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ABSTRACT

Prediction models that capture and use the structure
of state-space dynamics can be very effective. In prac-
tice, however, one rarely has access to full information
about that structure, and accurate reconstruction of the
dynamics from scalar time-series data—e.g., via delay-
coordinate embedding—can be a real challenge. In this
paper, we show that forecast models that employ incom-
plete embeddings of the dynamics can produce surpris-
ingly accurate predictions of the state of a dynamical sys-
tem. In particular, we demonstrate the effectiveness of a
simple near-neighbor forecast technique that works with
a two-dimensional embedding. Even though correctness
of the topology is not guaranteed for incomplete recon-
structions like this, the dynamical structure that they
capture allows for accurate predictions—in many cases,
even more accurate than predictions generated using a
full embedding. This could be very useful in the context
of real-time forecasting, where the human effort required
to produce a correct delay-coordinate embedding is pro-
hibitive.

LEAD PARAGRAPH

Prediction models constructed from state-space dy-
namics have a long and rich history, dating back to
roulette and beyond. A major stumbling block in the
application of these models in real-world situations is the
need to reconstruct the dynamics from scalar time-series
data—e.g., via delay-coordinate embedding. This pro-
cedure, which is the topic of a large and active body of
literature, involves estimation of two free parameters: the
dimension m of the reconstruction space and the delay, τ ,
between the observations that make up the coordinates in
that space. Estimating good values for these parameters
is not trivial; it requires the proper mathematics, atten-
tion to the data requirements, computational effort, and
expert interpretation of the results of the calculations.
This is a major challenge if one is interested in real-time
forecasting, especially when the systems involved operate
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on fast time scales. In this paper, we show that the full
effort of delay-coordinate embedding is not always nec-
essary when one is building forecast models, and can in-
deed be overkill. Using synthetic time-series data gener-
ated from the Lorenz-96 atmospheric model and real data
from a computer performance experiment, we demon-
strate that a two-dimensional embedding of scalar time-
series data from a dynamical system gives simple forecast
methods enough traction to generate accurate predic-
tions of the future course of those dynamics—sometimes
even more accurate than predictions created using the
full embedding. Since incomplete embeddings do not
preserve the topology of the full dynamics, this is inter-
esting from a mathematical standpoint. It is also poten-
tially useful in practice. This reduced-order forecasting
strategy involves only one free parameter (τ), good val-
ues for which, we believe, can be estimated ‘on the fly’
using information-theoretic and/or machine-learning al-
gorithms. As such, it sidesteps much of the complexity of
the embedding process—perhaps most importantly, the
need for expert human interpretation—and thus could
enable automated, real-time dynamics-based forecasting
in practical applications.

I. INTRODUCTION

Complicated nonlinear dynamics are ubiquitous in nat-
ural and engineered systems. Methods that capture and
use the state-space structure of a dynamical system are
a proven strategy for forecasting the behavior of systems
like this, but the task is not straightforward. The govern-
ing equations and the state variables are rarely known;
rather, one has a single (or perhaps a few) series of scalar
measurements that can be observed from the system. It
can be a challenge to model the full dynamics from data
like this, especially in the case of forecast models, which
are only really useful if they can be constructed and ap-
plied on faster time scales than those of the target system.
While the traditional state-space reconstruction machin-
ery is a good way to accomplish the task of modeling
the dynamics, it is problematic in real-time forecasting
because it generally requires input from and interpreta-
tion by a human expert in order to work properly. The
strategy suggested in this paper sidesteps that roadblock
by using a reduced-order variant of delay-coordinate em-
bedding to build forecast models for nonlinear dynamical
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systems.

Modern approaches to modeling a time series for the
purposes of forecasting arguably began with Yule’s work
on predicting the annual number of sunspots1 through
what is now known as autoregression. Before this, time-
series forecasting was done mostly through simple global
extrapolation2. Global linear methods, of course, are
rarely adequate when one is working with nonlinear dy-
namical systems; rather, one needs to model the de-
tails of the state-space dynamics in order to make ac-
curate predictions. The usual first step in this process
is to reconstruct that dynamical structure from the ob-
served data. The state-space reconstruction techniques
proposed by Packard et al.3 in 1980 were a critical break-
through in this regard. In the most common variant of
this now-classic approach, one constructs a set of vec-
tors ~xj ∈ Rm where each coordinate is simply a time-
delayed element of the scalar time-series data xj , i.e.,
~xj = [xj xj−τ . . . xj−(m−1)τ ] for τ > 0. In 1981, Takens
showed that this delay-coordinate embedding method pro-
vides a topologically correct representation of a nonlinear
dynamical system if a specific set of theoretical assump-
tions are satisfied4; in 1991, Sauer et al. extended this
discussion and relaxed some of the theoretical restric-
tions5. This remains a highly active field of research;
see, for example, Abarbanel6 or Kantz & Schreiber7 for
surveys.

A large number of creative strategies have been de-
veloped for using the state-space structure of a dynami-
cal system to generate predictions (e.g.,2,8–12). Perhaps
the most simple of these is the “Lorenz Method of Ana-
logues” (LMA), which is essentially nearest-neighbor pre-
diction13. Lorenz’s original formulation of this idea used
the full system state space; this method was extended to
embedded dynamics by Pikovsky12, but is also related to
the prediction work of Sugihara & May11, among oth-
ers. Even this simple strategy—which, as described in
more detail in Section II B, builds predictions by look-
ing for the nearest neighbor of a given point and tak-
ing that neighbor’s observed path as the forecast—works
quite well for forecasting nonlinear dynamical systems.
LMA and similar methods have been used successfully
to forecast measles and chickenpox outbreaks11, marine
phytoplankton populations11, performance dynamics of a
running computer14–16, the fluctuations in a far-infrared
laser2,10, and many more.

The reconstruction step that is necessary before these
methods can be applied to scalar time-series data, how-
ever, can be problematic. Delay-coordinate embedding
is a powerful piece of machinery, but estimating values
for its two free parameters, the time delay τ and the di-
mension m, is not trivial. A large number of heuristics
have been proposed for this task (e.g.,7,17–28), but these
methods, described in more detail in Section II A, are
computationally intensive and they require input from—
and interpretation by—a human expert. This can be a
real problem in a prediction context: a millisecond-scale
forecast is not useful if it takes seconds or minutes to

produce. And it is even more of a problem in nonstation-
ary systems, since the reconstruction machinery is only
guaranteed to work for an infinitely long noise-free obser-
vation of a single dynamical system. If effective forecast
models are to be constructed and applied in a manner
that outpaces the dynamics of the target system, then,
one may not be able to use the full, traditional delay-
coordinate embedding machinery to reconstruct the dy-
namics.

The goal of the work described in this paper was to
sidestep that problem by developing prediction strate-
gies that work in incomplete embedding spaces. The
conjecture that forms the basis for our work is that a
full formal embedding, although mandatory for detailed
dynamical analysis, is not necessary for the purposes of
prediction. As a first step towards validating that con-
jecture, we constructed two-embeddings from a number
of different time-series data sets, both simulated and ex-
perimental, and then built forecast models in that space.
Sections III and IV of this paper present and discuss those
results in some detail. In short, we found that forecasts
produced using the Lorenz method of analogues on a
two-dimensional delay-coordinate embedding are roughly
as accurate as—and often even more accurate than—
forecasts produced by the same method working in the
full embedding space. Figure 1 shows a quick example: a
pair of forecasts of the so-called “Dataset A”, a time se-
ries from a far-infrared laser from the Santa Fe Institute
prediction competition2, generated with LMA on full and
2D embeddings.

The main point of Figure 1—and the main claim of
this paper—concerns the similarity of the two panels.
The forecast generated in the full embedding space is
not much more accurate than the one generated in the
two-dimensional reconstruction. The errors between true
and predicted values were 0.117 and 0.148, respectively,
as measured using the assessment procedure and error
metric covered in Section II B; a better choice of τ , as
described in Section IV, brings the latter value down
to 0.119. That is, even though the low-dimensional re-
construction is not completely faithful to the underly-
ing dynamics, it appears to be good enough to support
accurate forecast models of nonlinear dynamics. Both
of these LMA-based forecasts, incidentally, significantly
outperformed traditional strategies like random-walk (by
a factor of ≈ 8.5) and autoregressive integrated moving
average (by a factor of ≈ 6.5).

The results in Sections III and IV offer a deeper vali-
dation of the claim that the full complexity (and effort)
of the delay-coordinate ‘unfolding’ process may not be
strictly necessary to the success of forecast models of
real-world nonlinear dynamical systems. In effect, the
reduced-order modeling strategy that we propose is a
kind of balance of a tradeoff between the power of the
state-space reconstruction machinery and the effort re-
quired to use it. Fixing m = 2 effectively avoids all of the
in-depth, post-facto, data-dependent analysis that is re-
quired to properly estimate a value for this parameter—
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(a) LMA in the full embedding space (“fnn-LMA”)
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(b) LMA in a two-dimensional embedding space (“ro-LMA”)

FIG. 1: Forecasts of SFI data set A using Lorenz’s method of analogues in (a) full and (b) 2D reconstructions of the
state-space dynamics. Blue os are the true continuation cj of the time series and red xs (pj) are the forecasts; black
error bars are provided if there is a discrepancy between the two. Embedding parameter values were estimated using

standard techniques: the first minimum of the average mutual information23 for the delay in both images and the
false near neighbor method of Kennel et al.25, with a threshold of 20%, for the dimension in the left-hand image.

Even though the 2D embedding used in (b) is not faithful to the underlying topology, it enables successful
forecasting of the time series.

which is arguably the harder part of the process. It
also avoids the high computational complexity that is in-
volved in near-neighbor searches in high-dimension state
spaces—an essential step in almost any forecast strategy.
Of course, there is still a free parameter: the delay τ .
As described in Section IV, though, we believe that good
values for this parameter can be estimated ‘on the fly,’
with little to no human guidance, which would make this
method both agile and resilient.

No forecast model will be ideal for every task. In
fact, as a corollary of the undecidability of the halting
problem29, no single forecasting schema is ideal for all
noise-free deterministic signals2—let alone all real-world
time-series data sets. We do not want to give the im-
pression that the strategy proposed here will be effective
for every time series, but we do intend to show that it
is effective for a broad spectrum of signals. Additionally,
we want to emphasize that it is a short-term forecasting
scheme. Dimensional reduction is a double-edged sword;
it enables on-the-fly forecasting by eliminating a difficult
estimation step, but it effects a guaranteed information
loss in the model. This well-known effect2 all but guar-
antees problems with accuracy as prediction horizons are
increased. We explore this limitation in Section III A.

II. BACKGROUND AND METHODS

A. Delay-Coordinate Embedding

The process of collecting a time series {xj}Nj=1 from a
dynamical system (aka a “trace”) is formally the eval-
uation of an observation function h : X → R at the
true system state ~y(tj) at time tj for j = 1, .., N , i.e.,
xj = h(~y(tj)) for j = 1, . . . , N5. Provided that the un-

derlying dynamics Φ and the observation function are
both smooth and generic, Takens4 proves that the delay
coordinate map:

F (h,Φ, τ,m)(~y(tj)) = ([xj xj−τ . . . xj−(m−1)τ ]T ) (1)

from a d-dimensional smooth compact manifold M to
R2d+1 is a diffeomorphism on M . To assure topological
conjugacy, the proof requires that the embedding dimen-
sion m must be at least twice the dimension d of the am-
bient space; a tighter bound of m > 2dcap, the capacity
dimension of the original dynamics, was later established
by Sauer et al.5. Operationalizing either of these theoret-
ical constraints can be a real challenge. d is not known
and accurate dcap calculations are not easy with exper-
imental data. The theoretical constraints on the time
delay are less stringent: τ must be greater than zero and
not a multiple of any orbit’s period4,5. In practice, how-
ever, the noisy and finite-precision nature of digital data
and floating-point arithmetic combine to make the choice
of τ much more delicate7.

As mentioned in the previous section, the forecast
strategy proposed in this paper sidesteps the challenge
of estimating the embedding dimension by fixing m = 2.
Selection of a value for the remaining free parameter, τ ,
is still an issue, though. There are dozens of methods
for this—e.g.,7,17–23. In this paper, we use the method of
mutual information22,23, in which τ is chosen at the first
minimum of the time-delayed mutual information, calcu-
lated using the TISEAN package28. Fraser & Swinney ar-
gue that this minimizes the redundancy of the embedding
coordinates, thereby maximizing the information content
of the overall delay vector23. This choice is discussed and
empirically verified by Liebert and Schuster22, although
agreement on this topic is by no means universal30,31.
And it is well known that choice of τ is application-
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and system-specific: a τ that works well for a Lya-
punov exponent calculation may not work well for other
purposes7,20,32. Indeed, as we show in Section IV, the
τ value suggested by mutual information calculations is
rarely the optimal choice for our reduced-order forecast
strategy. Even so, it is a reasonable starting point, as it
is the standard technique used in the dynamical systems
community.

The embedding dimension m is not a parameter in
our reduced-order forecasting strategy. Since full embed-
dings are the point of departure for the central premise of
this paper, however—and the point of comparison for our
results—we briefly review methods used to estimate val-
ues for that parameter. As in the case of τ , a number of
creative strategies for doing so have been developed over
the past few decades7,19,21,25–28. Most of these are based
in some way on minimizing the number of false crossings
that are caused by projection. In this paper, we use the
false near neighbor (FNN) approach of Kennel et al.25,
calculated using TISEAN28 with a ≈ 20% threshold on the
percentage of neighbors. (Whenever we refer to a “full”
embedding, as in the discussion of Figure 1, we mean that
the m value was estimated in this fashion and the τ value
was chosen at the first minimum of the mutual informa-
tion, as described in the previous paragraph.) Again,
no heuristic method is perfect, but FNN is arguably the
most widely used method for estimating m, and thus is
useful for the purposes of comparison.

Finally, it should be noted that there is an alternative
view that one should estimate τ and m together, not
separately20,24,27,33.

B. Lorenz Method of Analogues

As mentioned in Section I, the dynamical systems com-
munity has developed a number of methods that capture
and use state-space structure to create forecasts. Since
the goal of this paper is to offer a proof of concept of
the notion that incomplete embeddings could give these
kinds of methods enough traction to generate useful pre-
dictions, we chose one of the oldest and simplest members
of that family: Lorenz’s method of analogues (LMA). In
future work, we will explore reduced-order versions of
other forecast strategies.

To apply LMA to a scalar time-series data set {xj}nj=1,
one begins by performing a delay-coordinate embedding
using one or more of the heuristics presented in Sec-
tion II A to choose m and τ . This produces a trajectory
of the form:

{~xj = [xj xj−τ . . . xj−(m−1)τ ]T }nj=1−(m−1)τ

Forecasting the next point in the time series, xn+1,
amounts to reconstructing the next delay vector ~xn+1 in
the trajectory. Note that, by the form of delay-coordinate
vectors, all but the first coordinate of ~xn+1 are known. To
choose the first coordinate, one finds the nearest neighbor

of ~xn in the reconstructed space—namely ~xj(1,m)—and
maps that vector forward using the delay map, obtaining

~xj(1,m)+1 = [xj(1,m)+1 xj(1,m)+1−τ . . . xj(1,m)+1−(m−1)τ ]T

Using the neighbor’s image, one defines

~pn+1 = [xj(1,m)+1 xn+1−τ . . . xn+1−(m−1)τ ]T

LMA defines the forecast of xn+1 as pn+1 = xj(1,m)+1.
If performing multi-step forecasts, one appends the new
delay vector

~pn+1 = [xj(1,m)+1 xn+1−τ . . . xn+1−(m−1)τ ]T

to the end of the trajectory and repeats this process as
needed.

Many more-complicated variants of this algorithm
have appeared in the literature (e.g.,2,8,9,11), most of
which involve building some flavor of local-linear mod-
els around each delay vector and then using it to make
the prediction of the next point. Here, we use the basic
version, in two ways: first—as a baseline for comparison
purposes—on a “full” embedding of each time series, with
m chosen using the false near neighbor method of Kennel
et al.25 on that data; second, with m = 2. In the rest of
this paper, we will refer to these as fnn-LMA and ro-LMA,
respectively. The experiments reported in Section III use
the same τ value for both fnn-LMA and ro-LMA, choosing
it at the first minimum of the time-delayed mutual in-
formation of the time series23. In Section IV, we explore
the effects of varying τ on the accuracy of both methods.

C. Assessing Forecast Accuracy

To evaluate ro-LMA and compare it to fnn-LMA, we
calculate a figure of merit in the following way. We split
each N -point time series into two pieces: the first 90%,
referred to as the “initial training” signal and denoted
{xj}nj=1, and the last 10%, known as the “test” signal

{cj}(k+n+1)=N
j=n+1 . We use the initial training signal to build

the model, following the procedures described in the pre-
vious section. We use that model to generate a prediction
pn+1 of the value of xn+1, then compare pn+1 to the true
continuation, cn+1. The initial investigations that are
reported in Section III involve “one-step” models, which
are rebuilt after each step, out to the end of the test sig-
nal, using {cn+1} ∪ {xj}nj=1. In Section IV, we extend
this conversation to longer prediction horizons.

As a numerical measure of prediction accuracy, we cal-
culate the mean absolute scaled error (MASE)34 be-
tween the true and predicted signals:

MASE =

k+n+1∑
j=n+1

|pj − cj |
k

n−1

∑n
i=2 |xi − xi−1|

MASE is a normalized measure: the scaling term in the
denominator is the average in-sample forecast error for a
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random-walk prediction—which uses the previous value
in the observed signal as the forecast—calculated over
the initial training signal {xj}nj=1. That is, MASE < 1
means that the prediction error in question was, on the
average, smaller than the in-sample error of a random-
walk forecast on the same data. Analogously, MASE >
1 means that the corresponding prediction method did
worse, on average, than the random-walk method. The
MASE value of 0.117 for Figure 1, for instance, means
that the fnn-LMA forecast of the SFI data set A was 1

0.117
times better than a random-walk forecast of the initial
training portion of same signal.

While its comparative nature may seem odd, this error
metric allows for fair comparison across varying methods,
prediction horizons, and signal scales, making it a stan-
dard error measure in the forecasting literature—and a
good choice for the study described in the following sec-
tions, which involve a number of very different signals.

III. PREDICTION IN PROJECTION

In this section, we demonstrate that the accuracies of
forecasts produced by ro-LMA—Lorenz’s method of ana-
logues, operating on a two-dimensional embedding of a
trajectory from a dynamical system—are similar to and
often better than forecasts produced by fnn-LMA, which
operates on a full reconstruction of the same dynamics.
While the brief example in Section I is a useful first vali-
dation of that statement, it does not support the kind of
exploration that is necessary to properly evaluate a new
forecast method, especially one that violates the basic
tenets of delay-coordinate embedding. The SFI data set
A is a single trace from a single system. We want to show
that ro-LMA is comparable to or better than fnn-LMA for
a range of systems and parameter values—and to repeat
each experiment for a number of different trajectories
from each system. To this end, we studied two dynam-
ical systems, one simulated and one real: the Lorenz-96
model and sensor data from a laboratory experiment on
computer performance dynamics.

A. A Synthetic Example: Lorenz-96

The Lorenz-96 model35 is a set of K first-order differ-
ential equations relating the K state variables ξ1 . . . ξK :

ξ̇k = (ξk+1 − ξk−2)(ξk−1)− ξk + F (2)

for k = 1, . . . ,K, where F ∈ R is a constant forcing
term that is independent of k. In this model, each ξk
is some atmospheric quantity (such as temperature or
vorticity) at a discrete location on a periodic lattice rep-
resenting a latitude circle of the earth36. This model ex-
hibits a wide range of dynamical behavior—everything
from fixed points and periodic attractors to low- and
high-dimensional chaos36—making it an ideal test case
for our purposes.

We performed two sets of forecasting experiments with
traces from the Lorenz-96 model: one with K = 22 and
the other with K = 47. Both experiments used con-
stant forcing values of F = 5. These choices yield chaotic
trajectories with low and high Kaplan-Yorke (Lyapunov)
dimension37: dKY / 3 for the K = 22 dynamics and
dKY ≈ 19 for K = 4736. Following standard practice36,
we enforced periodic boundary conditions and solved
equation (2) from several randomly chosen initial condi-
tions using a standard fourth-order Runge-Kutta integra-
tor for 60,000 steps with a step size of 1

64 normalized time
units. We then discarded the first 10,000 points of that
trajectory in order to eliminate transient behavior. Fi-
nally, we created scalar time-series traces by individually
“observing” each of the K state variables of the trajec-
tory: i.e., hi(ξi(tj)) = xj,i for j ∈ {10, 000, . . . , 60, 000}
and for i ∈ {1, . . . ,K}. We repeated all of this from
a number of different initial conditions—seven for the
K = 47 Lorenz-96 system and 15 for the K = 22 case—
producing a total of 659 traces for our forecasting study.
For each of these, we used the procedures outlined in Sec-
tion II A to estimate values for the free parameters of the
embedding process, obtaining m = 8 and τ = 26 for all
traces in the K = 22 case, and m = 10 and τ = 31 for
the K = 47 traces38.

For the K = 22 dynamics, both ro-LMA and fnn-LMA
worked quite well. See Figure 2(a) for a time-domain plot
of an ro-LMA forecast of a representative trace from this
system and Figures 2(b) and (c) for graphical representa-
tions of the forecast accuracy on that trace for both meth-
ods. The diagonal structure on the pj vs. cj plots in the
Figure indicates that both of these LMA-based methods
performed very well on this trace. More importantly—
from the standpoint of evaluation of our primary claim—
the MASE scores of ro-LMA and fnn-LMA forecasts, com-
puted following the procedures described in Section II C,
were 0.391± 0.016 and 0.441± 0.033, respectively, across
the 330 traces at this parameter value. That is, the LMA
forecasting strategy worked better on a two-dimensional
embedding of these dynamics than on a full embedding,
and by a statistically significant margin. This is some-
what startling, given that the two-embedding is not topo-
logically correct. Clearly, though, it captures enough
structure to allow LMA to generate good predictions.
And ro-LMA’s reduced-order nature may actually miti-
gate the impact of noise effects, simply because a sin-
gle noisy point in a scalar time series affects m of the
points in an m-embedding. Of course, τ choice, informa-
tion content, and/or data length could also be at work in
these results; these concerns are addressed in Sections IV
and V.

The K = 47 case is a slightly different story: ro-LMA
still outperformed fnn-LMA, but not by a statistically sig-
nificant margin. The MASE scores across all 329 traces
were 0.985 ± 0.047 and 1.007 ± 0.043 for ro-LMA and
fnn-LMA, respectively. In view of the higher complex-
ity of the state-space structure of the K = 47 version
of the Lorenz-96 system, the overall increase in MASE
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FIG. 2: ro-LMA and fnn-LMA forecasts of a
representative trace from the Lorenz-96 system with

K = 22 and F = 5. Top: a time-domain plot of the first
5,000 points of the ro-LMA forecast. Bottom: the

predicted (pj) vs true (cj) values for forecasts of that
trace generated by (b) ro-LMA and (c) fnn-LMA. On

such a plot, a perfect prediction would lie on the
diagonal. The MASE scores of the forecasts in (b) and

(c) were 0.392 and 0.461, respectively.

scores over the K = 22 case makes sense. Recall that
dKY is far higher for the K = 47 case: this attractor
fills more of the state space and has many more dimen-
sions that are associated with positive Lyapunov expo-
nents. This has obvious implications for predictability.
It could very well be the case that more data are neces-
sary to reconstruct these dynamics, but our experiments
held the length of the training set constant across all of
the Lorenz-96 experiments. These issues are described at
more length in Section V. Regardless, it is encouraging
that the reduced-order forecasting method still performs
as well as the version that works with a fully ‘unfolded’
embedding.

B. Experimental Data: Computer Performance Dynamics

Validation with synthetic data are an important first
step in evaluating any new forecast strategy, but exper-
imental time-series data are the acid test if one is inter-
ested in real-world applications. Our second set of tests
of ro-LMA, and comparisons of its accuracy to that of
fnn-LMA, involved data from a laboratory experiment on
computer performance dynamics. Like Lorenz-96, this

system has been shown to exhibit a range of interesting
deterministic dynamical behavior, from periodic orbits to
low- and high-dimensional chaos39,40, making it a good
test case for this paper. It also has important practical
implications; these dynamics, which arise from the de-
terministic, nonlinear interactions between the hardware
and the software, have profound effects on execution time
and memory use.

Collecting observations of the performance of a run-
ning computer is not trivial. We used the libpfm4
library, via PAPI (Performance Application Program-
ming Interface) 5.241, to stop program execution at
100,000-instruction intervals—the unit of time in these
experiments—and read the contents of the microproces-
sor’s onboard hardware performance monitors, which we
had programmed to observe important attributes of the
system’s dynamics. See42 for an in-depth description of
this experimental setup. The signals that are produced
by this apparatus are scalar time-series measurements of
system metrics like processor efficiency (e.g., IPC, which
measures how many instructions are being executed, on
the average, in each clock cycle) or memory usage (e.g.,
how often the processor had to access the main memory
during the measurement interval).

We have tested ro-LMA on traces of many different pro-
cessor and memory performance metrics gathered during
the execution of a variety of programs on several different
computers. Here, for conciseness, we focus on processor
performance traces from two different programs, one sim-
ple and one complex, running on the same Intel i7-based
computer. Figure 3(a) shows a small segment of an IPC
time series gathered from that computer as it executed a
four-line C program (col major) that repeatedly initial-
izes a 256 × 256 matrix in column-major order. On the
scale of this figure, these dynamics appear to be largely
periodic, but they are actually chaotic40. The bottom
panel in Figure 3 shows a processor efficiency trace from
a much more complex program: the 403.gcc compiler
from the SPEC 2006CPU benchmark suite43.

Since computer performance dynamics result from a
composition of hardware and software, these two pro-
grams represent two different dynamical systems, even
though they are running on the same computer. The dy-
namical differences are visually apparent from the traces
in Figure 3; they are mathematically apparent from non-
linear time-series analysis of embeddings of those data40,
as well as in calculations of the information content of the
two signals. Among other things, 403.gcc has much less
predictive structure than col major and is thus much
harder to forecast16. These attributes make this a useful
pair of experiments for an exploration of the utility of
reduced-order forecasting.

For statistical validation, we collected 15 performance
traces from the computer as it ran each program, calcu-
lated embedding parameter values as described in Sec-
tion II A, and generated forecasts of each trace using
ro-LMA and fnn-LMA. Figure 4 shows pj vs. cj plots for
these forecasts. The diagonal structure on the top two
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(a) A short segment of a trace of the instructions executed
per cycle (IPC) during the execution of col major
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(b) A trace of the instructions executed per cycle (IPC)
during the execution of 403.gcc

FIG. 3: Time-series data from a computer performance
experiment: processor load traces, in the form of

instructions executed per cycle (IPC) of (a) a simple
program (col major) that repeatedly initializes a 256 ×
256 matrix and (b) a complex program (403.gcc) from
the SPEC benchmark suite. Each point is the average

IPC over a 100,000 instruction period.

plots indicates that both ro-LMA and fnn-LMA performed
well on the col major traces. The MASE scores across
all 15 trials in this set of experiments were 0.050± 0.002
and 0.063 ± 0.003, respectively—i.e., ro-LMA’s accuracy
was somewhat worse than that of fnn-LMA. For 403.gcc,
however, ro-LMA appears to be somewhat more accurate:
1.488± 0.016 versus fnn-LMA’s 1.530± 0.021. Note that
the 403.gcc MASE scores were higher for both fore-
cast methods than on col major, simply because the
403.gcc signal contains less predictive structure16. This
actually makes the comparison somewhat problematic,
as discussed at more length on page 9.

Table I summarizes results from all of the experiments
presented so far. Overall, the results on the computer-
performance data are consistent with those that we ob-
tained with the Lorenz-96 example in the previous sec-
tion: prediction accuracies of ro-LMA and fnn-LMA were
quite similar on all traces, despite the former’s use of
an incomplete embedding. This amounts to a validation
of the conjecture on which this paper is based. And in
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(a) fnn-LMA on col major
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(b) ro-LMA on col major
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(c) fnn-LMA on 403.gcc
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(d) ro-LMA on 403.gcc

FIG. 4: Predicted (pj) versus true values (cj) for
forecasts of col major and 403.gcc generated with

fnn-LMA and ro-LMA.

TABLE I: MASE scores for both forecast methods and
all four sets of experiments.

Signal fnn-LMA ro-LMA Trials

Lorenz-96 K = 22 0.441 ± 0.033 0.391 ± 0.016 330

Lorenz-96 K = 47 1.007 ± 0.043 0.985 ± 0.047 329

col major 0.050 ± 0.002 0.063 ± 0.003 15

403.gcc 1.5297 ± 0.0214 1.488 ± 0.016 15

both numerical and experimental examples, ro-LMA ac-
tually outperformed fnn-LMA on the more-complex traces
(403.gcc, K = 47). We believe that this is due to the
noise mitigation that is naturally effected by a lower-
dimensional embedding (cf., page 5). Finally, we found
that it was possible to improve the performance of both
ro-LMA and fnn-LMA on all four of these dynamical sys-
tems by adjusting the free parameter, τ . It is to this issue
that we turn next; following that, we address the issue of
prediction horizon.

IV. TIME SCALES, PARAMETERS, AND PREDICTION
HORIZONS

The τ parameter

The embedding theorems require only that τ be greater
than zero and not a multiple of any period of the dynam-
ics. In practice, however, τ can play a critical role in the
success of delay-coordinate embedding—and any nonlin-
ear time-series analysis that follows7,20,23. It should not
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be surprising, then, that τ might affect the accuracy of
an LMA-based method that uses the structure of an em-
bedding to make forecasts.

Figure 5 explores this effect in more detail. Across all τ
values, theMASE of col major was generally lower than
the other three experiments—again, simply because this
time series has more predictive structure. The K = 22
curve is generally lower than the K = 47 one for the same
reason, as discussed at the end of the previous section.
For the Lorenz-96 traces, prediction accuracy decreases
monotonically with τ . It is known that increasing τ is
beneficial for longer prediction horizons7. Our situation
involves short prediction horizons, so it makes sense that
our observation is consistent with the contrapositive of
that result.

For the experimental traces, the relationship between
τ and MASE score is less simple. There is only a slight
upward overall trend (not visible at this scale) and the
curves are nonmonotonic. This latter effect is likely due
to periodicities in the dynamics, which are very strong in
the col major signal (viz., a dominant unstable period-
three orbit in the dynamics, which traces out the top,
bottom, and middle bands in Figure 3). Periodicities
cause obvious problems for embeddings—and forecast
methods that employ them—if the delay is a harmonic or
subharmonic of those periods, simply because the coor-
dinates of the delay vector are not independent samples
of the dynamics. It is for this reason that Takens men-
tions this condition in his original paper. Here, the effect
of this is an oscillation in the forecast accuracy vs. τ
curve: low when it is a sub/harmonic of the dominant
unstable periodic orbit in the col major dynamics, for
instance, then increasing with τ as more independence is
introduced into the coordinates, then falling again as τ
reaches the next sub/harmonic, and so on.

This naturally leads to the issue of choosing a good
value for the delay parameter. Recall that all of the ex-
periments reported in Section III used a τ value chosen
at the first minimum of the mutual information curve
for the corresponding time series. These values are indi-
cated by the black vertical dashed lines in Figure 5. This
estimation strategy was simply a starting point, chosen
because it is arguably the most common heuristic used in
the nonlinear time-series analysis community. As is clear
from Figure 5, though, it is not the best way to choose
τ for reduced-order forecast strategies. Only in the case
of col major is that τ value optimal for ro-LMA—that
is, does it fall at the lowest point on the MASE vs. τ
curve.

This is the point alluded to at the end of Sec-
tion III: one can improve the performance of ro-LMA
simply by choosing a different τ—i.e., by adjusting the
one free parameter of the method. In all cases (aside
from col major, where the default τ was the optimal
value) adjusting τ brought ro-LMA’s error down below
fnn-LMA’s. The improvement can be quite striking: for
visual comparison, Figure 6 shows ro-LMA forecasts of a
K = 47 Lorenz-96 trace using default and best-case val-
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(a) ro-LMA on Lorenz-96 with K = 22.
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(b) ro-LMA on Lorenz-96 with K = 47.
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(c) ro-LMA on col major.
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(d) ro-LMA on 403.gcc.

FIG. 5: The effect of τ on ro-LMA forecast accuracy.
The blue dashed curves are the average MASE of the
ro-LMA forecasts; the red dotted lines show ± the

standard deviation. The black vertical dashed lines
mark the τ that is the first minimum of the mutual

information curve for all of the time series.
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ues of τ . Again, this supports the main point of this pa-
per: forecast methods based on incomplete embeddings
of time-series data can be very effective—and much less
work than those that require a full embedding.
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(a) A ro-LMA forecast (MASE = 0.985) using the
“default” value of τ for this trace, which is chosen at the

first minimum of the average mutual information.
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(b) A ro-LMA forecast (MASE = 0.115) using the
optimal value of τ for this trace, which was chosen at the

first minimum of the plot in Figure 5(b).

FIG. 6: Time-domain plots of ro-LMA forecasts of a
K = 47 Lorenz-96 trace with default and best-case τ

values.

However, that comparison is not really fair. Recall that
the “full” embedding that is used by fnn-LMA, as defined
so far, fixes τ at the first minimum of the average mutual
information for the corresponding trace. It may well be
the case that that τ value is suboptimal for that method
as well—as it was for ro-LMA. To make the comparison
fair, we performed an additional set of experiments to
find the optimal τ for fnn-LMA. Table II shows the nu-
merical values of the MASE scores, for forecasts made
with default and best-case τ values, for both methods
and all traces. In the two simulated examples, best-case
ro-LMA significantly outperformed best-case fnn-LMA;
in the two experimental examples, the best-case fnn-LMA
was better, but not by a huge margin. That is, even if one
optimizes τ individually for these two methods, ro-LMA
keeps up with, and sometimes outperforms, fnn-LMA.

In view of our claim that part of ro-LMA’s advantage
stems from the natural noise mitigation effects of a low-
dimensional embedding, it may appear somewhat odd

that fnn-LMA works better on the experimental time-
series data, which certainly contain noise. Comparisons
of large MASE scores are somewhat problematic, how-
ever. Recall that MASE > 1 means that the fore-
cast is worse than an in-sample random-walk forecast of
the same trace. That is, both LMA-based methods—no
matter the τ values—generate poor predictions. There
could be a number of reasons for this poor perfor-
mance. 403.gcc has almost no predictive structure16

and fnn-LMA’s extra axes may add to its ability to cap-
ture that structure—in a manner that outweighs the po-
tential noise effects of those extra axes. The dynamics
of col major, on the other hand, are fairly low dimen-
sional and dominated by a single unstable periodic orbit;
it could be that the “full” embedding of these dynamics
captures its structure so well that fnn-LMA is basically
perfect and ro-LMA cannot do any better.

While the plots and MASE scores in this paper sug-
gest that ro-LMA forecasts are quite good, it is important
to note that both “default” and “best-case” τ values were
chosen after the fact in all of those experiments. This is
not useful in practice. A large part of the point of ro-LMA
is its ability to work ‘on the fly,’ when one may not have
the leisure to run an average mutual information calcu-
lation on a long segment of the trace and find a clear
minumum—and one certainly cannot run a set of exper-
iments like the ones that produced Figure 5 and choose
an optimal τ . (Producing this Figure required 3,000 runs
involving a total of 22,010,700 forecasted points, which
took approximately 44.5 hours on an Intel Core i7.)

We suspect, though, that it is possible to estimate
good—although certainly not optimal—values for τ , and
to do so quickly and automatically. Most of the current
τ -estimation methods use some kind of distribution. We
are exploring how to adapt them to be used in a “rolling”
fashion, on an evolving distribution that is built up on
the fly, as the data arrive. Newer variations on mutual
information may be more appropriate in this situation,
such as co-information44 and multi-information45. An
appealing alternative is a time-lagged version of permu-
tation entropy46. We are also exploring geometric and
topological heuristics from the nonlinear time-series anal-
ysis literature, such as wavering product21, fill factor, in-
tegral local deformation19, and displacement from diag-
onal20. Many of these methods, however, are aimed at
producing reconstructions from which one can accurately
estimate dynamical invariants; as mentioned above, the
optimal τ for forecasting may be quite different. More-
over, any method that works with the geometry or topol-
ogy of the dynamics—rather than a distribution of scalar
values—may be less able to work with short samples of
that structure. Nonetheless, these methods may be a
useful complement to the statistical methods mentioned
above.



10

TABLE II: The effects of the τ parameter. The “default” value is fixed, for both ro-LMA and fnn-LMA, at the first
minimum of the average mutual information for that trace; the “best case” value is chosen individually, for each

method and each trace, from plots like the ones in Figure 5.

Signal ro-LMA ro-LMA fnn-LMA fnn-LMA

(default τ) (best-case τ) (default τ) (best-case τ)

Lorenz-96 K = 22 0.391 ± 0.016 0.073 ± 0.002 0.441 ± 0.033 0.137 ± 0.006

Lorenz-96 K = 47 0.985 ± 0.047 0.115 ± 0.006 1.007 ± 0.043 0.325 ± 0.020

col major 0.063 ± 0.003 0.063 ± 0.003 0.050 ± 0.002 0.049 ± 0.002

403.gcc 1.488 ± 0.016 1.471 ± 0.014 1.530 ± 0.021 1.239 ± 0.020

Prediction horizon

There are fundamental limits on the prediction of
chaotic systems. Positive Lyapunov exponents make
long-term forecasts a difficult prospect beyond a cer-
tain point for even the most-sophisticated methods2,7,16.
Note that the coordinates of points in higher-dimensional
embedding spaces sample wider temporal spans of the
time series. This increased ‘memory’ means that they
capture more information about the dynamics than
lower-dimensional embeddings do, which raises an im-
portant concern about ro-LMA: whether its accuracy will
degrade more rapidly with increasing prediction horizon
than that of fnn-LMA.

Recall that the formulations of both methods, as de-
scribed and deployed in the previous sections, assume
that measurements of the target system are available in
real time: they “rebuild” the LMA models after each
step, adding new time-series points to the embeddings
as they arrive. Both ro-LMA and fnn-LMA can easily
be modified to produce longer forecasts, however—say,
h steps at a time, only updating the model with new
observations at h-step intervals. Naturally, one would
expect forecast accuracy to suffer as h increases for any
non-constant signal. The question at issue in this section
is whether the greater temporal span of the data points
used by fnn-LMA mitigates that degradation, and to what
extent.

Assessing the accuracy of h-step forecasts requires
a minor modification to the MASE calculation, since
its denominator is normalized by one-step random-walk
forecast errors. In an h-step situation, one should instead
normalize by h-step forecasts, which involves modifying
the scaling term to be the average root-mean-squared er-
ror accumulated using random-walk forecasting on the
initial training signal, h steps at a time34. This gives a
new figure of merit that we will call h-MASE:

h-MASE =

k+n+1∑
j=n+1

|pj − cj |
k

n−h
∑n
i=1

√∑h
ι=1(xi−xi+ι)2

h

Note that the h-step forecast accuracy of the random-
walk method will also degrade with h, so h-MASE will

always be lower than MASE. This also means that h-
MASE scores should not be compared for different h.

In Table III, we provide h-MASE scores for h-step
forecasts of the different sets of experiments from Sec-
tion III. The important comparisons here are, as men-
tioned above, across the rows of the table. The different
methods “reach” different distances back into the time se-
ries to build the models that produce those forecasts, of
course, depending on their delay and dimension. At first
glance, this might appear to make it hard to compare,
say, default-τ ro-LMA and best-case-τ fnn-LMA sensibly,
since they use different τs and different values of the em-
bedding dimension and thus are spanning a longer range
of the time series. However, h is measured in units of
the sample interval of the time series, so comparing one
h-step forecast to another (for the same h) does make
sense.

There are a number of interesting questions to ask
about the patterns in this table, beginning with the
one that set off these experiments: how do fnn-LMA
and ro-LMA compare if one individually optimizes τ for
each method? The numbers indicate that ro-LMA beats
fnn-LMA for h = 1 on the K = 22 traces, but then
loses progressively badly (i.e., by more σs) as h grows.
col major follows the same pattern except that ro-LMA
is worse even at h = 1. For 403.gcc, fnn-LMA performs
better at both τs and all values of h, but the dispar-
ity between the accuracy of the two methods does not
systematically worsen with increasing h. For K = 47,
ro-LMA consistently beats fnn-LMA for both τs for h ≤ 10
but the accuracy of the two methods is comparable for
longer prediction horizons.

Another interesting question is whether the assertions
in the previous section stand up to increasing prediction
horizon. Those assertions were based on the results that
appear in the h = 1 rows of Table III: ro-LMA was better
than fnn-LMA on the K = 22 Lorenz-96 experiments,
for instance, for both τ values. This pattern does not
persist for longer prediction horizons: rather, fnn-LMA
generally outperforms ro-LMA on the K = 22 traces for
h = 10, 50, and 100. The h = 1 comparisons for K = 47
and col major do generally persist for higher h, however.
As mentioned before, 403.gcc is problematic because its
MASE scores are so high, but the accuracies of the two
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TABLE III: The h-step mean absolute scaled error (h-MASE) scores for different forecast horizons (h). As
explained in the text, h-MASE scores should not be compared for different h (i.e., down the columns of this table).

Signal h ro-LMA ro-LMA fnn-LMA fnn-LMA

(default τ) (best-case τ) (default τ) (best-case τ)

Lorenz-96 K = 22 1 0.391 ± 0.016 0.073 ± 0.002 0.441 ± 0.003 0.137 ± 0.006

Lorenz-96 K = 22 10 0.101 ± 0.008 0.066 ± 0.003 0.062 ± 0.011 0.033 ± 0.002

Lorenz-96 K = 22 50 0.084 ± 0.007 0.074 ± 0.008 0.005 ± 0.002 0.004 ± 0.001

Lorenz-96 K = 22 100 0.057 ± 0.005 0.050 ± 0.004 0.003 ± 0.001 0.003 ± 0.001

Lorenz-96 K = 47 1 0.985 ± 0.047 0.115 ± 0.006 0.995 ± 0.053 0.325 ± 0.020

Lorenz-96 K = 47 10 0.223 ± 0.011 0.116 ± 0.005 0.488 ± 0.042 0.218 ± 0.012

Lorenz-96 K = 47 50 0.117 ± 0.011 0.112 ± 0.010 0.127 ± 0.011 0.119 ± 0.010

Lorenz-96 K = 47 100 0.075 ± 0.006 0.068 ± 0.005 0.079 ± 0.005 0.075 ± 0.004

col major 1 0.063 ± 0.003 0.063 ± 0.003 0.050 ± 0.002 0.049 ± 0.002

col major 10 0.054 ± 0.006 0.046 ± 0.003 0.021 ± 0.001 0.018 ± 0.001

col major 50 0.059 ± 0.009 0.037 ± 0.003 0.012 ± 0.003 0.009 ± 0.001

col major 100 0.044 ± 0.004 0.028 ± 0.006 0.010 ± 0.003 0.007 ± 0.001

403.gcc 1 1.488 ± 0.016 1.471 ± 0.014 1.530 ± 0.021 1.239 ± 0.020

403.gcc 10 0.403 ± 0.009 0.396 ± 0.009 0.384 ± 0.007 0.369 ± 0.010

403.gcc 50 0.154 ± 0.003 0.151 ± 0.005 0.143 ± 0.003 0.141 ± 0.003

403.gcc 100 0.101 ± 0.002 0.101 ± 0.003 0.095 ± 0.002 0.093 ± 0.002

methods are similar for all h > 1.

The fact that fnn-LMA generally outperforms ro-LMA
for longer prediction horizons makes sense, simply be-
cause ro-LMA samples less of the time series and there-
fore has less ‘memory’ about the dynamics. Still,
best-case ro-LMA performs almost as well as best-case
fnn-LMA in many cases, even for h = 100. In view
of the fundamental limits on prediction of chaotic dy-
namics, however, it is worth considering whether ei-
ther method is really making correct long-term forecasts.
Indeed, time-domain plots of long-term forecasts (e.g.,
Figure 7) reveal that both fnn-LMA and ro-LMA fore-
casts have fallen off the true trajectory and onto shadow
trajectories—a well-known phenomenon when forecast-
ing chaotic dynamics10.

In other words, it appears that even a 50-step forecast
of these chaotic trajectories is a tall order: i.e., that we
are running up against the fundamental bounds imposed
by the Lyapunov exponents. In view of this, it is promis-
ing that ro-LMA generally keeps up with fnn-LMA in many
cases—even when both methods are struggling with the
prediction horizon, and even though the ro-LMA model
has much less memory about the past history of the tra-
jectory. An important aspect of our future research on
this topic will be determining bounds on reasonable pre-
diction horizons—as well as developing methods, if pos-
sible, to increase prediction horizon without sacrificing
the accuracy or speed of ro-LMA.

V. CONCLUSION

We have proposed a novel nonlinear forecast strategy
that works in a two-dimensional version of the delay-
coordinate embedding space. Our preliminary results
suggest that this approach captures the dynamics well
enough to enable effective prediction of several very dif-
ferent real-world and artificial dynamical systems, even
though working with a 2D embedding violates one of the
most critical basic tenets of the delay-coordinate embed-
ding machinery.

The point of this paper is not only to explore whether
prediction in projection works, but also to establish it as
a useful practical technique. From that standpoint, the
primary advantage of ro-LMA is that the 2D embedding
that it uses to model the dynamics has only a single free
parameter: the delay, τ . The standard delay-coordinate
embedding process has a second free parameter (the di-
mension) that requires expert human judgment to esti-
mate, making that class of methods all but useless for
adaptive modeling and forecasting. As described at the
end of Section IV, we believe that good values for τ can
be effectively estimated on the fly from the time series.
This will let our method adapt to nonstationary dynam-
ics. In this fashion, the line of research described in this
paper bridges the gap between rigorous nonlinear mathe-
matical models—which are ineffective in real-time—and
approximate methods that are agile enough for adaptive
modeling of nonstationary dynamical processes.

Data length is an important consideration in any
nonlinear time-series application. Traditional estimates
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FIG. 7: A best-case-τ ro-LMA forecast of a K = 47 Lorenz-96 trace for h = 50. The forecast (red) follows the true
trajectory (blue) for a while, then falls off onto a shadow trajectory, then gets recorrected when a new set of

observations are incorporated into the model after h time steps.

(e.g., by Smith47 and by Tsonis et al.48) would suggest
that ≈ 1017 data points would be required for a success-
ful delay-coordinate embedding for the Lorenz-96 K = 47
data in Section III A, where the known dKY values36 in-
dicate that one might need at least m = 38 dimensions
to properly unfold the dynamics. While it may be possi-
ble to collect that much data in a synthetic experiment,
that is certainly not an option in a real-world forecasting
situation, particularly if the dynamics that one wants
to forecast are nonstationary. Note, however, that we
were able to get good results on that system with only
45,000 points. The Smith/Tsonis estimates were derived
for the specific purposes of correlation dimension calcu-
lations via the Grassberger-Procaccia algorithm; in our
opinion, they are overly pessimistic for forecasting. For
example, Sauer10 successfully forecasted the continuation
of a 16,000-point time series embedded in 16 dimensions;
Sugihara & May11 used delay-coordinate embedding with
m as large as seven to successfully forecast biological and
epidemiological time-series data as short as 266 points.
Given these results, we believe that our traces are long
enough to support the conclusions that we drew from
them: viz., fnn-LMA is a reasonable point of compari-
son, and the fact that ro-LMA outperforms it is meaning-
ful. Nonetheless, an important future-work item will be
a careful study of the effects of data length on ro-LMA,
which will have profound implications for its ability to
handle nonstationarity.

As stated before, no forecast model is ideal for all noise-
free deterministic signals, let alone all real-world time-
series data sets. However, the proof of concept offered
in this paper is encouraging: prediction in projection ap-
pears to work remarkably well, even though the mod-
els that it uses are not topologically faithful to the true
dynamics. As mentioned in the Introduction, there are
many other creative and effective ways to leverage the
structure of an embedded dynamics in order to predict

the future course of a trajectory (e.g.,2,8–12). It would
be interesting to see how well these methods work in a
reduced-order embedding space. Our ultimate goal is to
be able to show that prediction in projection—a simple
yet powerful reduction of a time-tested method—has real
practical utility for a wide spectrum of forecasting tasks
as a simple, agile, adaptive, noise-resilient, forecasting
strategy for nonlinear systems.
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