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A method is presented for calibrating the higher eigenmodes (resonant modes) of atomic force microscopy 

cantilevers that can be performed prior to any tip-sample interaction. The method leverages recent efforts in accurately 

calibrating the first eigenmode by providing the higher-mode stiffness as a ratio to the first mode stiffness. A one-time 

calibration routine must be performed for every cantilever type to determine a power-law relationship between stiffness 

and frequency, which is then stored for future use on similar cantilevers. Then, future calibrations only require a 

measurement of the ratio of resonant frequencies and the stiffness of the first mode. This method is verified through 

stiffness measurements using three independent approaches: interferometric measurement, AC approach-curve 

calibration, and finite element analysis simulation. Power-law values for calibrating higher-mode stiffnesses are reported 

for several cantilever models. Once the higher-mode stiffnesses are known, the amplitude of each mode can also be 

calibrated from the thermal spectrum by application of the equipartition theorem.  
 

 

1. Introduction  

 

Atomic force microscopes (AFMs) use microscale 

cantilevers as transducers that convert forces between the 

nanoscale tip and sample into motion that can be measured 

with a macroscale photodetector. The accuracy in quantifying 

the nanoscale conservative and dissipative forces between the 

tip and sample is ultimately limited by the calibration of the 

cantilever stiffness and displacement measurements. This 

requirement has driven extensive research 
1–22

, and in the case 

of dynamic AFM techniques, where the cantilever is driven 

into oscillation, it has been focused almost exclusively on 

accurate determination of the stiffness and displacement 

sensitivity of the first cantilever eigenmode (resonant mode). 

The recent rise in popularity of bimodal and 

multifrequency imaging
23–40

, which provide high-resolution 

nanomechanical mapping of heterogeneous materials by 

exciting two or more cantilever eigenmodes, has extended the 

need for accurate cantilever calibration to its higher 

eigenmodes
41,42

. To date, the large uncertainty in higher-

mode amplitudes and stiffnesses has impeded proper 

operation and quantitative data interpretation in 

multifrequency AFM. Uncertainty in these quantities has 

limited repeatability and accurate comparison to other 

measurement techniques. 

This work demonstrates a rapid and simple method to 

calibrate the higher-eigenmode stiffnesses of cantilevers with 

arbitrary shapes. With calibrated cantilever stiffnesses, the 

sensitivity of the detection system for every eigenmode can 

also be calibrated through the equipartition theorem. This 

allows the determination of the amplitudes of every driven 

mode – all without touching a surface – thereby resolving the 

long-standing problem of uncertainty in stiffness and 

sensitivity during multifrequency imaging. 

2. Overview: frequency-ratio calibration method 

Recently, a calibration procedure
43,44

 for the first 

eigenmode of cantilevers of arbitrary shapes was 

commercially implemented as GetReal™  by Asylum 

Research. Briefly, the idea is to meticulously characterize 

several reference cantilevers (of a particular type) with an 

interferometric measurement to precisely determine each 

eigenmode stiffness 𝑘, resonance frequency 𝑓, and quality 

factor 𝑄 (see Appendix A(a) for details). Then, subsequent 

cantilevers of the same model can be calibrated in the field by 

measuring only their new 𝑓 and 𝑄, and calculating their new 

stiffness via the scaling law 𝑘 ∝ 𝑄𝑓1.3. Next, the 

equipartition theorem
45,46

 is used to determine the optical 

beam deflection (OBD) sensitivity 𝑆 in units of nm/V (also 

called invOLS
19

). This calibration procedure, henceforth 

referred to as the “𝑄𝑓1.3 scaling” method, is visually 

described in Figure 1.  

Although this calibration routine can in principle be 

applied directly to higher eigenmodes, the main limitation is 

that the thermal spectrum of higher modes has a considerably 

lower signal-to-noise ratio with respect to the first mode. 

Measuring a quality factor to a satisfactory precision may 

take several minutes, hours, or may even be impossible if the 

thermal response of the eigenmode is below the noise floor. 

On the other hand, measuring the resonance frequency of a 

higher mode from a thermal spectrum can be done very 

precisely and rapidly, as long as the thermal response is 

above the noise. Even in the absence of a thermal response, a 

driven measurement may provide an accurate estimate of the 
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eigenmode resonance frequency, especially if photothermal
47–

49
 excitation is used. 

Given the ease in measuring the higher-mode resonance 

frequency 𝑓𝑛 precisely, as opposed to quality factors
50

, the 

higher-mode stiffness 𝑘𝑛 is commonly calibrated from the 

first-mode 𝑓1 and 𝑘1 by invoking the well-known scaling law 

 
𝑘𝑛 = 𝑘1 (

𝑓𝑛

𝑓1

)
2

 (1) 

(see Appendix B(a) for derivation).  Unfortunately, this 

scaling law only applies to an ideal Euler-Bernoulli beam, 

which does not accurately describe real AFM cantilevers.   

Real AFM cantilevers have a tip mass, and the tip is often 

positioned several microns from the cantilever end. Both of 

these effects cause an underestimation of 𝑘𝑛 when applying 

Eq. (1). Also, many common AFM cantilevers have a 

triangular section, which causes Eq. (1) to overestimate 𝑘𝑛. 

Analytical solutions to these three special cases of non-ideal 

cantilevers are presented in Appendix B(b,c,d) for reference. 

In practice, some combination of these competing 

geometrical effects, among others, contribute to deviation 

from Euler-Bernoulli behavior. 

A simple modification to Eq. (1) that can largely account 

for these effects is to change the scaling law from square to 

some arbitrary power, as in   

 
𝑘𝑛 = 𝑘1 (

𝑓𝑛

𝑓1

)
𝜁

, (2) 

where the power-law exponent 𝜁 can be determined 

empirically. 

In practice, a representative sample of cantilevers from a 

particular type are carefully characterized in factory and used 

to estimate the power law exponent by  

 
𝜁 = ⟨

log(𝑘𝑛/𝑘1)

log(𝑓𝑛/𝑓1)
⟩, (3) 

where the brackets represent averaging over all cantilevers 

(see Appendix A(b) for derivation). Then, this power law 

exponent 𝜁 can be used in the field to calibrate higher 

eigenmode stiffness 𝑘𝑛 via Eq. (2). This calibration 

procedure, henceforth referred to as the “frequency-ratio” 

method, is depicted in Figure 2.  

Although the power-law model in Eq. (3) is not based on 

a fundamental physical principle, it provides a simple 

phenomenological description of the behavior of cantilevers 

that conveniently allows the estimation of 𝑘𝑛 from measured 

observables (𝑓𝑛, 𝑓1, 𝑘1). Importantly, it avoids the use of the 

higher-mode quality factor 𝑄𝑛. A more generalized model, 

where a different power law exponent 𝜁𝑛 is used for each n
th

 

mode, may be more accurate for certain cantilevers, as will 

be investigated later. 

The procedure for determining 𝜁 for a particular 

cantilever type is the primary topic of this paper. Three 

methods will be compared: interferometric measurement, AC 

approach-curves, and finite element analysis simulation. 

 

 
Figure 1: Graphical representation of the 𝑄𝑓1.3 scaling method (implemented 
as GetReal™) for calibrating cantilever stiffness and OBD sensitivity. For a 

given cantilever model, a representative sample batch is selected and 
thoroughly characterized in factory with a laser Doppler vibrometer (LDV) 

measurement to obtain three reference parameters: 𝑘ref, 𝑄ref, fref. The 

brackets 〈 〉 represent averaging. Then, the stiffness 𝑘 for any cantilever of 

the same model is calibrated using measurements of 𝑓 and 𝑄 in the field. 

Finally, the OBD sensitivity 𝑆, in units of nm/V, is obtained by satisfying the 
equipartition theorem through a measurement of the root-mean-squared 

amplitude 𝐴 of the cantilever thermal motion, in volts. The weighting of 〈𝑘〉 
is described mathematically in Appendix A(a). 

 

 
Figure 2: Graphical representation of the frequency-ratio calibration routine 

for the nth eigenmodes. The power law exponent 𝜁 that relates 𝑘𝑛/𝑘1 to 𝑓𝑛/𝑓1 
for a given cantilever model is characterized via a LDV measurement done 
in factory on a representative batch of reference cantilevers. After calibrating 

the first mode for a specific cantilever, the stiffness 𝑘𝑛 of that cantilever is 
calibrated from an additional measurement of the higher resonance 

frequency 𝑓𝑛. Finally, the eigenmode OBD sensitivity 𝑆𝑛, in units of nm/V, is 
obtained by satisfying the equipartition theorem through a measurement of 

the root-mean-squared amplitude 𝐴𝑛 of the cantilever thermal motion of the 
nth eigenmode, in volts. 
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3. Interferometric calibration 

 

Perhaps the most direct way to calibrate the eigenmode 

stiffness is to measure its thermal motion interferometrically. 

The equipartition theorem relates the amplitude fluctuations 

to the stiffness as long as the cantilever motion is driven 

solely by thermal fluctuations of its environment, which is a 

very good approximation in ambient conditions.  

 
 
Figure 3: a) Photograph of an AC240 cantilever (Olympus) from the 

backside taken with the Cypher viewing optics. The cantilever length 

𝐿 = 235.7 𝜇m. The LDV laser spot is located a distance x = -4.0 ± 0.7 μm 
(to the left of the tip apex), leading to an underestimation of the true 

amplitude at the cantilever tip. The magnitude of the underestimation is 

calculable and depends on the eigenmode being measured. b) Schematic 

view of a mode bending shape. The effective lever arm 𝑟𝑛𝐿 describes the 

slope of the cantilever end, as shown here for the second mode.  

a. Experimental setup 

An Asylum Research Cypher AFM was retrofitted with a 

Polytec OFV-5000 laser Doppler vibrometer (LDV). The 

LDV’s fiber-coupled laser (𝜆 = 633 nm) was interfaced 

through the optical positioning system (a modified Cypher 

blueDrive
47

 system retrofitted with broadband optics). This 

allows automated motion of the LDV laser spot (~2.5 𝜇𝑚 

diameter) with respect to the cantilever with sub-micron 

precision (see Ref. [
51

] for more details).  

 

 
Figure 4: Spectral density of the first three eigenmodes of the AC240 
cantilever from Figure 3. These data were calculated from a 2 s time series 

using the Daniell method52 of PSD estimation to avoid bias and reduce 

effects of spurious noise peaks. Then, the spectra were corrected by the 

respective 𝛽𝑛 computed by Eq. (5). The quoted stiffnesses are the average of 

37 consecutive such PSDs. The quoted errors were dominated by errors in 𝛽𝑛 
due to the laser spot positioning uncertainty. 

 

b. Laser spot position correction  

The main difficulty in calibrating several eigenmodes of a 

cantilever with an interferometric AFM stems from the need 

to accurately position the focused laser spot directly above 

the cantilever tip. For many cantilevers, the interferometric 

laser spot cannot be positioned exactly above the tip due to 

geometrical constraints. A power spectral density (PSD) 

measurement will underestimate the thermal noise at the 

cantilever tip if the laser spot is closer to the cantilever base, 

and vice versa. For small deviations Δ𝑥 between the laser 

spot and tip location, the correction factor to the amplitude 

spectral density (the square root of the PSD in units of 

m/√Hz) can be approximated as linear. Therefore, the 

amplitude measured at the spot location 𝐴spot relates to the 

amplitude at the cantilever tip 𝐴tip by 

 𝐴tip = 𝛽𝑛𝐴spot, (4) 

where the linear correction factor 𝛽𝑛 defined by 

 
𝛽𝑛 = (1 +

Δ𝑥

𝑟𝑛𝐿
)

−1

, (5) 

where 𝐿 is the length of the cantilever and 𝑟𝑛 is the ratio that 

determines the effective lever arm length of the 𝑛th
 mode, as 

graphically represented in Figure 3. Formally, the effective 

lever arm 𝑟𝑛𝐿 is the distance between the cantilever end 

location (on the x-axis) and the location where the linear fit to 

the cantilever end intersects with the x-axis.   

Note that if the laser spot is closer to the base relative to 

the tip, Δ𝑥 is negative and 𝛽𝑛 > 1. Expressing the correction 

factor in terms of the ratio 𝑟𝑛 is convenient since 𝑟𝑛 is a very 

weak function of the cantilever length 𝐿 and does not change 

appreciably for different cantilevers of a particular model. As 

discussed in the next section, once 𝑟𝑛 is determined for a 

specific cantilever type, 𝐿 can be easily measured for every 

single cantilever as shown in Figure 3 and used to correct the 

measured spectral density by the appropriate 𝛽𝑛 factor. 

Although many cantilever types have a tip setback
1
 that 

allows the laser spot to be positioned immediately above the 

tip, the 𝛽 factor is still used for error analysis, especially at 

higher eigenmodes. 

c. Stiffness measurement 

The stiffnesses of the first three eigenmodes of the 

cantilever presented in Figure 3 were measured using the 

methodology described above. The results are shown in 

Figure 4. A measurement of the local slope of each mode at 

the cantilever tip location is required to define 𝑟𝑛 for the 

correction in Eq. (5). Each 𝑟𝑛 can be obtained by locally 

fitting the n
th

 mode cantilever shape, obtained by the shape 

mapping method presented in the next section. The 

                                                           

 
1 Tip setback is defined as the distance between the cantilever end and the 

location of the tip (measured in the cantilever plane).  
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uncertainty in stiffness estimation was dominated by errors in 

laser spot positioning (relative to the tip) and was calculated 

by Eq. () in Appendix A(c). 

4. Calibration through AC approach curves 

 

The optical beam deflection (OBD)
53,54

 system used to 

measure cantilever deflection in nearly all AFMs has the 

disadvantage of lacking an absolute calibration reference. 

Additionally, the OBD sensitivity depends on the mode shape 

of the cantilever
55,56

 and requires separate calibration of each 

mode to determine the corresponding mode stiffness, as 

presented in this section.  

a. Sensitivity calibration 

The method used here for calibrating the OBD sensitivity 

for a specific eigenmode starts by approaching a stiff sample 

while driving the cantilever on resonance at the desired mode 

with a large amplitude. In high-Q environments, the 

amplitude of the cantilever decreases symmetrically
57

  and 

approximately linearly with respect to tip-sample distance
58

. 

This implies that the reduction in cantilever amplitude (in 

volts) can be calibrated against the approach of the sample 

towards the cantilever (in nanometers) to obtain an estimate 

of the OBD sensitivity for the driven eigenmode. Example  

AC approach curves for three eigenmodes of a cantileverare 

presented in Appendix A(d).   

b. Stiffness measurement 

With OBD sensitivities 𝑆𝑛 for the n
th

 eigenmode 

calibrated in the previous subsection, the equipartition 

theorem may be applied to extract the respective eigenmode 

stiffnesses from the thermal PSD
45,46

 (not shown) by 

 
𝑘𝑛 =

𝑘B𝑇

〈(𝑆𝑛𝐴𝑛)2〉
, (6) 

where 𝐴𝑛 is the root-mean-squared amplitude of the 

cantilever thermal motion of the n
th

 eigenmode (in volts), 𝑘B 

is the Boltzmann constant, and T is temperature.  

 

c. Advantages and limitations 

The advantage of this technique over interferometric 

measurements is that the OBD laser spot position with 

respect to the tip requires no correction. The drawback, 

however, is that tip-sample interaction nonlinearities and 

instabilities can easily degrade the accuracy of the 

calibration
46,59

. In this study, several approach curves were 

performed and those that exhibited the most linear behavior 

were selected for analysis.  

For this method, error analysis was not performed. The 

largest sources of uncertainty are the subjective choices for 

the fitting range of the selected AC approach curves, as well 

as the assumptions that the decrease in tip-sample distance 

maps directly to an amplitude decrease. These problems, 

along with the potential tip contamination or damage caused 

by this method, motivate the other calibration approaches 

outlined in this work. 

Finally, a noteworthy limitation of the AC-approach 

calibration of soft cantilevers (roughly 𝑘1  < 1 N/m) was 

unsuccessful because the snap-to-contact of the first mode 

prevented stable approach curves while driving higher 

modes. 

 

5. Calibration through FEA simulation 

 

Finite element analysis (FEA) simulations
60

 were 

performed to provide an independent measurement of the 

power law relating stiffness to frequency of higher 

eigenmodes. The validation of these FEA simulations was 

done by comparing the simulated FEA mode shapes to 

measured LDV mode shapes. 

a. LDV mode shape mapping 

While the cantilever is piezoacoustically driven at one of 

its eigenmodes, the LDV spot is translated along the 

cantilever axis and the amplitude |𝐴𝑛| and phase 𝜙𝑛 at every 

location 𝑥 are measured by a lock-in amplifier, where x 

represents the distance along the cantilever normalized by its 

full length 𝐿. The eigenmode shape for the 𝑛th
 mode is then 

reconstructed as  

 𝜓𝑛(𝑥) = |𝐴𝑛(𝑥)| cos 𝜙𝑛 (𝑥), (7) 

where the phase at the cantilever end 𝜙𝑛(𝑥 = 1) ≡ 90°. Not 

only does the phase correction unwrap the shape at higher 

modes, it also removes any cantilever base motion from the 

measurement caused by piezoacoustic excitation, which is 

out of phase with the cantilever end motion
61,62

 and irrelevant 

to the analysis in this study. Finally, each mode shape is 

normalized to enforce 𝜓𝑛 = 1 at the cantilever tip location.  

This protocol was used to map the first three eigenmodes 

of an AC240 cantilever, which are presented in Figure 5 and 

were used to extract the value of 𝑟𝑛 for each mode.  

b. FEA simulation 

Finite element analysis (FEA) simulations were 

performed using SolidWorks (Dassault Systèmes, Waltham, 

MA). The plan-view dimensions of the modeled cantilever 

were taken from photographs such as those in Figure 3. The 

cantilever chip was also modeled to extend several tens of 

micrometers beyond and around the cantilever base to 

account for the chip’s finite stiffness
63

. The need for 

modeling the cantilever chip was assessed in a benchmark 

experiment presented in Appendix A(e).  
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The thickness of the modeled cantilever was tuned such 

that the first-mode FEA resonance frequency matched the 

LDV measured value. Additionally, the cantilever model 

included a slight taper with linearly varying thickness along 

the cantilever length (thinner at the end). Adjusting the taper 

and the tip height (within the manufacturer’s tolerance) 

provided better agreement between FEA simulations and 

LDV measurements. The justification for these adjustments is 

that the taper and tip height combination reduced the 

discrepancy between the FEA and LDV mode shapes as well 

as simultaneously reduced differences between the FEA and 

LDV resonance frequencies of all three eigenmodes. A taper 

in the thickness of the FEA model may also effectively 

account for a variation in the stiffness of the real cantilever, 

either due to a gradient in the Young’s modulus
64

 or to 

gradients in the surface stress that affect the local cantilever 

stiffness
65

.  

c. Stiffness calculation 

Next, the stiffness was calculated from the FEA 

eigenmode shapes by the following integral
66

:   

 
𝑘𝑛 = ∫

𝐸𝐼(𝑥)

𝐿3
(

𝑑2𝜓𝑛(𝑥)

𝑑𝑥2
)

21

−∞

𝑑𝑥,  (8) 

where 𝐸 is Young’s modulus, and 𝐼(𝑥) is the second moment 

of area. The −∞ integration limit in Eq. (8) indicates the 

need to start the integration inside the cantilever chip, rather 

than at the cantilever base at 𝑥 = 0, due to the non-negligible 

deformation of the cantilever chip described earlier. 

6. Results and discussion 

 

In this section, the validity of the power-law model to 

relate eigenmode stiffnesses to resonance frequencies will 

first be assessed, followed by a detailed error analysis that 

quantifies the model’s predictive power. The merits of this 

calibration procedure will be discussed and compared to 

other calibration models.  

a. Power-law model validity assessment 

The data acquired by LDV measurements, AC approach 

curves, and FEA simulations are plotted together in Figure 6. 

Also shown is a power-law fit to the second-mode LDV 

measurements. Very good agreement in stiffness (on the 

order of 10%) between all three methods and the power-law 

fit (for the second and third modes) provides confidence that 

the model proposed by Eq. (2) is appropriate for the second 

and third eigenmodes of an AC240. Furthermore, the FEA 

data for the fourth and fifth modes (not shown) suggests that 

the power law extends to higher eigenmodes with a 

reasonable degree of accuracy.  

As mentioned earlier, there is no physical basis for 

relating all the stiffness ratios to frequency ratios by the same 

power law, and it is more accurate to fit a different power law 

exponent 𝜁𝑛 for each n
th

 mode, if enough data is available. 

Given the existence of LDV data at both the second and third 

modes, it is worthwhile analyzing them separately to obtain 

separate power-law exponents 𝜁2 and 𝜁3 to improve the 

accuracy of each eigenmode model. For the data in Figure 6, 

𝜁2 = 1.72(𝜎 = 0.01) and 𝜁3 = 1.68 (𝜎 = 0.01), where 𝜎 

represents the standard deviation of all measured 𝜁𝑛 values 

for this batch of cantilevers. Although the exponents are 

distinguishable within error, assuming an average value 

𝜁 = (𝜁3 + 𝜁2)/2 in this example would have led to an 

underestimation of only 3% in 𝑘2 and an overestimation of 

only 5% in 𝑘3. Nonetheless, in the presence of empirical data, 

separate exponents 𝜁𝑛 for each n
th

 mode provide higher 

accuracy.  

Next, the validity of the power-law model is assessed 

across different cantilever types, with reference to the data 

summarized in Table 1 and scanning electron microscope 

images in Figure 7. As predicted by the analytical modeling 

in Appendix B, the rectangular cantilevers with a tip setback 

indeed have 𝜁 > 2, while the cantilevers with distinctively 

triangular tips result in 𝜁 < 2. Furthermore, this qualitative 

trend agrees with all measurable power-law exponents 𝜁𝑛 of 

higher modes. This suggests that the near power-law behavior 

stems from real and predictable geometrical effects. 

𝜁 = 2 is often assumed when estimating higher 

eigenmode stiffnesses (e.g., see Eq. (1)). This assumption can 

be far from valid, and performing an empirical measurement 

of 𝜁 leads to a considerable gain in accuracy. While the 𝜁 = 2 

assumption underestimates 𝑘2/𝑘1 by ~1.6 × for an AC240 

cantilever, using the LDV-measured value 𝜁 = 1.72 results in 

an estimate of 𝑘2/𝑘1 accurate to a few percent. 

Because the power-law model is only a phenomenological 

description of cantilever eigenmode properties that combines 

several geometrical effects, empirical justification of its use is 

always required. Ideally, 𝜁𝑛 for every eigenmode is 

measured. However, assuming that 𝜁𝑛+1 = 𝜁𝑛 in the absence 

of an empirical measurement of 𝜁𝑛+1 may be reasonable and 

is likely much more accurate than assuming 𝜁 = 2. This is 

backed by analytical predictions of near power-law behavior 

for various geometrical effects, FEA simulations of real 

cantilever geometries, as well as LDV measurements on 

various cantilevers. 
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Figure 5: LDV measurements and FEA simulations of the first three 
eigenmodes of an AC240 cantilever. For the FEA simulations, the cantilever 

thickness was tapered from 2.58 μm at the base to 2.28 μm at the tip, whose 

height was taken to be 13.0 μm. Both are within the manufacturer’s tolerance 

range. The values of 𝑟𝑛 for each lever are also shown. Note that the 

deflection of these driven modes (along the vertical axis) is highly 
exaggerated for visual reasons; the true deflections never exceeded 100nm.   

 
 

b. Power law model error analysis 

In Figure 6, the random errors on the LDV measurements 

are much smaller than the deviations from the power-law fit, 

which can be attributed to epistemic error. Epistemic error 

represents the inability of a model to capture all the physics 

of some physical system. In this case, the power-law model 

cannot describe all the variability in this batch of AC240 

cantilevers. In fact, there is no reason to believe that all 

micromachining variability leads specifically to power-law 

behavior; therefore, such an assumption will always lead to 

some calibration uncertainty. 

The standard deviation of the power-law exponent 𝜎𝜁𝑛
 

measured for a population of cantilevers can be used in future 

calibrations to define an error in stiffness ratio by 

 
𝜎𝑘𝑛/𝑘1

= 𝜎𝜁𝑛
(log

𝑓𝑛

𝑓1

) (
𝑓𝑛

𝑓1

)
𝜁

 . (9) 

This relationship was derived under the assumption that 

errors in stiffness are multiplicative and that relative errors 

are small. (See Appendix A(b) for derivation)  

Errors in measuring 𝑓𝑛 and 𝑓1 can be safely ignored in 

typical experimental settings, as they will be dominated by 

𝜎𝜁𝑛
, which was 𝜎𝜁2

= 0.008 for the second eigenmode data 

in Figure 6. Since 𝜎𝜁2
 is dominated by the epistemic model 

errors rather than measurement errors, averaging over more 

measurements of stiffness would not reduce 𝜎𝜁2
. Note that the 

error bars in Figure 6, representing random measurement 

error, are much smaller than the scatter of the data around the 

power law fit line.  

In this study, the measured standard deviation 𝜎𝜁2
=

0.008 corresponds to a stiffness-ratio error 𝜎𝑘2/𝑘1
= 1.5%. 

For the third mode, the standard deviation 𝜎𝜁3
= 0.014 

correspond to a stiffness-ratio error 𝜎𝑘3/𝑘1
= 3.8%.   These 

low errors demonstrate the efficacy of this calibration 

method, which is particularly accurate because it is based on 

stiffness ratios. Systematic calibration errors in the 

measurement drops out (e.g., LDV sensitivity) when dividing 

𝑘𝑛 by 𝑘1. In fact, these errors in stiffness ratios may be lower 

than the calibration error in determining the first-mode 

stiffness 𝑘1, which relies on absolute accuracy. 

 

  
Figure 6: Stiffness ratio 𝑘𝑛/𝑘1 versus frequency ratio 𝑓𝑛/𝑓1 for the first three 
eigenmodes of an AC240 cantilever as measured with three different 

methods. The LDV measurements were performed on 19 cantilevers taken 

from 11 different microfabrication wafers. Six of those cantilevers were used 
to perform AC approach calibration measurements. The second mode LDV 

data were used to generate the power-law fit with exponent 𝜁2 = 1.72 shown 

on all the graphs. In the bottom right graph, a power-law fit with 𝜁3 = 1.68 
specifically for the third mode data is also shown. The errors bars on the 

LDV data points represent random errors (standard deviation) as deduced 
from repeated measurements on the same cantilevers; the error bars for the 

third eigenmode cannot be seen because they are smaller than the data 

points. 
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Cantilever model 𝜁2 𝜁3 𝜁4 𝑓1 

(kHz) 
𝑘1 

(N/m) 
M W 

AC240 1.72(0.01) 1.68(0.01) N/A 70 2 19 11 

AC200 1.67(0.01) N/A N/A 115 10 11 5 

AC160 1.67(0.02) N/A N/A 300 26 14 8 

Arrow-CONT 1.94(0.01) 1.93(0.01) 1.91(0.01) 14 0.2 16 4 

CONT 2.09(0.02) 2.11(0.03) 2.14(0.03) 13 0.2 42 13 

FM 2.13(0.05) 2.17(0.07) N/A 75 2.8 22 12 

NCH 2.17(0.06) N/A N/A 320 42 17 10 
 

Table 1: Values of the power-law exponent 𝜁𝑛 measured by LDV for the nth eigenmode for different cantilever types. 

Nominal values of 𝑓1 and 𝑘1 are also shown for reference. M is the number of cantilevers per type; W is the number of 
microfabrication wafers that were sampled. Numbers in brackets are the standard deviation of the epistemic errors of the 
power-law model. They dominate over other sources of measurement variability (see Appendix A(c) for details about error 

analysis). For certain cantilever types, higher modes could not be measured due to LDV bandwidth and noise limitations. 

 

From this batch of AC240 cantilevers, the epistemic error 

in measuring 𝑘1 using the 𝑄𝑓1.3 scaling method resulted in a 

normalized error 𝜎𝑘1
= 5.3%. This error stems from 

inaccuracies of the 𝑘 ∝ 𝑄𝑓1.3 scaling-law model in 

describing the cantilever parameter space that leads to 

stiffness variability. Because 𝜎𝑘1
> 𝜎𝑘2/𝑘1

, the error in 𝑘2 of 

an AC240 is actually dominated by the error in measuring its 

𝑘1 and not significantly affected by the power-law error 𝜎𝜁2
 

introduced by the use of Eq. (2). In other words, errors in 

calibrating 𝑘1 are the limiting factor in calibrating 𝑘2 for this 

cantilever type.  

 

 
Figure 7: SEM photographs of the cantilevers presented in Table 1. The scale 
bar relates to all images. These images were photoshopped to remove 

distracting elements in the background. 

c. Representative sampling  

To ensure that a representative sampling of cantilevers 

was selected for each cantilever model, the cantilevers were 

selected from as many microfabrication wafers as available. 

Furthermore, a variety of coatings were selected when 

possible; for example, the FM category contains some 

cantilevers that are uncoated, and others that are coated with 

Au, Al, PtIr, and PtSi. Also, some models were obtained from 

NanoWorld and others from Nanosensors. 

Representative sampling of cantilevers enables drawing 

conclusions about the micromachining variability across 

different wafers. The AC160, AC200, AC240, ArrowCONT 

are particularly reproducible due to their fabrication process 

that requires no alignment between the tip and the cantilever; 

this avoids variability in tip setback. These models have a 

distinctively smaller epistemic error with respect to the  

CONT and FM models, which have the disadvantage of 

having a tip setback that introduces variability in stiffness, 

especially at higher eigenmodes. 

d. Comparison of calibration models 

Even in the absence of interferometric detection, it may 

be more accurate to calibrate higher eigenmodes with AC 

approach curves to provide a measured value of 𝜁 rather than 

assuming 𝜁 = 2. This can be concluded from Table 2, where 

the LDV and AC approach-curve measurements show 

reasonable agreement. Unfortunately, as mentioned earlier, 

soft cantilevers could not be calibrated successfully using AC 

approach-curves due to snap-to-contact of the first mode 

while driving higher eigenmodes.  
It is also worth assessing the frequency-ratio calibration method with respect 

to simply applying the 𝑄𝑓1.3 scaling method to higher modes independently.  

Table 3 summarizes the epistemic errors for both cases. 

Since epistemic errors refer specifically to the inability of 

each model to predict the true stiffness, they do not consider 

random measurement errors that were made insignificant by 

long averaging of thermal noise, nor do they include 

systematic calibration errors. Note that both models were 

applied to the same dataset of meticulously calibrated 

cantilevers. Also, the dataset was measured twice (two weeks 

apart) and resulted in nearly identical errors. The conclusion 

is that calculating 𝑘2 and 𝑘3 by frequency-ratio calibration is 

more accurate by roughly a factor of 2 than calibrating by the 

use of the 𝑄𝑓1.3 scaling method for each higher eigenmode 

independently. A similar conclusion was drawn for all the 

cantilever types studied in the context of this work. The lower 

error of the frequency-ratio method is attributed to the fact 

that the Q factor of the higher mode is omitted from the 

measurement. Not only does omitting the Q factor 

measurement increase accuracy, it increases the precision in 

estimating 𝑘2, because resonance frequencies are easy to 
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measure precisely. Omitting the Q factor measurement, 

which is prone to bias and measurement error, also has the 

benefit of making the frequency-ratio calibration method 

much more robust.  

Table 3 also compares the epistemic errors that arise in 

estimating stiffness ratios 𝑘𝑛/𝑘1 directly for the AC240 

cantilever. The error in this ratio is relevant to calibration for 

bimodal imaging, because the relative change in stiffness of 

two driven eigenmodes is used as a metric
27

. Notably, the 

frequency-ratio method outperforms the 𝑄𝑓1.3 scaling 

method in this context as well. This improvement is 

attributed to the fact that the error-prone quality factor 𝑄𝑛 of 

higher modes is omitted in the frequency-ratio method. 

 

cantilever 
𝜁2 

LDV AC approach 

AC240 1.72 (σ = 0.01) 1.66 ± 0.02 

AC200 1.67 (σ = 0.01) 1.69 ± 0.03 

AC160 1.67 (σ = 0.02) 1.62 ± 0.02 

FM 2.13 (σ = 0.05) 2.22 ± 0.06 
 

Table 2: Power-law exponent for the second eigenmode 𝜁2 for different 
cantilevers obtained from LDV and AC approach curve measurements. The 

standard deviations (𝜎) of LDV-measured 𝜁 values are dominated by 

epistemic (model) error. The errors in the AC approach data are the standard 

error (±) of the mean calculated from several approach curves.  
 

Estimated 

parameter 
𝑄𝑓1.3 scaling 

method 

Frequency-ratio 

method 

k1 5.3% N/A 

k2 9.7% 5.4% 

k3 14.4% 5.7% 

k2/k1 3.1% 1.5% 

k3/k1 4.1% 3.8% 
 

Table 3: Epistemic (model) error for the 𝑘 ∝ 𝑄𝑓1.3 scaling method and the 
frequency-ratio method on eigenmode stiffnesses and their ratios for a batch 

of 19 AC240 cantilevers sampled from 11 different wafers. Note that all 
random measurement errors were shown to be insignificant by acquiring two 

independent datasets; both datasets resulted in nearly identical percentages.   

 

e. Absolute accuracy and bandwidth limitations 

Absolute accuracy was not discussed so far in this 

analysis of the frequency-ratio method. This allowed for an 

assessment of the quality of the power-law model used in Eq. 

(2), while disregarding any absolute accuracy errors in 

calibrating 𝑘1. Although the absolute accuracy of all 

eigenmode stiffnesses is fundamentally limited by the 

accuracy in the LDV calibration itself, such calibration errors 

do not affect the accuracy of stiffness ratios.  

However, any frequency dependence of the LDV 

response directly translates into accuracy errors in stiffness 

ratios. The magnitude of the error for this frequency-

dependence was estimated by measuring the eigenmodes of a 

tipless cantilever that closely resembles an ideal Euler-

Bernoulli beam (see Appendix Ae). It was concluded that the 

frequency-dependence of the LDV is small compared to the 

epistemic errors for the data presented in this paper. 

The finite bandwidth (2.5 MHz) and detection noise (~15 

fm/√Hz at high frequency) of the LDV prevented the 

accurate acquisition of the 𝜁𝑛’s that are missing in Table 1. 

f. Sensitivity calibration 

An important direct benefit derived from having 

calibrated eigenmode stiffnesses is that the OBD sensitivity 

can be determined from a PSD for every mode without 

contacting the sample. This leads to an accurate measure of 

the amplitude of higher modes, which typically remains 

unknown in multifrequency AFM experiments. The non-

invasive calibration of higher mode sensitivities proposed 

here can be used to standardize protocols for multifrequency 

AFM experiments and provide more meaningful comparison 

between different experiments.   

7. Conclusion 

 

A semi-empirical power law model was proposed for 

calibrating higher eigenmodes of cantilever of arbitrary shape 

with minimal effort on the part of the AFM user. The 

outlined procedure calibrates the stiffness of higher modes 

with respect to first mode stiffness, thereby leveraging efforts 

invested in calibrating cantilevers in previous studies. Once a 

particular cantilever type is characterized in factory with a 

power-law exponent 𝜁, only the resonant frequencies of 

eigenmodes are necessary for calibrating higher mode 

stiffnesses prior to an AFM experiment. By avoiding the need 

for the AFM user to perform difficult measurements of 

higher-mode Q factors or detection sensitivity, the calibration 

procedure provides rapid and accurate results in experimental 

settings. With calibrated eigenmode stiffnesses, the detection 

sensitivity of higher modes can also be obtained before ever 

contacting the sample.  

These benefits translate directly to quantitative bimodal 

and multifrequency AFM techniques that rely on accurate 

eigenmode stiffnesses to provide accurate nanomechanical 

properties of the sample, as well as an accurate measure of 

the amplitudes of higher modes that affect the interpretation 

of tip-sample interaction physics.     
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9. Appendix A 

a. Population averaging for 𝑸𝒇𝟏.𝟑 scaling method 

The stiffness 𝑘 of an uncalibrated cantilever in the field 

can be determined from its resonance frequency 𝑓 and quality 

factor 𝑄 via  

 
𝑘 = 𝑘ref (

𝑄

𝑄ref

) (
𝑓

𝑓ref

)
1.3

, (A1) 

where the reference parameters are measured in factory by 

the manufacturer from a representative sample of 𝑁 test 

cantilevers. The reference parameters can be computed by 

 𝑓ref = 〈𝑓〉 , (A2) 

 𝑄ref = 〈𝑄〉 , (A3) 

and 

 
𝑘ref = 〈𝑘 (

𝑄ref

𝑄
) (

𝑓ref

𝑓
)

1.3

〉 , (A4) 

where the brackets represent averaging over the 

representative sample of N reference cantilevers. Note that 

more elaborate averaging schemes exist
44

 that lead to 

different 𝑘ref, 𝑄ref,  and 𝑓ref but result in identical estimation 

of 𝑘. 

b. Population averaging for frequency-ratio method  

Defining the frequency ratio 𝑓 = 𝑓𝑛/𝑓1 and stiffness ratio 

�̃� = 𝑘𝑛/𝑘1 simplifies Eq. (2) into  

 �̃� = 𝑓𝜁 .  (A5) 

Each cantilever from a population has an exact value 

 
𝜁∗ =

log �̃�

log 𝑓
, (A6) 

that may differ from the population average 𝜁. The epistemic 

(model) error, which was referred to throughout the text, can 

be treated by assuming the distribution of all 𝜁∗ values from a 

population has a variance 𝜎𝜁
2 which inevitably leads to some 

error when estimating �̃� of any particular cantilever based on 

a measurement of 𝑓.  This error stems from the assumption 

that a single 𝜁 applies to all cantilevers from the population, 

and can be represented by an error term 𝜖, as in  

 �̃� = 𝑓𝜁∗
= 𝑓𝜁+𝜖 = �̃�model𝑓

𝜖,  (A7) 

where �̃�model is the stiffness ratio predicted by the model. 

The choice of representing the epistemic error by 𝜎𝜁
2 (rather 

than 𝜎�̃�
2) has the consequence of treating the errors in �̃� as 

multiplicative. 

 The average power-law exponent 𝜁 from 𝑀 cantilevers 

can be estimated by  

 

𝜁est =
1

𝑀
∑

log �̃�

log 𝑓
,

𝑀

𝑚=1

 (A8) 

which is equal to Eq. (3). Assuming that 𝜖 is independent of 

𝑓, the variance 𝜎𝜁
2 can be estimated by    

 

𝜎𝜁,est
2 =

1

𝑀 − 1
∑ [

log �̃�

log 𝑓
− 𝜁est]

2

.

𝑀

𝑚=1

 (A9) 

Now, the variance of �̃� can be related to 𝜎𝜁
2 by a first-

order Taylor expansion  

 
𝜎�̃� ≈ 𝜎𝜁

𝜕𝑓𝜁

𝜕𝜖
 =   𝜎𝜁 𝑓𝜁log 𝑓,   (A10) 

which is accurate in the limit of 𝑓𝜎𝜁 ∙ log 𝑓𝜎𝜁 ≪ 1. This 

equation is equal to Eq. (9) and used to as a measure of 

epistemic error when applying the frequency-ratio method for 

estimating �̃� from a measurement of 𝑓.  

This entire analysis can be applied to separate eigenmodes 

by the substitution 𝜁 → 𝜁𝑛.  

c. In-factory error analysis of stiffness ratio 

The measurement error in the stiffness ratio 𝜎𝑘𝑛/𝑘1
 during 

in-factory calibration combines contributions from the error 

in the laser spot versus tip correction 𝜎𝑥, errors in the 

effective lever arms 𝜎𝑟𝑛
 and 𝜎𝑟1

 from mode shape fitting, and 

random errors due to stochastic thermal noise for both 

normalized stiffness errors 𝜎𝑘𝑛
 and 𝜎𝑘1

:    

 
σ𝑘𝑛/𝑘1

2 =
4

𝐿2
[
𝑟1 − 𝑟𝑛

𝑟1𝑟𝑛

]
2

𝜎𝑥
2 +

4Δ𝑥2

𝑟𝑛
4𝐿2

𝜎𝑟𝑛
2 +

4Δ𝑥2

𝑟1
4𝐿2

𝜎𝑟1
2

+
𝜎𝑘1

2

𝑘1
2 +

𝜎𝑘𝑛

2

𝑘𝑛
2

. 

(A11) 

   

Given the luxury of time during in-factory calibration, the 

thermal spectra were always averaged long enough to make 

the random stiffness errors 𝜎𝑘𝑛
 and 𝜎𝑘1

 negligible compared 

to other errors. Furthermore, the contributions from stiffness 

errors from mode shape corrections 𝜎𝑟𝑛
2  and 𝜎𝑟1

2  were 

minimized by keeping Δ𝑥 as close to 0 as possible
2
. 

Additionally, the frequency-response of the LDV may 

cause a repeatable absolute error in estimating 𝑘𝑛/𝑘1. The 

accuracy error 𝜖𝑛 (in dB) causes a multiplicative error of the 

n
th

 mode amplitude by a factor 10𝜖𝑛/10. This results in an 

accuracy error of the  𝜁𝑛 estimate that can be calculated by   

 
𝜖𝜁𝑛

=
|𝜖𝑛 + 𝜖1|

10 log10 𝑓
. (A12) 

which can be related to σ𝑘𝑛/𝑘1

2  through Eq. (). 

d. AC approach curves 

An example dataset for AC approach curves performed 

with an AC240 cantilever on a silicon sample are presented 

in Figure 8. The slope of each linear fit was used as a 

measure of the (inverse) OBD sensitivity. 

                                                           

 
2
 For cantilevers with no tip setback, Δ𝑥 < 4 μm could be achieved 

given the small laser spot diameter (~2.5 μm). For cantilevers with a tip 

setback, Δ𝑥 < 1 μm was achieved by positioning the laser spot above the tip 
(the tip position was determined from a side-view photograph of the 

cantilever). 
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Figure 8: AC approach curves of the three first eigenmodes of an AC240 
cantilever against a silicon sample, and corresponding linear fits.  

 

e. Benchmark study 

The methodology described in this paper was 

benchmarked on a cantilever that closely resembles a perfect 

Euler-Bernoulli beam: a silicon cantilever (NOCAL, Bruker) 

with dimensions 395.7 𝜇m × 28.4 𝜇m, determined optically 

by a photograph acquired with the Cypher AFM (not shown). 

The five first eigenmode shapes were mapped with LDV 

and are compared to the analytical Euler-Bernoulli model 

(not shown). Most of the disagreement between the 

mathematical model and LDV measurements was reconciled 

by FEA simulation of a NOCAL cantilever with 1) an 

infinitely rigid boundary at the base of the cantilever, and 2) a 

realistic silicon cantilever chip. While the FEA with an 

infinitely rigid boundary matched the mathematical Euler-

Bernoulli model (as expected), the FEA with a realistic chip 

matched the LDV data, as seen in Figure 9. This concluded 

that modelling the cantilever chip is necessary for accurate 

FEA simulation of cantilever dynamics, and that this is 

especially true at increasing eigenmode numbers due to their 

increase in stiffness. 

Secondly, the interferometric stiffness and resonance 

frequency measurements were compared to their FEA-

simulated counterparts, as shown in Figure 10. The stiffness-

to-frequency power law extracted from the FEA (𝜁 =

2.006 ± 0.002) and measured with the LDV (𝜁 = 2.002 ±

0.003) were close to the theoretical value.  

This benchmark experiment sets a lower bound to the 

discrepancies expected between LDV measurements and 

FEA simulations and suggests it may be necessary to model 

the cantilever chip in these studies.  

 
 

 
Figure 9: LDV measurements (piezoacoustically driven cantilever) and FEA 
simulations of the first five eigenmodes on a NOCAL cantilever, and the 

Euler-Bernoulli analytical eigenmodes. Including the cantilever chip in the 

FEA model was necessary achieve agreement between FEA and LDV, as 

clarified by the inset. The experimental lever arm ratios 𝑟𝑛 are listed for each 
mode. Note that the deflection of these driven modes (along the vertical axis) 

is highly exaggerated for visual reasons; the true deflections never exceeded 

100nm.   

 

 
Figure 10: Power law relating the ratio of stiffnesses to the ratio of 

frequencies of the first five eigenmodes of a NOCAL cantilever, measured 

with three different methods. 
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10. Appendix B 

 

This section presents four special cases of cantilever 

beams to provide an understanding of the prominent causes 

for deviation from ideal cantilever behavior, specifically 

deviations from the scaling law 𝑘 ∝ 𝜔2. The goal is to assess 

the impact of each situation on the relationship between the 

stiffness and resonance frequency of different eigenmodes.   

All four of these cases are solutions of the equation of 

motion for transverse free vibrations of a beam
67

 

 𝜕2

𝜕𝑥2
[
𝐸𝐼(𝑥)

𝐿4

𝜕2Ψn(𝑥, 𝑡)

𝜕𝑥2
] + 𝜌𝑐𝐴𝑐(𝑥)

𝜕2Ψn(𝑥, 𝑡)

𝜕𝑡2
= 0, (B1) 

where 𝐴𝑐(𝑥) is the cross-sectional area, 𝐼(𝑥) is the second 

moment of area, and 𝜌𝑐 is the mass density of the cantilever. 

By separation of variables, the eigenmode shape 𝜓𝑛 can be 

isolated from the time-dependent eigenfunction 

 Ψ𝑛(𝑥, 𝑡) = 𝜓𝑛(𝑥)τ(𝑡), (B2) 

leading to the simplified equation of motion:  

 𝜕2

𝜕𝑥2
[
𝐸𝐼(𝑥)

𝐿4

𝜕2𝜓𝑛(𝑥)

𝜕𝑥2
] − 𝜔𝑛

2𝜌𝑐𝐴𝑐(𝑥)𝜓𝑛(𝑥) = 0. (B3) 

a. Special case: Euler-Bernoulli beam 

An Euler-Bernoulli beam has a constant cross-sectional 

area 𝐴0 and second moment of area 𝐼0 along its entire length. 

Enforcing the boundary conditions  

 
𝜓(0) =

𝑑𝜓

𝑑𝑥
|

𝑥=0
=

𝑑2𝜓

𝑑𝑥2 |
𝑥=1

=
𝑑3𝜓

𝑑𝑥3 |
𝑥=1

= 0 (B4) 

results in the normalized solutions of the eigenmode equation  

 𝜓𝑛(𝑥) = 

[(cos 𝜅𝑛𝑥 − cosh 𝜅𝑛𝑥) − Κ(sin 𝜅𝑛𝑥 − sinh 𝜅𝑛𝑥)]

[(cos 𝜅𝑛 − cosh 𝜅𝑛) − Κ(sin 𝜅𝑛 − sinh 𝜅𝑛)]
, 

(B5) 

where the Kappa-factor  

 
Κ =

cos 𝜅𝑛 + cosh 𝜅𝑛

sin 𝜅𝑛 + sinh 𝜅𝑛

, (B6) 

and each modal wavenumber 𝜅𝑛 is a root of the characteristic 

equation 

 1 − cos 𝜅𝑥 cosh 𝜅𝑥 = 0. (B7) 

This orthogonal basis of eigenfunctions 𝜓𝑛(𝑥) has 

corresponding angular resonance frequencies  

 

𝜔𝑛 =
𝜅𝑛

2

𝐿2
√

𝐸𝐼0

𝜌𝑐𝐴𝑐

 (B8) 

and respective spring constants 

 
𝑘𝑛 =

𝜅𝑛
4

4

𝐸𝐼0

𝐿3
. (B9) 

This leads to the relationship 

 
𝑘𝑛 = (

𝜌𝑐𝐴𝑐𝐿

4
) 𝜔𝑛

2 (B10) 

that results in the well-known scaling law 

 𝑘𝑛

𝑘1

= (
𝜔𝑛

𝜔1

)
2

 , (B11) 

which is often used to estimate higher mode spring constants. 

This scaling is plotted in Figure 11 for the first five 

eigenmodes of an Euler-Bernoulli beam. 

b. Special case: uniform beam with tip mass 

Adding a tip mass 𝑚tip at the very end of an Euler-

Bernoulli beam can be modelled by updating the third-order 

boundary condition Eq. (B2) to  

 
𝐸𝐼

𝜕3Ψ

𝜕𝑥3
|

𝑥=1

= 𝑚tip

𝜕2Ψ

𝜕𝑡2
|

𝑥=1

. (B12) 

In this case, the added mass results in a decrease in each 

modal wavenumber 𝜅𝑛. Interestingly, the same eigenmode 

from Eq. (B3) still applies; however, the modal wavenumbers 

are instead taken as roots from the modified characteristic 

equation that generalizes Eq. (B7) into 

 1 − cos 𝜅𝑥 cosh 𝜅𝑥 (1 + 𝑅𝐿𝜅(tan 𝜅𝑥 − tanh 𝜅𝑥)) = 0, (B13) 

where the mass ratio  

 
𝑅 =

𝑚tip

𝜌𝑐𝐴𝑐𝐿
. (B14) 

Equation (B8) can be used to calculate 𝜔𝑛 in this case, 

because the wave velocity is unaffected by the tip mass and 

constant throughout the full length of the beam. However, the 

stiffness must be calculated using Eq. (8), because the mode 

shape is affected by the added mass, leading to   

 
𝑘𝑛 =

𝐸𝐼0

𝐿3
∫ |

𝜕2𝜓𝑛

𝜕𝑥2
|

21

0

𝑑𝑥. (B15) 

In this case, the squared scaling law of Eq. (B11) breaks 

down. This is shown in Figure 11, where the stiffness was 

plotted for 𝑅 = 0.1. Applying the 𝜁 power-law 

approximation leads to 𝜁 > 2 for 𝑅 > 0.  

c. Special case: uniform beam with tip setback 

For an Euler-Bernoulli with a massless tip positioned with 

a setback Δ𝑥 from the cantilever end, the effective stiffness 

eigenmodes increases without any consequence on the 

eigenmode frequencies. Given the boundary condition from 

Eq. (B4) that ensures no curvature of the cantilever at its end, 

a linear correction can be applied to calculate reduction in 

measured amplitude due to tip setback, as in  

 
𝐴tip = 𝐴end (1 +

Δ𝑥𝑡

𝐿

𝜕𝜓𝑛

𝜕𝑥
) . (B16) 

Now, the stiffness 𝑘𝑛 at the cantilever tip can be calculated 

form the stiffness 𝑘𝑛,end at the cantilever end by  
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𝑘𝑛 = 𝑘𝑛,end (1 +

Δ𝑥𝑡

𝐿

𝜕𝜓𝑛

𝜕𝑥
)

−2

. (B17) 

Here, the lever arm ratio 𝑟𝑛 presented in Eq. (5) can be 

formally defined as 

 
𝑟𝑛 = (

𝜕𝜓𝑛

𝜕𝑥
)

−1

|
𝑥=1

. (B18) 

Note that the linear approximation of the cantilever end is 

only appropriate for |Δ𝑥/𝐿| < 𝑟𝑛/2  (approximately).  

For an Euler-Bernoulli beam, Eq. (B16) has an analytical 

solution. They were used to plot the first five stiffness ratio in 

Figure 11 for a tip setback Δ𝑥/𝐿 = −0.03. It can be shown 

that a power-law approximation for this effect would result in 

𝜁 > 2 for Δ𝑥/𝐿 < 0. 

d. Special case: triangular cantilever 

For a triangular tipless cantilever, 𝐼(𝑥) and 𝐴(𝑥) vary 

linearly from base to tip as  

 𝐼(𝑥) = 𝐼0(1 − 𝑥) (B19) 

and  

 𝐴𝑐(𝑥) = 𝐴0(1 − 𝑥). (B20) 

Solutions to Eq. (B3) under these conditions can be expressed 

as an infinite sum of Euler-Bernoulli eigenmodes, or 

approximated by a finite sum of 𝑀eigenmodes, as in 

 

𝜓𝑛(𝑥) = ∑ 𝑐𝑚𝜓𝑚
EB(𝑥)

𝑀

𝑚

. (B21) 

where 𝜓𝑚
EB(𝑥) represents the Euler-Bernoulli eigenfunction. 

Because the boundary conditions are fulfilled by all 𝜓𝑚
EB(𝑥), 

the only requirement is to minimize the objective function  

 Λ(𝜔, 𝑐1, 𝑐2, … ) = 

‖
𝜕2

𝜕𝑥2
[
𝐸𝐼(𝑥)

𝐿4

𝜕2𝑤𝑛(𝑥)

𝜕𝑥2
] − 𝜔2𝜌𝑐𝐴𝑐(𝑥)

𝜕2𝜓𝑛(𝑥)

𝜕𝑡2
‖

2

, 
(B22) 

where the ‖… ‖ represents the vector norm.  

Conveniently, a triangular cantilever results in an 

analytical Λ that can be minimized for any choice of 𝜔 by 

finding the optimal 𝑐𝑛’s through least-squares. Each local 

minimum in Λ corresponds to an eigenmode frequency 𝜔𝑛.  

This procedure was performed for the first five 

eigenmodes of a triangular cantilever (with a length much 

larger than base width). Both the stiffnesses and frequencies 

of higher eigenmodes drop significantly relative to the Euler-

Bernoulli beam, as shown in Figure 11. Applying the 𝜁 

power-law approximation leads to 𝜁~1.5 in this case. 

 

 

Figure 11: The analytically calculated changes in stiffness and resonance 

frequency of four special cases of cantilevers.  
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