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The reaction of ABm monomers (m = 2, 3) with a multifunctional Bf -type polymer chain (”hy-
pergrafting”) is studied by coarse-grained molecular dynamics simulations. The ABm monomers are
hypergrafted using the slow monomer addition strategy. Fully dendronized, i.e., perfectly branched
polymers are also simulated for comparison. The degree of branching DB of the molecules obtained
with the ”hypergrafting’ process critically depends on the rate with which monomers attach to inner
monomers compared to terminal monomers. This ratio is more favorable if the ABm monomers have
lower reactivity, since the free monomers then have time to diffuse inside the chain. Configurational
chain properties are also determined, showing that the stretching of the polymer backbone as a con-
sequence of the ”hypergrafting” procedure is much less pronounced than for perfectly dendronized
chains. Furthermore, we analyze the scaling of various quantities with molecular weight M for large
M (M > 100). The Wiener index scales as M2.3, which is intermediate between linear chains (M3)
and perfectly branched polymers (M2 ln(M)). The polymer size, characterized by the radius of
gyration Rg or the hydrodynamic radius Rh, is found to scale as Rg,h ∝ Mν with ν ≈ 0.38, which
lies between the exponent of diffusion limited aggregation (ν = 0.4) and the mean-field exponent
predicted by Konkolewicz and coworkers (ν = 0.33).

I. INTRODUCTION

Hyperbranched polymers are macromolecules with an
irregular tree-like structure [1]. Their dense structure
provides them with unique mechanical and rheological
properties, and the large number of functional end groups
makes them interesting for applications in nanomedicine
and material science [2–5]. Compared to dendrimers with
a regular dendritic structure [6–9], their synthesis is much
simpler and can often be done in just one reaction step
[5]. One particularly promising strategy for synthesizing
hyperbranched polymers is ”hypergrafting”, a ”grafting-
from” approach where ABm monomers attach to a multi-
functional macroinitiator core by slow monomer addition
(SMA) [5, 10–15]. The SMA technique allows to control
the molecular weight to some extent, polydispersities are
comparatively low, and it minimizes side reactions such
as the formation of oligomers and cyclic side products.
Theoretical interest in hyperbranched polymers goes

back to the early Fifties of the last century [16, 17]. The
polycondensation of ABm monomers was studied by rate
equations [10, 11, 15], mean-field methods [18–27] and by
computer simulations of lattice [26, 28–31] and off-lattice
models [32]. Simple rate equation models predict that
the polydispersity index of the resulting polymers can be
reduced by increasing the core functionality [10, 11, 15].
Mean-field approaches have indicated that the polymers
have a self-similar architecture [16, 18–24]. The radius
of gyration was predicted to scale with the chain length

∗
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according to a power law Rg ∼ Nν with Flory exponent
varying between ν = 1/4 [16] and ν = 1/2 [19], depending
on the dimensionality [18] and the theoretical approach
[20]. In a relatively recent series of studies, Konkolewicz
et al. calculated the scaling behavior of molecules created
by slow monomer addition within a mean field theory
that takes into account the evolution of the monomer
density profile of the chains during the growth process
[25–27, 33]. They predicted an initial logarithmic scal-
ing for small molecules, followed by a power law scaling
with exponent ν = 1/3 for larger molecules. They also
tested their theory against experiments and simulations
and found good agreement [26, 27, 34, 35].

Other recent simulation studies on the generation of
hyperbranched polymers were presented by Wang et al.

[29, 30] and by Juriju et al. [31]. When comparing sim-
ulations with each other, it is important to specify the
way how the hyperbranched chains were generated. In
the simulations of Konkolewicz et al. [26], random self-
avoiding walks with lengths chosen from a prescribed dis-
tribution were grown one after the other, each starting
from a randomly selected branching point. In contrast,
Wang et al. [30] simulated a process of slow monomer
addition under conditions of diffusion-controlled poly-
merization (e.g. , a polymerization via radical reactions),
where the monomers diffuse into the chain from outside
and attach to the first reaction site they encounter. They
report Flory exponents between 1/2 and 1/3. For large
molecular weights, ν is found to approach the charac-
teristic exponent of diffusion limited aggregation (DLA),
ν = 2/5. Juriju et al. [31] examined two types of growth
processes and identified two distinct universality classes
associated with each of them. The first is a ”quick

http://arxiv.org/abs/1510.08225v2
mailto:friederike.schmid@uni-mainz.de


2

B

B

BB

B

B

BB

B

B B

B

B B

A
B

B
n +

F F F

F FF

FIG. 1. Schematic example of hypergrafting of AB2

monomers on a linear (Ff ) backbone chain.

growth” process which allows for cluster-cluster aggre-
gation. This generates chains with a fractal structure
and Flory exponent ν ≈ 1/4. The second is a ”slow
growth” process where monomers are attached sequen-
tially to random sites of the chain, however, without
having to diffuse there first. This was found to result
in dense chains where Rg scales logarithmically with the
chain length, in accordance with the theoretical predic-
tion of Konkolewicz for short chains [25]. Juriju et al.

[31] also investigated the effect of excluded volume inter-
actions and found that they have almost no influence on
the results.
In the present paper, we focus on linear-hyperbranched

graft copolymers (LHGCs), which have recently been
proposed as an interesting alternative to standard hy-
perbranched polymers and dendronized polymers. Den-
dronized polymers have a linear backbone decorated with
dendritic side chains [36–38], which gives them a cylin-
drical shape. While they are interesting macromolecular
objects, their production is as cumbersome as that of
dendrimers. LHGCs on the other hand also have a lin-
ear backbone, but use hyperbranched side chains instead
[5, 14, 39–41]. They can be synthesized by hypergrafting
from the backbone (see Fig. 1). In a recent paper [15], we
have calculated the expected polydispersity index of such
chains, taking into account the core dispersity, within
a rate equation theory. Here we will present off-lattice
Monte Carlos simulation of the growth of such chains
under slow monomer addition, assuming that the poly-
merization reaction is diffusion controlled, and analyze
the resulting topological and conformational properties.
The paper is organized as follows. In the next section,

we introduce the simulation model and method. Then
we will discuss the properties of the resulting chains, fo-
cussing on statistical and topological properties in section
IIIA and on conformational properties in section III B.
We summarize and conclude in section IV.

II. SIMULATION MODEL

We use a simple bead-spring model for the chains.
Beads repel each other via a repulsive WCA potential
[42] with diameter σ and energy prefactor ǫ, and are
connected by harmonic bonds with spring constant k =
10ǫ/σ2, resulting in the equilibrium distance r0 ≈ 1.1σ.
In addition, a bending potential Vb = K(1 − cos(Φ)) is

applied, where Φ is the angle between subsequent bonds
and the bending constant K is chosen K = 10ǫ. Here
and throughout, the simulation units of length and en-
ergy are the interaction parameter σ and ǫ of the WCA
potential, and the time unit is τ =

√

mσ/ǫ, where m is
the mass of one bead. ABm monomers are modelled as
dimers of two beads, one bead representing the A reactive
group, and the other one all the B groups. We do not in-
clude explicit solvent. Since the beads repel each other,
our system corresponds to a polymer in solvent under
good solvent conditions. We carry out Molecular Dy-
namics simulations using the Velocity-Verlet algorithm
and a Langevin thermostat at temperature kBT = 0.5ǫ
with the time step 0.005τ . The simulations were carried
out using the open source program package ESPResSo
[43], which we extended to allow for chemical reactions
between monomers and the main chain.
The monomers are created and equilibrated in a sepa-

rate reservoir and then added one by one in intervals of
1000τ to the main system, which initially contains one
equilibrated backbone chain made of f beads F. This
is done by placing the monomers randomly on the sur-
face of a sphere centered at the center of mass of the
polymer, whose radius is 5σ larger than the largest dis-
tance between the center and a chain bead (A, B, or F).
Fully periodic boundary conditions are applied such that
monomers cannot leave the simulation box. Once they
have diffused close to a chain bead, they may react with
the chain, thus making the polymer grow. In that case,
a new harmonic bond is established between an A bead
and a B or F bead.
Reactions may take place under the following condi-

tions

• The distance of the potential reaction partners
((A,B) or (A,F)) is less than a critical distance
rc = 1.1σ.

• None of the beads involved in a reaction have al-
ready reached the maximum number of allowed re-
actions. A and F beads can react only once, B
beads may react m times.

• One of the partners belongs to the central chain.
Reactions between free ABm monomers are not al-
lowed.

If these conditions are fulfilled in a given time step, the
monomers react with each other with a probability p. We
chose p = 1 for reactions with the backbone chain ((A,F)
reactions), and p = 1 (”high reactivity”) or p = 0.01
(”low reactivity”) for (A,B) reactions. Since monomer
pairs that meet the above conditions in a given time step
may still have a distance less than rc in the subsequent
time steps, the net reactivity (i.e. , the fraction of colli-
sions that lead to bond formation) is not equal to p for
p < 1. In our simulations, we found that p = 0.01 re-
sults in a net reactivity of roughly r ≈ 1/3. (For p = 1,
the reactivity is obviously r = 1.) In the present work,
we take p to be the same for AB2 and AB3 monomers.
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FIG. 2. Simulation snapshot of hyperbranched polymers
with backbone length f = 20 and monomer functionality m =
2. The degrees of polymerization (i.e. the number of bound
monomers) are (a) DP=60, (b) DP=140, (c) DP=290. (d)
shows a perfectly dendronized polymer of generation 3 on
the same backbone for comparison with the hyperbranched
structures (DP=140).

However, since the monomers also have to move close to
each other before they can react, the resulting reaction
rates may be different for AB2 and AB3 monomers as
described below.

III. RESULTS

We will now present the simulation results, focussing
first on the topological properties of the chains (i.e. , their
architecture), and then on the resulting configurational
properties (radius of gyration etc.).
For every choice of backbone functionality f (f =

20, 40, 100) and monomer functionality m (m = 2, 3), 20-
25 independent simulation runs were carried out. For
comparison, we have also simulated fully dendronized
polymers with backbone functionalities f = 20, 40, 100
and monomer functionalities m = 2, 3. Typical snap-
shots of hyperbranched polymers and one dendronized
polymer are shown in Fig. 2.

A. Statistical and topological properties of chains

We first address the important question how efficiently
the slow monomer addition process produces highly
branched molecules, i.e. , how close the resulting molec-
ular structures are to perfectly branched, dendronized
polymers. To this end, we consider

• The backbone conversion, i.e. , the average num-
ber of backbone groups that have reacted with a
monomer

• the ”degree of branching” [44, 45], which quantifies
the efficiency with which the full branching capa-
bilities of monomers are exploited in the process.
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FIG. 3. Mean backbone conversion as a function of the
monomers per backbone unit for monomer functionality m =
2 (top) and m = 3 (bottom), different reactivities r = 1
(”high”) and r ≈ 1/3 (”low”), and different backbone func-
tionalities f as indicated. The error bars (not shown) are
about twice the symbol size.

The backbone conversion is shown in Fig. 3 as a func-
tion of the grafted monomers per backbone unit in the
chain - which is in some sense a time axis in the poly-
merization simulation. The curves for AB2 and AB3

monomers are very similar. In the initial regime, where
monomers mainly react with backbone units, the back-
bone conversion increases linearly. Then, as monomers
start interacting with already formed branching points,
the curves deviate from linear growth and level off. For
monomers with low reactivity, almost full conversion can
be reached in the course of the simulation. For highly re-
active monomers, a substantial fraction (∼ 20%) of back-
bone reactive sites remain empty.
The degree of branching can be quantified by a measure

proposed by Hölter and Frey [44]

DB =
m

m− 1

∑m
r=1(r − 1)Nr
∑m

r=1 r Nr
, (1)

where Nr is the number of monomers in a chain that
serve as starting point for r branches. (Hence N0 is
the number of terminal units, N1 the number of linear
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FIG. 4. Mean DB as a function of monomers per backbone
unit for monomer functionalities m = 2 (top) and m = 3 (bot-
tom), different backbone functionalities f as indicated, and
different reactivities. Lines indicate theoretical predictions for
different sets of rate parameters (cf. Eqs. (3-5)): kr ∝ (m−r)
(s0 and s0’); k1/k0 = 0.45 (s1); k1/k0 = 0.5, k2/k0 = 0.3 (s1’);
k1/k0 = 0.45, k2/k0 = 0.27 (s2’), and kb = k0/m (all sets).
Sets s0,s1,s1’, and s2’ are taken from Fig. 6.

units etc.). DB quantifies the number of side branches
in the molecule relative to the total number of branches
and is normalized such that it varies between 0 (linear
chains) and 1 (perfectly branched dendronized chains).
It is shown as a function of monomer units per back-
bone unit in Fig. 4. The curves look similar to those
for the backbone conversion (Fig. 3): They first increase
and then level off. They are higher for AB2 monomers
than for AB3 monomers, implying that it is less likely
for AB3 than for AB2 monomers to fill all reaction sites.
Nevertheless, the total number of side branches per non-
terminal monomer, quantified as

ANB =

∑m
r=1(r − 1)Nr
∑m

r=1 Nr
(2)

is higher for AB3 monomers than for AB2 monomers as
one would expect. This is shown in Fig. 5. Both DB and
ANB increase slightly for less reactive monomers, but the
influence of reactivity on DB and ANB is much smaller
than on the backbone conversion.

0

0.2

0.4

0.6

0 5 10 15 20 25 30 35

A
N

B

monomers per backbone

m=2

f=20
f=40

f=100
f=20, low reactivity
f=40 , low reactivity

f=100, low reactivity
theory (parameter set s0)
theory (parameter set s1)

0

0.2

0.4

0.6

0 5 10 15 20 25 30 35

A
N

B

monomers per backbone

m=3

f=20
f=40

f=100
f=20, low reactivity
f=40, low reactivity

f=100, low reactivity
theory (parameter set s0’)
theory (parameter set s1’)
theory (parameter set s2’)

FIG. 5. Mean average number of side branches ANB as a
function of monomers per backbone for monomer functional-
ities m = 2 (top) and m = 3 (bottom), different backbone
functionalities f as indicated, and different reactivities. Lines
indicate theoretical predictions for the same parameter sets
as in Fig. 4.

The behavior of the degree of branching DB and the
average number of side branches ANB can be rationalized
within a simple rate equation approach proposed in Ref.
[45], which we slightly modify to account for the effect of
backbone conversion. The resulting equations read

ṄF = −ckbNF (3)

Ṅ0 = c
[

kbNF +

m
∑

r=1

kr Nr

]

(4)

Ṅr = c
[

kr−1 Nr−1 − kr Nr

]

: 1 ≤ r ≤ m (5)

Here c is the concentration of unreacted monomers in
solution, NB the number of unreacted backbone sites,
and kr gives the rate at which a free monomer reacts
with a monomer that has already r branches. Using these
equations, one can calculate DB and ANB numerically
as a function of time and derive the limiting behavior for
large molecules.
In the late stages in the polymerization process, the

contribution of B is negligible and the relative frac-
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FIG. 6. Average number of terminal (N0), linear (N1), den-
dritic (Nm) and semidendritic (for AB3 monomers: N2) units
in the chains as a function of the degree of polymerization
DP; (a) m = 2, high reactivity, (b) m = 2, low reactivity, (c)
m = 3, high reactivity, (d) m = 3, low reactivity. The back-
bone functionality in this example is f = 20. The evolution of
the system is compatible with the effective rate theory, Eqs.
(3)–(5) (black dashed lines) with rate parameters as given in
the figures and kb = k0/m (the results are not sensitive to the
choice of kb).

tion of all other units reaches a steady state, i.e. ,
Ṅr/

∑

r Ṅr ∝ Nr/
∑

r Nr, where
∑m

r=0 Nr = DP is the
degree of polymerization. The solution becomes partic-
ularly simple if the reaction rates take the simple intu-

itive form kr ∝ (m− r)k̂, where the combinatorial factor
(m − r) accounts for the number of remaining available
reaction sites in an ABm monomer that has already re-
acted with r monomers. In that case, one obtains the
limiting behavior DB → m

2m−1
and ANB → m−1

m [45]. In

our simulation model, we cannot expect kr ∝ (m − r)k̂
to hold, since the ”reaction sites” are on the same bead.
However, we can verify whether Nr is a linear function of
DP at late stages of the polymerization process as pre-
dicted, and Fig. 6 shows that this is indeed the case.
Extracting the rate constants kr of the theory from

these data, we can then calculate DB and ANB as a
function of the degree of polymerization per backbone
(DP/f). This gives the lines shown in Figs. 4 and 5,
which are in very good agreement with the simulation
data except in the initial polzmerization process where
molecules are still very small.
We conclude that the simulation data can be described

very well by the simple rate theory. One consequence is
that the degree of branching of the molecules obtained
with this polymerization process mostly depends on the
ratio kr/k0 of rates with which monomers attach to inner
monomers compared to terminal monomers. This ratio
is more favorable if monomers have lower reactivity, since
the free monomers then have time to diffuse inside the
chain and are not captured by the first (usually terminal)
chain segments they encounter. For AB3 monomers, the
rate k2/k0 is less favorable than the rate k1/k0. This is a

geometrical effect: Once a monomer has grown one side
branch, it is less accessible for free monomers and the
probability to grow a second side branch drops.
Apart from the degree of branching, the Wiener index

W (T ) is another quantity that can be used to describe
the topology of a branched structure with the topology of
a tree T . It was first introduced and applied in a chemical
context by Harry Wiener [46], but has numerous appli-
cations in mathematics and other fields, too [47]. For a
tree consisting of N + 1 vertices (in our case monomers)
connected by N edges (bonds created by reactions), the
Wiener index is defined as the sum over all ”distances”
s(vi, vj) between any two vertices vi and vj ,

W =
1

2

∑

ij

s(vi, vj). (6)

Here the ”distances” s(vi, vj) are taken along the edges of
the tree, and the length of one edge equals 1. The Wiener
index and the path lengths can be used to compare densi-
ties of trees. Even though it can not be measured experi-
mentally, it has been shown to correlate reasonably with
properties such as density, viscosity and melting point
[48–50]. For a linear chain consisting of N + 1 vertices,
the Wiener index is given by W = 1

6
N(N + 1)(N + 2)

and hence scales as W ∼ N3 [51]. It becomes smaller for
branched molecules. For fully dendronized molecules, it
scales as W ∼ N2 ln(N) [52, 53]. W can also be related
to the first moment of the distribution w(s) of distances
or strand lengths s [54]. With w(s) normalized as

w(s) =
1

N2

∑

i,j

δ(s− sij), (7)

the Wiener index can be calculated according to
W = 1

2
N2

∑

sw(s). For a linear chain w(s) is given by

w(s) =
2

smax

(

1− s

smax

)

(8)

where smax = N − 1 ≈ N is the longest strand. The
simulation results for these quantities are shown in Fig.
7 (Wiener index) and Fig. 8 (strand length distribution).

We find that the Wiener index roughly scales as W ∼
M2.3 with the molecular weight M = f + DP, hence
the scaling exponent is less than that of linear chains,
but higher than that expected for dendronized molecules.
The monomer functionality m does not have an influ-
ence on W , and the influence of the monomer reactivity
is also very small. The distributions w(s) are described
by Eqn. (8) for DP = 0 (linear initiator chains). For
DP > 0, w(s) first displays an increase caused by the
branched structures, followed by a decrease due to the
finite length of the strands. For self similar structures,
the initial increase should be described by a power law
[54]. Such a behavior is not clearly identified here (in-
sets in Fig. 8). This is not surprising, given the fact that
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FIG. 7. Wiener index of the hyperbranched polymers as
a function of the molecular weight M in units of monomer
mass M0 for monomer functionality m = 2 (top) and m = 3
(bottom) and different core functionalities f as indicated. At
high molecular weight, the Wiener index displays a power law
behavior.

branched structures are grown on linear initiators, and
that the branched structures are not much larger than
the backbone, especially for long backbones f = 100.
Consistent with this, the decay of w(s) after the ini-
tial increase is dominated by the linear chain behavior
in this case. Interestingly, for f = 100 at high strand
lengths, the distributions increasingly deviate from the
linear chain behavior with growing degree of polymeriza-
tion, and a small shoulder develops at s/smax ≈ 0.8 (Fig.
8 (bottom)) . For comparison, we have also calculated
the strand length distribution for ideal hyperbranched
chains, which were constructed based on the rate Eqs.
(3) – (5) (data not shown). The shoulder did not emerge
there. We conclude that it is most likely caused by the in-
homogeneous distribution of branched side chains along
the backbone, which is analyzed below.

Last in this subsection, we study the distribution of
monomers on the side chains. The effect of monomer re-
activity on the mass distribution is illustrated in Fig. 9,
which shows the histogram of masses of side chains made
of AB2 monomers in molecule with backbone functional-
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FIG. 8. Averaged distribution of strand lengths of the hy-
perbranched polymers for backbone length f = 20 (top) and
f = 100 (bottom) at different degrees of polymerization DP
as indicated. DP = 0 corresponds to the bare backbone, with
the distribution w(s) described by Eqn. 8. The plots show the
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ity f = 100 and total polymerization index DP = 600 .
For highly reactive monomers, the curve decreases mono-
tonically and rapidly to a value close to zero. Since the
average side chain length must be 6 monomers, this im-
plies that molecules must contain a few long side chains
which compensate for the many very short chains. De-
creasing the monomer reactivity reduces the fluctuations
and leads to some compactification. The minimum of the
distribution is shifted away from zero and the number of
side chains with 1-10 monomers increases. The inset of
Fig. 9 shows the mass distribution (mass in monomer
units) along the backbone in the same chains. One can
clearly see that the mass accumulates at both ends of
the backbone. While the mass distribution is approxi-
mately uniform in the middle region, the side chains that
have grown from the ends of the backbone are about
twice as big on average. This effect is observed both
for highly reactive monomers and for monomers with re-
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FIG. 9. Normalized distribution of side chain masses for
molecules with core functionality f = 100, monomer function-
ality m = 2, and total degree of polymerization DP = 600.
One side chain hence contains 6 monomer units on average.
Inset shows distribution of polymer mass along the backbone
of the chains. The units of the backbone chain are labelled
from 0 (one end) to 100 (other end).

duced reactivity. It can presumably be explained by a
reduction of screening close to the backbone ends. Side
branches grafted at the middle of the backbone chain are
surrounded by competing side branches that may also
capture monomers, hence they are less accessible for dif-
fusing monomers than side branches grafted at the ends
of the backbone.

B. Configurational properties

After having analyzed the topological properties of
the linear-hyperbranched chains generated by the hyper-
grafting process, we now study the configurational prop-
erties. Specifically, we examine the the gyration radius
and the hydrodynamic radius, and the amount of back-
bone stretching induced by hypergrafting side chains.
For ideal Gaussian chains, the radius of gyration

R2
g =

1

2N2

N
∑

i,j=1

(~ri − ~rj)
2 (9)

(here the sum runs over all N beads of the molecules)
is directly related to the Wiener index, Eq. (6), via

〈(~ri − ~rj)
2〉 ∝ s(vi, vj). Inserting our result W ∼ N2.3,

this would suggest Rg ∝
√
W/N ∼ Nν with ν = 0.15.

However, as we shall see below, the actual exponent ν is
much larger due to excluded volume effects.
Fig. 10 summarizes our data for the radius of gyration

Rg as a function of molecular weight for all backbone
functionalities f , monomer functionalitiesm, and the two
choices of monomer reactivity. The data ware gathered
”on the fly” during the simulation of the polymerization
reaction. The results for m = 2 and m = 3 are essen-
tially identical. At late stages of the polymerization, all
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FIG. 10. Radius of gyration versus molecular weight (in
monomer units) for monomer functionality m = 2 (top) and
m = 3 (bottom), various backbone core functionalities f , and
the two different choices of reactivity. Also shown for compar-
ison are the results from simulations of linear chains. Dashed
lines indicate slopes corresponding to different scaling behav-
ior.

data collapse on two curves, one for high reactivity and
one for low reactivity. The only exceptions are the curves
for f = 100 and low monomer reactivity, which appar-
ently do not reach the asymptotic limit for the molecular
weights under consideration. In the limit of large molecu-
lar weight, the two curves have the same slope in a double
logarithmic plot. The corresponding scaling exponent,
ν = 0.38(1), lies between the exponent of DLA scaling
(ν = 0.4) and the exponent predicted by Konkolewicz et
al. [25] (ν = 0.33), and is clearly much smaller than the
Flory exponent for linear chains (ν = 0.588).
Since the data shown in Fig. 10 were gathered in a sim-

ulation of steadily growing chains, it is not clear whether
they reflect the properties of fully equilibrated chains. To
clarify this point, we have stored the architectures ob-
tained for selected degrees of polymerization and studied
their configurational properties by separate equilibrium
simulations without monomer addition steps. The results
for Rg are shown in Fig. 11. They do not differ noticeably
from the data taken in the polymerization simulation.
Hence, we can conclude that the polymers in the poly-
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polymerization simulation, larger symbols to data that were
obtained from separate, longer simulations. Also shown for
comparison are data from simulations of fully dendronized
polymers.
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FIG. 12. ”Effective exponents” (differential fractal di-
mensions) λ = d ln(Rg)/d ln(M) versus molecular weight for
m = 2 (left) and m = 3 (right). See text for explanation.

merization simulation are equilibrated despite the occa-
sional addition of one monomer. For comparison, we also
show data for dendronized polymers. We find that the
latter are much more compact, and in addition, the scal-
ing of Rg with the molecular weight seems different. Our
data for the perfectly branched dendrimers are compat-
ible with previous dendrimer simulations [55, 56] that
have suggested a scaling between Rg ∝ M1/5 (the Flory

prediction) and Rg ∝ M1/3. The data for the hyper-
branched chains suggest three different scaling regimes:
An initial regime (A) with a scaling exponent of roughly
ν ≈ 0.4, a second regime (B) where Rg grows even
stronger as a function of M with an exponent ν ≈ 0.5,
and a third regime (C) where the exponent ν ≈ 0.4 is
recovered.
To quantify this further, we have fitted fourth order

polynomials to the double logarithmic data from the
polymerization runs and used them to extract local ”ef-
fective exponents”, i.e., the differential fractal dimen-
sions λ(M) = d ln(Rg)/d ln(M). The results, shown in
Fig. 12, confirm the nonmonotonic behavior of the effec-
tive scaling. The differential fractal dimensions initially
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FIG. 13. Hydrodynamic radius versus molecular weight (in
monomer units) for monomer functionality m = 2 various
backbone core functionalities f , and the two different choices
of reactivity, compared to simulation results for linear chains.
Dashed lines indicate slopes corresponding to different scaling
behavior. The results for m = 3 are basically identical.

increase and then reach a peak with values that can be
as large as λ ∼ 5.5. The position and the height of the
peak depend on the molecular details: It moves to higher
values of M and decreases if one increases f or reduces
the reactivity of the monomers. At large M , the differ-
ential fractal dimensions decay and reach an asymptotic
value which is slightly below ν = 0.4. The asymptotic
value is universal and does not depend noticeably on m,
f , and the monomer reactivity.
Next we discuss the hydrodynamic radius Rh, which is

defined as the radius of a Stokes sphere with the same dif-
fusion coefficient as the polymer and which we calculate
via the approximate equation [57]

1

Rh
=

1

N(N − 1)

N
∑

i=1

∑

j 6=i

1

|~ri − ~rj |
. (10)

In the asymptotic limit, the scaling of Rh and Rg should
be the same. In the simulations, the results for Rh are
very similar to those for Rg, therefore we only show the
data from polymerization runs for m = 2 as an example
(Fig. 13). Much like in Fig. 10, the data collapse onto
two curves corresponding to high and low reactivity. The
two curves show a similar scaling behavior, which again
differs distinctly from that of linear chains. We note that
the scaling of Rh for linear chains does not quite reach
the asymptotic limit Rh ∝ Mν with ν = 0.588 in our sys-
tem, the apparent exponent (ν ≈ 0.53) is slightly smaller.
This is in agreement with results from other simulations
and experiments [58]. In contrast, the scaling exponent
of Rh for the largest hyperbranched chains, ν ≈ 0.43(1),
is slightly larger than that measured for Rg.
The internal structure can be further investigated by

inspecting the ratio Rg/Rh. The value of Rg/Rh depends
on the molecular architecture. For long ideal chains, it
is known to be 1.5; experiments with linear polymers
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FIG. 14. Ratio Rg/Rh as a function of molecular weight
in monomer units for hyperbranched chains with monomer
functionality m = 2 and backbone functionality f = 20 (left)
and f = 40 (right). Data for linear chains and fully den-
dronized molecules (same backbone length) are also shown
for comparison.

give slightly smaller values [59]. Dendrimers have been
reported to have ratios close to 1, star polymers with
polydisperse arms have Rg/Rh ≈ 1.2 [60, 61]. Fig. 14
shows the data for Rg/Rh from equilibrium simulations
for monomer functionality m = 2 and backbone length
f = 20 and f = 40. Upon increasing the molecular
weight, one observes a distinct peak at M ≈ 50 − 100
and a subsequent slight decrease. A similar peak has
been reported by Wang et al. [30] in simulations of hy-
perbranched polymers with a pointlike core. In our si-
mulations, we observe that the peak is less pronounced
for longer backbone (core)chains. It almost vanishes at
f = 40 and completely disappears at f = 100 (not
shown). One can rationalize the peak as follows: Starting
from a linear chain, the polymer first develops into a star
shaped form with growing side chain number. With in-
creasing size of side chains and degree of branching, the
overall structure becomes more spherical, i.e. , Rg/Rh

decreases again. Dendronized molecules show a similar
behavior with an even more pronounced peak, whereas in
linear polymers, Rg/Rh grows monotonously as a func-
tion of M .
Finally, we address the question whether and how the

backbone chain stretches due to the growth of side chains.
Naively, one might expect that the stiffness, i.e. , the per-
sistence length of the backbone chain, can be tuned in a
controlled manner by hypergrafting branched side chains.
However, extensive simulations of bottle-brush polymers
have indicated that the persistence length is no longer
a well-defined concept for such chains [62]. The same
should hold for linear-hyperbranched chains. Therefore,
we will not discuss the stiffness of the backbone here,
but rather its elongation. The average end-to-end dis-
tance Re is shown in Fig. 15 as a function of the number
DP of grafted monomers for backbones of length f = 20
and f = 40 and monomer functionality m = 2. One can
clearly distinguish two regimes: In the initial regime up
to DP ∼ f , where monomers attach directly to the back-
bone, Re increases sharply with DP. Then, the curves
level off and continue to increase much more slowly, such
that the additional stretching of Re relative to the end-
to-end distance of the bare backbone is only of order
10−4 per additional grafted monomer. We expect that
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FIG. 15. Average end-to-end distance of the backbone chain
as a function of the degree of polymerization (the number of
hypergrafted monomers) for backbone lengths f = 20 (top)
and f = 40 (bottom). The black symbols represent the aver-
ages from equilibrium simulations and the values from simu-
lations of dendronized polymers.

this curve will further flatten at much higher DP once
Re becomes comparable to the contour length, but this
regime was not reached in the simulations. If monomers
have reduced reactivity, the range of the first regime is
slightly extended and Re increases. The slope of Re in
the second high DP-regime does not seem to depend on
the monomer reactivity.
For comparison, we have also studied the end-to-end

distance of the corresponding dendronized molecules.
The behavior in the initial regime is quantitatively sim-
ilar to that of hyperbranched chains. In the second
regime, the slope is much larger. This underlines once
more the fundamental differences between dendronized
molecules and hyperbranched molecules.

IV. DISCUSSION AND CONCLUSION

We have studied the structural and conformational
properties of linear-hyperbranched copolymers by com-
puter simulations of a simple, solvent-free, coarse-grained
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spring-bead model. The model is designed to mimic
the synthesis of linear-hyperbranched copolymers in good
solvent under conditions of slow monomer addition. Our
main results can be summarized as follows:
The topological properties of the hyperbranched chain

(the chain architecture) are intermediate between those
of linear and dendronized chains. The evolution of the
numbers of branching points with different coordination
numbers as a function total polymerization agreement is
in very good agreement to a simple rate theory proposed
by Hölter and Frey [45], despite the fact that the the-
ory neglects screening and excluded volume effects. The
theory predicts an upper limit for the degree of branch-
ing, hence our results suggest that the dendronized limit
cannot be reached on principle. The Wiener index W is
found to scale with the scaling exponent W ∝ Mω with
ω ≈ 2.3, which is between the exponents for dendrimers
(ω = 2 with logarithmic corrections) and linear chains
(ω = 3).
Likewise, the behavior of the polymer size (as speci-

fied by the radius of gyration Rg or the hydrodynamic
radius Rh) as a function of molecular weight is inter-
mediate between that of linear and dendronized chains.
The scaling exponent is found to be around ν ≈ 0.38,
closer to the exponent of diffusion limited aggregation
than to other exponents suggested in the literature (1/2,
1/3, 1/4). However, the asymptotic regime might not
have been reached, and we cannot exclude the possibil-
ity that the true exponent is ν = 1/3 as predicted by
Konkolewicz et al. [25]. At small molecular weights, the
exponent is nonmonotonic and varies between 0.4 and
0.5.
We should note that these questions are not only of

academic interest. Molecular weight distributions of
polymers are often measured by chromatography, and
they are calibrated by comparison with linear polymers of
known length. Thus one implicitly assumes that the hy-
drodynamic radii of the target chains and the calibration
chains behave similarly as a function of molecular weight.
If the exponent ν deviates significangly for both architec-
tures, the analysis becomes questionable and correction
terms must be applied. This requires a good knowledge of
ν in the target chain. Unfortunately, our results suggest
that neither linear chains nor fully dendronized chains

are good reference systems.

We have specifically addressed the question, whether
molecules can be made more compact by reducing the
monomer reactivity. We find that reducing the reactiv-
ity by a factor of three has relatively little influence on
the degree of branching and no influence on the scaling
properties of both structural and conformational proper-
ties of the chains. It does, however, influence the prefac-
tor in the asymptotic power law for Rg and Rh. Hence
the chains are more compact, but their behavior does not
change qualitatively.
We have also studied the distribution of monomers on

the side chains and found that it depends on the grafting
point of the side chains on the core backbone. For long
backbone chains, the side chains that have polymerized
at their ends are about twice as long as the ones in the
middle, leading to a pom-pom like structure. This some-
what unexpected result of the present study will also have
implications for the synthesis and resulting properties of
such structures.

Finally, we have examined the influence of the side
chains on the conformations of the backbone chain. As
one would expect, linear backbone chains stretch out if
side chains are hypergrafted to them. However, the effect
is much less pronounced than for dendronized chains.
Since our simulations are done with an implicit solvent

model, they do not include hydrodynamic interactions.
In fluids at rest, hydrodynamics should not be important
on the time scales relevant for slow monomer addition.
This might change if one applies flow externally, and it
might be possible to manipulate the synthesis process by
applying external flows, e.g. , in microfluidic setups. For
example, linear-hyperbranched copolymers might stretch
in flow at high Weissenberg numbers, which should facil-
itate the grafting of monomers to inner side chains. This
will be the subject of future investigations.
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