig. 8 corresponds 

to the SnS Andreev junction with a high transparency: the first and second Andreev 

subharmonics are clearly visible at the biases V1 ≈ ±4 mV and V2 ≈ ±2 mV, respectively. 

Therefore, according to Eq. (1), the amplitude of the small gap is Δπ ≈ 2 meV. At large bias 

voltages we also see an Andreev minimum (nσ=2), the position of which corresponds to the large 

gap Δσ ≈ 8 meV. During gentle mechanical readjustment of the contact geometry the main 2Δπ-

minima turned into maxima: the top spectrum of the dynamic conductance is typical for SIS 

contact, and at the same time the position of the tunnel peaks and the amplitude of the π-gap did 

not change. We can assume, when the cryogenic surfaces sliding along the ab-plane the 

transparency of the ScS contact constriction decreased, which, in accordance with the models in 

Refs. [85,86] caused a transition from the Andreev regime (with an excess current) into the 

tunnel mode (with a lack of current). Such a SnS to SIS transition of the same contact has been 

repeatedly observed in break-junction experiments on Mg1−xAlxB2 (Refs. [48,49]) and cuprates 

[29,44,45,119]. Presumably, this effect was observed for the first time in niobium break 

junctions by Müller et al. [23]. 

In Mg1−xAlxB2 polycrystalline samples we also revealed the effect of intrinsic multiple 

Andreev reflections (IMARE) [36,48,49,51]. Fig. 9 shows the CVC (left vertical axis) and 

dynamic conductance spectra (right axis) for two arrays obtained using MgB2 samples (from the 

same batch) with critical temperatures of Tc ≈ 40K. A CVC with noticeable excess current at low 

bias (“foot”) is typical for the IMARE in a ballistic SnS contact (high transparent). It is possible 

to use the product of the bulk resistivity and the mean free path of the carriers ρl ≈ 2×1012 Ωcm2 

[129] as well as the Sharvin formula [84] R = 4ρl/(3πa2) to estimate the diameter of the contact 

2a. For the MgB2 polycrystalline samples studied by us, with a maximal Tc, ρ ≈ 2 μΩ·cm, it is 

nevertheless demonstrated that the resistivity of a single crystal is at least four times lower [130] 

then l ≈ 40 nm; it is these latter values of ρ and l that are relevant to us, because break-junction is 

created within diameter d of the split grain. When we set the typical resistance of the SnS 

contacts obtained by us to R ≈ 1–60Ω (see Figs. 9 and 10), we get 2a ≈ 2–18 nm << l < d. The 

resulting diameter turned out to be less than the mean free path of the carriers, which points to 

ballistic transport across the break-junction, thus giving us the option of studying the effect of 

multiple Andreev reflections. From the assessment above it follows that the value 2a is orders of 

magnitude less than the size of the grains in the MgB2 polycrystalline samples we used [131], 

which is consistent with our assumption about the local formation of stack nanostructures on the 

steps and terraces of the cleaved crystallites. 



The CVCs and dynamic conductance spectra (see Fig. 9) of the array were normalized to 

m=5 (top curve) and m=2 (bottom curve). The number of contacts in the stack was determined 

by choosing the smallest natural number, by which the bias axis could be divided, in order to 

align the positions of the gap singularities. On the bottom dI(V)/dV characteristics we can easily 

spot the two-gap SGS. The intense minima located at eVnσ=1 ≈ 19.2 meV, eVnσ=2 ≈ 10 meV and 

eVnσ=3 ≈ 6.9 meV and labeled in Fig. 9 by vertical solid lines, in accordance with Eq. (1), satisfy 

the positions of the first, second and third subharmonics of the r- �gap Dr 10 meV with the 

characteristic ratio of the BCS theory 2Δσ/kBTc ≈ 5.8. Note that in the attempt to interpret these 

spectra as the corresponding 10- and 4-contact stacks, the SGS formula would give a value for 

the large gap that is Δσ ≈ 5 meV and a characteristic ratio 2Δσ/kBTc ≈ 2.9, which is below the 

weak-coupling BCS limit 3.52 and would be impossible for the leading band. The minima in the 

dI(V)/dV-spectra that are located at smaller biases eVnπ=1 ≈ 3.8 meV and eVnπ=2 ≈ 1.9 meV and 

denoted by vertical dotted lines and arrows in Fig. 9, have much greater intensity relative to the 

Andreev singularities with n>2 from the large σ-gap, do not correspond to the position of its 

fourth subharmonic (which according to Eq. (1) is expected at eVnσ=4 ≈ 5 meV) and therefore, 

cannot be attributed to SGS from Δσ. The given minima are, obviously, the SGS from the small 

gap Δπ ≈ 1.9 meV. We can see that the obtained values of σ and π-gaps are reproducible and do 

not depend on the number of contacts in the stack which clearly shows their bulk nature. 

Figure 10 shows the CVC (left vertical axis) and dynamic conductance spectra (right axis) 

for two 4-contact SnSn-…-S stacks, obtained for the same MgB2 sample with a critical 

temperature of Tc ≈ 40K (curves on Fig. 10 normalized to the bias axis at m=4). The contacts 

were formed sequentially by gentle mechanical readjustment, in the process of which, regardless 

of the variation in contact dimensions, there was practically no change in the shape of the 

dynamic conductance spectrum, or the position and shape of the Andreev SGS minima from Dr 

and Δπ. Therefore, the observed features cannot be attributed to any geometric resonance. 

Moreover, we can be certain of the fact that the slight change to the contact resistance (see Fig. 

10) was caused by a change to the contact area between two cryogenic clefts, sliding along the 

same terrace. 

The validity of the gap amplitudes determined by us in the Mg1−xAlxB2 system is confirmed 

by the consistency between these four types of spectroscopy, implemented by the “break-junction” 

technique. In particular, obtaining similar values for the small gap in experiments on arrays favors 

of the bulk nature of the order parameter Δπ and the impossibility of interpreting the observed 

features as manifestation of the surface gap. Note that the maximum values of the large gap Δσ = 

10–11.5 meV that were determined for MgB2 by us using break-junctions [36,37,48–53] and by 



the group led by Ekino Δσ = 9–12 meV [34,37,48–53], coincide. The values of Δσ were confirmed 

by that same group using point contact spectroscopy (PCAR) [94]. However, other research teams 

using STM and PCAR techniques obtained smaller values of Δσ = 6–8 meV (for review see Refs. 

[20,90,91]), demonstrating the significant sensitivity the superconducting properties of magnesium 

diboride have to the surface quality. 
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Fig. 8. The transition of the ScS contact constriction in MgB2 with Tc ≈ 35K from a high 

transparency mode (SnS, bottom dI(V)/dV-spectrum) to the low transparency mode (SIS, top 

spectrum) for π-band carriers. T=4.2 K. The position of the SGS minima for Δπ ≈ 2 meV is 

shown by black arrows and labels np=1,2; the tunnel peaks of the p-gap are labeled as 2Δπ; the 

Andreev minimum nr¼2 from a large gap Δσ ≈ 8 meV is denoted by a gray arrow. 
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axis) of Andreev SnSn-…-S structures (top spectrum is m=5 contacts, bottom spectrum is 

m=¼2), obtained for MgB2 samples from the same batch with Tc ≈ 40 K. T=4.2 K. The SGS 

minima from the large gap Δσ ≈ 10 meV are marked by gray vertical lines and the labels 

ns=1,2,3; SGS from the small gap Δπ ≈ 1.9 meV are marked by dotted lines and arrows. 
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4.5. Selective transparency mode of ScS contacts based onMg1−xAlxB2 

In the process of studying ScS contacts based on Mg1−xAlxB2, we repeatedly obtained 

dynamic conductance characteristics on which the structure from the large gap corresponded to 

the high transparency regime of the constriction, whereas the features from the small gap 

corresponded to low transparency (Fig. 11). As such, though formally it is a metal for σ-holes, a 

constriction can serve as a thin insulator for Cooper pairs from the π-bands. So, what is it that 

determines the transparency of the ScS contact based on MgB2? Generally speaking, by 

changing the distance between the superconducting banks, it is possible to vary the transparency 

of the barrier in the experiment [82]. Alternately, BTK theory [5] developed for NIS contacts, 

indicates that the transparency parameter, usually denoted as Z, can be defined by the ratio of 

Fermi velocities in the superconductor and the metal: (1 / ) 2 /S N S N
F F F FZ v v v v= − . We can 

assume that since in MgB2 the value of the Fermi velocity vF in the c-direction for the Cooper 

pairs from the π-bands (according to calculations in Ref. [132]) is about 9 times greater than the 

vF for the σ-pairs, then the ratio of these velocities to the vF of the thin metal interlayer (the role 

of which can be played by Mg layers with a destroyed ordering of atoms, located on the surface 

of the cryogenic cleavage) will also vary approximately by an order of magnitude. This provides 

the difference between the tunnel barrier transparency parameters Zσ,π for carriers from the σ and 

π-condensates, respectively, and also for the latter the transparency turns out to be 2–4 times 

lower than for the carriers from the σ-condensate. Therefore, for p-pairs the tunneling current 

through the ScS contact is more probable, whereas for σ-carriers Andreev transport is more 

likely (the constriction behaves like normal metal). The existence of this regime of selective 

transparency is indirectly described in Ref. [133]. 

Fig. 11 shows the CVC and the dynamic conductance of ScS contacts with a selective 

transparency, created in a MgB2 sample with Tc ≈ 40 K. The positions of the four observed mini-

ma of the subharmonic structure from the rgap Δσ ≈ 10 meV are noted by the labels nσ=1,2,3,4. 

The doublet nature of the minima should be highlighted; we can assume that this is caused by the 

splitting of the order parameter in the σ-bands (15%–20%): by the degeneracy removing of σ-

condensate that open on nested hole Fermi surface cylinders close to the Γ point (which is con-

sistent with the theoretical predictions of the four band model from Choi at al. [126]). At the same 

time, such doublets for Δπ were not observed in our experiment, which is possibly associated with 

the isotropization of the order parameter in 3D π-bands. The inset of Fig. 11 shows the dependence 

of the Andreev subharmonics position (we take the doublet midpoint) Vnσ for the σ-gap on their 

inverse serial number. In accordance to the predictions of Eq. (1), we get a linear dependence that 

goes through the origin. The Josephson supercurrent on the CVC of this contact and the gap 



maxima on eV = 2Δπ ≈ 3.8 meV speak in favor of implementing the Josephson effect for carriers in 

the π-band. Such type of dI(V)/dV-spectra is reproducible by mechanical readjustment of the break 

junction and does not depend on the geometric dimensions of the contact (Fig. 12). 
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Fig. 11. The CVC (left vertical axis) and dynamic conductance spectra (right axis) of a contact 

in selective transparency mode, obtained in MgB2 sample with Tc ≈ 40 K.113 T=4.2 K. SGS from 

the large gap Δσ ≈ 10 meV are denoted by gray arrows and labels nσ=1,2… (the inset shows the 

dependence of the SGS doublet midpoint position on their inverse number 1/n for Δσ) The 

constriction has a high transparency for 2D σ-carriers, however for a 3D π-band the 

transparency is low. Tunnel maxima from the small gap Δπ ≈ 1.9 meV are shown by black 

arrows. Adapted from Ref. [113]. 
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Fig. 12. dI(V)/dV-spectra of ScS contacts in the selective transparency mode, obtained from the 

MgB2 sample with Tc ≈ 40K by sequential mechanical readjustment [113]. T=4.2K. The 

constriction has a high transparency for 2D σ-holes, and a low transparency for 3D π-carriers. 

The Andreev subharmonics of the σ-gap Δσ ≈ 10.5 meV are denoted by gray arrows and labels 

ns=1,2,3. Tunnel maxima from the small gap Δπ ≈ 1.9 meV are shown by black arrows. 

 



 

4.6. (Intrinsic) Andreev spectroscopy of iron pnictides and chalcogenides 

The discovery of high-temperature superconductivity in iron pnictides and chalcogenides 

[134] marked the beginning of a new stage in intensive research of HTSCs. The 

superconductivity mechanism in these metals is still unclear. At the moment there is no doubt in 

the fact that due to the multiorbital nature of the electron and hole bands in these new materials, 

at T < Tc several order parameters with expressed anisotropy [103,104] are realized. Two 

mechanisms behind the formation of Cooper pairs are proposed. The so called s±-model 

[104,135], based on the proximity of the antiferromagnetic order and the strong influence of the 

spin fluctuations, predicts certain principles for the developing of a sign-alternating order 

parameter in iron-based superconductors from different families [136]; yet the recent discovery 

of nonmagnetic ThNFeAs with a critical temperature of Tc ≈ 30K (Refs. [137,138]) does not fit 

into the developed theoretical framework. An alternative s++-model does not deny the importance 

of accounting for spin fluctuations, and also considers pairing by orbital fluctuations, enhanced 

by phonons, as the main mechanism. This model successfully describes the experimental data, 

and the anisotropy of the order parameter is explained by the competition of the spin and orbital 

interactions [103,139]. 

The existing experimental data on the amplitude and anisotropy of the order parameter in 

iron-based superconductors are highly contradictory, although the importance of accurately 

determining of the gap structure is obvious in establishing the mechanism of superconductivity 

in iron pnictides and chalcogenides.  

In our “break-junction” experiments on iron superconductors from different families, SnS 

Andreev high transparency regime was implemented. The tunneling spectra were observed only 

in selenide single crystals KFe2Se2 with Tc ≈ 18K (Fig. 13). We would like to highlight that the 

“break-junction” technique seemed like one of the few methods that could probe the gap 

structure of 122-selenide [73,140]; at any degree of purity and stoichiometry, this class of 

compounds tends to undergo phase separation, but a single superconducting phase is formed. At 

the same time, the tunnel ScS break-junction can be formed specifically between 

superconducting regions and is not affected by the influence of non-superconducting phases. Fig. 

13 shows the CVC and the dynamic conductance spectrum (T=4.2K) of a stack of m=3 SIS 

contacts based on KFe2Se2 (normalized to 3). The CVC depicts a lack of current at eV < 2Δ 

(dashed linear dependence on Fig. 13 is shown for comparison), and the absence of Josephson 

supercurrent at V=0 can be explained by the influence of uncompensated magnetic moments of 

the iron atoms. Tunnel peaks with a non-classic split are visible on the CVC derivative; this 

shape can be a consequence of the ~25% anisotropy in the k-space. It is easy to identify extremes 



in the distribution of the order parameter Δ ≈ 3.4–4.3 meV which correspond to the characteristic 

ratio 2Δ/kBTc ≈ 4.4–5.5, similar to 2ΔL/kBTc for a large gap, estimated by us in 122-selenide 

(K0.7Na0.3)xFe2−ySe2 with Tc ≈ 33 K. 

Compare the fine structure of the tunnel peaks and the Andreev minima observed in the 

spectrum of the SnS contacts, obtained for the same sample. The inset on Fig. 13 shows 

fragments of dI(V)/dV-characteristics of stack contacts: the above-mentioned SIS array (m=3 

contacts in a stack) and SnS array (m=2) containing the main gap singularities located at eV = 

2Δ. We can clearly see that after normalization we get the reproduction of not only the positions 

of these features and their widths, but also a complex (triplet) fine structure: obviously, the 

angular distribution of the gap is quite difficult and cannot be described by any of the options for 

Δ(θ) taken during the calculations in Fig. 4. Nevertheless, the reproduced fine structure 

observable in the spectra of the stacks with differing numbers of contacts m and area, turns out to 

be an intrinsic (bulk) property of the material and is not caused by the dimensional effects or 

some random factors inherent to the surface. 

Let us now consider the experimental data on superconducting oxypnictides (system 1111). 

Fig. 14 shows the dynamic conductance spectrum (black color) of a single contact in a 

GdO1−xFxFeAs sample with a critical temperature Tc ≈ 50K (Ref. 141) measured at T=4.2 K. A 

series of singularities is clearly visible; those that are more intense, are located at VnL=1 ≈ ±22 

mV, and those similar in shape but with a smaller amplitude at VnL=2 ≈ ±11mV (marked in Fig. 

14 as nL=1 and nL=2, respectively); according to Eq. (1), these minima determine the value of the 

large gap ΔL ≈ 11 meV. The next feature located at lower biases, VnS=1 ≈ ±5mV, is not a third 

Andreev subharmonic of the large gap (expected at VnL=3 ≈ ±7.3 mV), and can be interpreted as 

nS=1 feature from the small gap ΔS ≈ 2.5 meV. Taking into account the possibility of forming 

arrays, it should be noted that the spectrum of a single contact is interpreted unambiguously. 

Taking the sample Tc ≈ 50K for the sake of assessment, we can calculate the characteristic ratio 

for the large gap 2ΔL/kBTc ≈ 5.1. If we assume that this dI(V)/dV-spectrum corresponds to a 

stack contact with m≥2, then the characteristic ratio would be 2ΔL/kBTc ≈ 5.1/m ≤ 2.55, which 

for obvious reasons is not possible for a “leading” gap, since it turns out to be less than the BCS 

limit, 3.52. This means that we can use the resulting characteristic ratio for the correct 

normalization of the array spectra (and the determination of the appropriate m) in GdO(F)FeAs 

samples with close Tc. 

The inset of Fig. 14 also shows the dI(V)/dV-spectrum of another Andreev junction, 

obtained in an optimally doped GdO(F)FeAs. A pronounced minimum in the dynamic 

conductance, located at V ≈ ±44 mV, is similar in shape to the first Andreev subharmonic from 



ΔL in the single-junction spectrum considered above. At V ≈ ±22mV one can observe the second 

singularity, and its position coincides with the nL=1 minimum in the spectrum of a single SnS 

contact. Since a twofold change of the large gap magnitude is not possible at similar Tc, we will 

assume that the scaling of the spectrum bias to an integer number occurred due to the IMARE: 

the array was formed on a step of the cryogenic cleft, implemented as an SnSnS structure. 

Indeed, after normalizing the bias axis of the given spectra by factor two (top dI(V)/dV-spectrum 

in Fig. 14) we achieved a coincidence in the positions of both the first (nL=1) and the second 

(nL=2) Andreev minima from the large gap, as well as the 2ΔS-singularities (nS=1). The 

normalized CVC of the stack contact has a pronounced foot at low biases, which confirms the 

excess current transport in the contract due to Andreev reflections. 

We note that the values of both gaps, obtained by the Andreev and intrinsic Andreev 

spectroscopy using different samples (with similar Tc), are reproducible, and do not depend on 

the size or the resistance of the contacts. 

Fig. 15 shows the normalized CVC and its derivative dI(V)/dV (at T=4.2K) for a stack 

(with a number of contacts m=3) in a samarium-based oxypnictide Sm0.7Th0.3OFeAs [142] 

optimally doped with thorium, with Tc ≈ 52 K. In order to observe multiple Andreev reflections 

the diameter of SnS contacts, as estimated in Refs. [74,75,77] must be about 2a = 20–60 nm, 

which is orders of magnitude less than the size of the crystallite in these samples [142] and the 

typical terrace width (see Fig. 2).  

The data obtained for Sm-1111 are also typical for ballistic SnS contacts due to the prono-

unced foot at low biases (see Fig. 15). The dynamic conductance spectrum has two clearly de-

fined, similar in shape and sufficiently sharp features that resemble minima at VnL=1 ≈ ±23.2 mV 

and VnL=2 ≈ ±12.4 mV, as well as features at VnL=3 ≈ ±8.4 mV. The positions of these three sin-

gularities correspond to Eq. (1) and form a linear dependence on the inverse subharmonic num-

ber 1/n that goes through the origin (as shown in the bottom inset of Fig. 15 by a gray solid circ-

les). The slope of the line VnL(1/n) determines the value of the large gap ΔL ≈ 12.4 meV. The An-

dreev minimum with nL=4 has a negligible amplitude since backgrounded with the sharp expo-

nential rise of the dynamic conductance curve (which corresponds to the foot area on the CVC). 

The subharmonic structure of the small gap ΔS begins with intense dips when VnS=1 ≈ ±4.9 

mV, followed by the minima located at VnS=2 ≈ ±2.7 mV (marked in Fig. 15 as black arrows). 

The doublet nature of the features corresponding to 2ΔS can be a result of the anisotropy of the 

small gap in the k-space. Since in oxypnictides, according to our data [75], ΔL/ΔS ≈ 4.5, the SGS 

of the small gap is usually located in the foot region, formed by the excess transport through the 

band with the gap ΔL, which makes it difficult to observe the ΔS-minima. For clarity, the top 

inset in Fig. 15 shows a fragment of the dI(V)/dV-spectrum of the given contact at low bias volt-



ages with a suppressed background containing the SGS of the small gap, which made it possible 

to resolve the third subharmonic (nS=3) from ΔS. The dependence VnS(1/n) (bottom inset on Fig. 

15, open circles) can be used to determine the small gap as 2.7 meV. It is obvious that the featu-

res of the dI(V)/dV-spectrum on Fig. 15 uniquely define two independent SGS: their positions 

group into two linear dependences VnL,S(1/n), here the minima nS=1 are much more pronounced 

and do not match the expected position of the fourth subharmonic nL=4. 

Two independent SGS are reproducibly observed in the dynamic conductance spectra of 

SnS contacts in superconductors from the 1111 family. Fig. 16 shows normalized CVC and their 

derivatives for two stacks (m=6), obtained using a similar Sm-1111 sample. Regardless of the 

different area and therefore the resistance of these contacts, the position of the Andreev minima 

for both the large (nL labels) and small gap (vertical arrows and 2ΔS label) remains unchanged. 

Moreover, the general shape of the SnS spectra for these contacts, obtained at distinct points of 

the cryogenic cleavage, is extremely similar. Therefore, here and in the spectra of other SnS con-

tacts, the observed features cannot be caused by the influence of the dimensional or surface 

effects. The subharmonic structure from the small gap is rather blurred in Fig. 16: most likely, 

this is associated with the fact that the mean free path of the quasiparticles from the band in 

which ΔS is developed, is much less than that of the carriers from the band with ΔL. Still, the 2ΔS-

features are clearly visible, and their position is also well reproduced and does not depend on m. 

The latter serves as a confirmation of the fact, these features are realized due to the Andreev 

reflection of the particles from bands with a bulk small gap. 

The obtained values of ΔL and ΔS in Sm-1111 (see Figs. 15 and 16) are analogous to the 

amplitudes of the order parameters in Gd-1111 samples with a similar Tc (see Fig. 14). This co-

incidence is not surprising, considering the similar structure of these oxypnictides (the difference 

lies only in the composition of the spacer layers, but the structure of the superconducting Fe-As 

blocks is unchanged), the value of the crystal lattice parameters [141,142], and the quasiparticle 

density of states at the Fermi level [143,144]. 

The pronounced SGS from a large gap, containing up to five subharmonics, was observed 

by us in the highest quality contacts based on LaO1−xFxFeAs with Tc ≈ 21 K [145]. Normalized 

dI(V)/dV-characteristics at T=4.2K for a stack structure SnSnS (m=2) are shown in Fig. 17. 

Arrows and labels nL denote the SGS minima corresponding to the large gap ΔL ≈ 4.7 meV; the 

dashed line and the labels nS indicate the SGS from the small gap ΔS ≈ 0.9 meV. The inset 

shows the dependence of the biases VnL,S on 1/n for a large (solid circles) and small gap (open 

circles). Regardless of the fact that the first minimum of ΔL is slightly shifted toward zero bias 

relative to the position of 2ΔL/e, the combining of the features at Vn ≈ ±8, ±4.6 mV and ±3 mV to 



a single SGS (corresponding to ΔL ≈ 4.7 meV) is beyond doubt, considering the similarity 

between their complex asymmetric shapes and fine structure (which, most likely, is caused by 

~20% anisotropy of ΔL in the k-space). The characteristic ratio of BCS for a large gap 2ΔL/kBTc 

≈ 5.2 is close to the value determined earlier for other oxypnictides based on samarium and 

gadolinium. The minima at Vn ≈ ±1.7 mV and ±0.9 mV obviously do not fit in the direct 

proportionality of VnL(1/n) and therefore, constitute a second small gap SGS; though, as we can 

see at first glance (Fig. 17) due to the powerful ΔL foot their amplitude is not very significant. 

The experimental data examples considered above have shown that, despite the break-

junction geometry is not known, the amplitudes of the superconducting gaps and the number of 

contacts in the stack (if the latter is implemented on a step of a cryogenic cleavage) can be 

reliably established using data statistics and comparing the reproducible features of the CVC and 

dI(V)/dV-spectra. 
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Fig. 13. CVC normalized to that of a single contact (left vertical axis) and dI(V)/dV-spectrum 

(right axis) of a SIS array (m=3 contacts in a stack), obtained for a KFe2Se2 single crystal with 

Tc ≈ 18 K. T=4.2 K. The positions of the doublet maxima determine the value of the gap Δ ≈ 3.4–

4.3 meV (the range of values reflects the gap anisotropy ~25%). A linear dependence (dashed 

line) demonstrates the lack of current on the CVC and is shown for comparison. The inset shows 

a fragment of this spectrum (2Δ-maximum), as well as that of the SnS array (m=2 contacts in the 

stack), obtained for the same sample by sequential mechanical readjustment (the main Andreev 

minimum n=1). The bias voltage of both fragments is normalized to m=3 and 2, respectively; the 

position of the 2Δ-features (including a fine structure caused by anisotropy) coincides. 
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Fig. 14. The dynamic conductance of a single SnS contact (black curve) as well as normalized 

(red curves) CVCs (left vertical axis) and dI(V)/dV-spectrum (right vertical axis) of a two-

contact stack, obtained in optimally doped samples GdO1−xFxFeAs with Tc ≈ 50 K. T=4.2 K. The 

position of SGS for the large gap ΔL ≈ 11 meV is shown by dashed lines and labels nL=1,2. The 

inset shows the raw spectra before normalization. 
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Fig. 15. CVC normalized to that of a single contact (left vertical axis) and the dynamic 

conductance (right axis) of an SnS stack (m=3 contacts) in a Sm1−xThxOFeAs polycrystalline 

sample with Tc ≈ 52 K. T=4.2 K. SGS of the large gap ΔL ≈ 12.4 meV is shown in gray arrows 

and labels nL=1,2,3; SGS from the small gap ΔS ≈ 2.7 meV is noted by black arrows and labels 

nS=1,2,3. The top inset shows a fragment of dI(V)/dV (with a suppressed background for clarity) 

containing SGS from a small gap. The bottom inset demonstrates the dependence of the Andreev 

minima positions Vn on 1/n for ΔL (●) and ΔS (○). 

 



 

-30 -20 -10 0 10 20 30

2

4

6

 d
I(V

)/d
V

, a
rb

. u
ni

ts

2ΔS

nL=2 nL=1

dI(V)/dV

I(V)

Sm1-xThxOFeAs
TC

 ≈ 50 K
Δ

L
≈ 11.4 meV

Δ
S
≈ 2.7 meV

Vnorm, mV

-3

-2

-1

0

1

2

3
I(V

), 
m

A

 
Fig. 16. CVC normalized to that of a single contact (left vertical axis) and dynamic conductance 

spectra (right axis) of two Andreev arrays (m=6 SnS contacts per stack), created in an optimally 

doped Sm1−xThxOFeAs sample with Tc ≈ 50K by gentle mechanical readjustment. T=4.2 K. SGS 

from the large gap ΔL ≈ 11.4 meV is denoted by dashed lines and labels nL=1,2, the main 

Andreev minima nS¼1 from the small gap ΔS ≈ 2.7 meV are shown by arrows and the label 2ΔS. 
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Fig. 17. A normalized dI(V)/dV-spectrum of an Andreev stack (m=2 SnS contacts), obtained for 

LaO1−xFxFeAs with Tc ≈ 21 K. T=4.2 K. SGS of the large gap ΔL ≈ 4.7 meV is shown by gray 

arrows and labels nL=1,2… SGS from the small gap ΔS ≈ 0.9 meV is marked by a black dotted 

line and the labels nS=1,2. The inset shows the dependence of the Andreev minima positions Vn 

on 1/n for ΔL (●) and ΔS (○). 

 

 

 

 

 



5. Conclusion 

To summarize the above, the “break-junction” technique is a powerful and often 

indispensable tool in the fundamental study of superconducting properties. It successfully works 

with the single crystals of any superconductor (both isotropic and layered) and also in 

polycrystalline samples of layered compounds. At the same time, the average size of the crystal 

grains in a polycrystalline sample must be several times greater than the break-junction diameter, 

i.e., it must be greater than 100 nm. The general requirement for the samples is the presence of a 

single superconducting phase and a size of no less than 1.5·3 mm2 in the ab-plane. The 

inhomogeneity of the samples is controlled by measuring the CVC and dI(V)/dV-spectra in the 

range of temperatures up to Tc, and determining the local critical temperature of the contact area 

according to the linearization of the dynamic conductance. 

The “break-junction” technique works reliably with whisker single crystals. It is possible to 

achieve junctions in which the current flows in ab crystallographic plane using film samples 

[27]. Nevertheless, obtaining junctions with j⊥c on bulk layered samples is impossible. 

Finally, we will concisely present the advantages of the “break-junction”, in the study of 

superconducting properties: 

1) the use of clean cryogenic surfaces in the bulk of the sample, which ensures good heat sink 

from the tunnel junction point; 

(2)  the elimination of studied area overheating and remoteness of the contact area from the 

current leads of the sample; 

(3) connecting the sample using a true four-point scheme; 

(4) local measurement of the bulk superconducting parameters (using arrays); 

(5) applicability for both single crystals and polycrystalline samples of layered compounds; 

(6) applicability to materials in which the superconducting phase naturally occupies just a few 

percent of volume (for example, for the class of iron selenides AFe2Se2, where A = Na, K, Rb); 

(7) the possibility of obtaining dozens of single and stack contacts on the cleavages of one 

sample by precise mechanical readjustment; 

(8) the absence of chemical and mechanical influence on the tunnel junction region during the 

investigation; 

(9) no loss of dopant oxygen from cryogenic clefts in the cuprate HTSC; 

(10) the direction of the current as j||c for layered single crystals; 

(11) the high quality of resulting tunnel junctions and reproducible results; 

(12) the ability to resolve the fine structure of dI(V)/dV-spectra, which allows to study the gap 

anisotropy and electron-phonon interaction; 



(13) the possibility of implementing up to four methods of spectroscopy (Andreev and intrinsic 

Andreev, tunnel and intrinsic tunnel) on the same sample; 

(14) the ability to resonantly excite bosons (optical phonons) with energies less than 4Δ in the 

case of obtaining a SIS contact with alternating Josephson current; 

(15) the ability to directly determine the amplitude of the order parameter in multi-gap 

superconductors based on the positions of the Andreev minima as 〈Δi〉 = 〈eVn,i·n/2〉 at any 

temperature up to Tc, in the case of an Andreev SnS contact (high transparency), which allows us 

to accurately evaluates the set of electron-boson coupling constants λij. 

In recent years the “break-junction” technique has shed light on the controversial and 

poorly understood aspects of the superconductivity mechanism in layered compounds, which is a 

key problem for condensed matter physics. To summarize HTSC studies we will conclude that 

the characteristic BCS ratio (which indirectly manifests the electron-boson interaction strength) 

does not depend notably on the degree of doping, and therefore, Tc. In particular, for cuprates 

this means that the carrier coupling mechanisms does not change during transitions from 

underdoped to overdoped regions. The study of two-gap superconductors that have been 

discovered thus far shows that for all of them the interband coupling strength is inferior to the 

intraband, which indicates that the latter plays the decisive role. Like any other method of 

research, the “break-junction” has its advantages and disadvantages, however its unique strength 

is the precise determination of the characteristic ratio 2Δ/kBTc. This fact should serve as a 

starting point for the construction of theoretical models describing the HTSC phenomenon.  
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