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Curvature-induced changes in the magnetic energy of vortices and skyrmions

in paraboloidal nanoparticles
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Curvature effects are important for a proper description of the properties of magnetic systems. In this paper
the exchange and dipolar energy of vortices on a paraboloidal shell is studied. Using analytical calculations
it is shown that the in-plane component of vortices has larger energy on a paraboloidal shell than in a planar
disk with same thickness. On the other hand, the dipolar energy associated to the vortex core diminishes if
the vortex core is on a paraboloidal surface. This reduction in the dipolar energy may cause a vortex pinning
mechanism by a paraboloidal shaped defect in a planar nanomagnet. Regarding skyrmions, by using an
in-plane anisotropy approximation to the dipolar energy, it is shown that the skyrmion must have its width
shrunk in order to diminishes the magnetostatic energy and satisfy geometrical constraints of the system.

I. INTRODUCTION

Magnetic vortices consist of a spin closure texture that
can appear as the magnetization groundstate of circu-
lar nanomagnets such as disks1,2, rings3–5, spheres6 and
torus7. Studying and controlling the stability, polarity
and chirality of vortices as well as their pinning mech-
anisms are important issues, once these structures have
been considered as candidates to compose data storage
and magnetic access memory devices8. In order to un-
derstand the dynamical properties of vortices, it has been
shown that normal mode magnon frequencies for vor-
tices in magnetic dots differs from the case of uniformly
magnetized dots9 and a doublet splitting of the high fre-
quency modes, which can be amplified by an external
field, can occur for both dots and rings10. Furthermore,
the study of the influence of dipolar magnetic fields on
the spin mode frequencies of dots showed that the local
dipolar approximation leads to an underestimation of the
frequencies11.

From another side, curvature plays an important role
to describe the properties of nanomagnetic particles. In
this contest, a lot of effort has been done in order to study
geometry effects on the properties of nanomagnets. For
instance, unlike what happens for planar circular nan-
odots, the critical magnetic field which induces a vortex
core switching in magnetic hemispherical caps depends
on the vortex chirality12. More recently, a magnetic en-
ergy functional for an arbitrary curved thin shell has been
developed and the authors showed that curvature acts as
an effective magnetic field into the system13. From ex-
perimental point of view, curved nanostructures such as
permalloy caps on non-magnetic spheres14, cylindrically
curved permalloy magnetic segments with different radii
of curvature on non-magnetic rolled-up membranes15 and
periodically modulated nanowires16 have been produced.
Although paraboloidal nanomagnets have not yet been
developed, it was shown that computer assisted design

models can be used to construct ellipsoidal shapes17.
Thus, by using atomic layer deposition techniques, we
can expect that paraboloidally-shaped magnetic struc-
tures can soon be produced.
Regarding theoretical works, excitations coming from

the Heisenberg model on a paraboloidal surface have been
previously studied18. It was shown that the in-plane vor-
tex component presents larger energy on the paraboloid
surface in relation to the planar case. However, in order
to avoid divergences in the magnetic energy, magnetic
vortices develop an out-of-plane component, so called
vortex core, whose radius predicted by micromagnetic
simulations has a diameter in the order of 50 nm1. The
development of the vortex core yields a magnetostatic
energy cost, coming only from surface and volumetric
magnetic charges, formally defined as σ = m · n̂ and
̺ = ∇ · m, respectively. Thus, in order to analyze the
stability and vortices pinning and depinning mechanisms
induced by curved defects, the dipolar energy associated
of the vortex core must be taken into account.
Based on these ideas and assuming that the geometric

parameters of the paraboloid allow the appearance of a
vortex as the magnetization groundstate, we extend the
results of Ref. [13] in its analysis about the skyrmions
characteristic length on a paraboloidal surface by cal-
culating the anisotropy-like dipolar cost to maintain a
skyrmion on a paraboloidal shell.

II. MODEL

For our purposes, it will be convenient to parametrize
a magnetic paraboloid with thickness L using a parabolic
coordinates system

x = ξη cosϕx+ ξη sinϕy +
1

2
(ξ2 − η2) z , (1)

where x, y and z are the unitary vectors in Cartesian
coordinates. In order to get a paraboloid of revolution
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opening downward, we have ϕ ∈ [0, 2π], η ∈ [−η
R
, η

R
]

and ξ ∈ [ξ0, ξ0 + δξ], with ξ0 > 0 being the value of the

coordinate ξ when η = 0 and δξ =
√

2L+ ξ20 − ξ0, with
L being the thickness of the paraboloidan nanoparticle.
The metric elements are gϕη = gηϕ = 0, gϕϕ = ξ2η2 and
gηη = gξξ = ξ2+η2. The surface and the volume elements

are given by dS = ξη
√

ξ2 + η2dϕdη and dV = ξη(ξ2 +
η2)dϕdξdη, respectively and the unitary normal vector

is n = (ηρ̂ + ξẑ)/
√

ξ2 + η2, where ρ̂ = x̂ cosϕ + ŷ sinϕ.
This parametrization allows us to continuously deform
the paraboloid in a plane by taking η/ξ → 0, where we
have defined the paraboloid radius as r ≡ ξη.
In the absence of anisotropy and Zeeman interactions,

the magnetic energy is E = Eex +Edip, where Eex is the
exchange energy, given by

Eex = A

∫

gµν∂µm
α∂νmαdV , (2)

where A is the stiffness constant and

Edip = −
µ0M

2
S

2

∫

V

mα xα · eµ g
µν∂νΦ dV , (3)

is the magnetostatic energy, with µ0 being the mag-
netic permeability. In the above set of equations Φ
is the magnetostatic potential and the magnetization
vector is parametrized in Cartesian coordinate system,
m = M/M

S
≡ (m1,m2,m3), where M

S
is the satu-

ration magnetization. The surface is described by the
curvilinear coordinates η, ξ and ϕ. gµν is the surface
space contravariant metric, xα and eµ describes the uni-
tary vectors in Cartesian and in the curvilinear basis,
respectively. In eq (2) and (3) the Einstein summation
convention is adopted, with µ, ν and α varying from 1 to
3.
The vortex configuration will be described by a mag-

netization that is independent of z and ϕ, that is,

m = mz(r)ẑ +mϕ(r)ϕ̂ , (4)

where the function mz(r) ≡ mz specifies the core pro-
file. Here we will consider a rigid vortex core model19,
in which there are no changes in the size and form of
the core profile due to the curvature. To describe the
core profile, we adopt the model proposed by Landeros
et al

20, in which

mz =

{
[

1− (r/rc)
2
]n

, r < rc

0 , r > rc,

where rc ≡ ξηc ≤ R is the vortex core radius, R ≡ ξη
R

is the maximum radius of the paraboloid and n is a non-
negative integer. The azimuthal component can be de-
termined from the normalization condition m2

φ+m2
z = 1.

It can be observed that despite the proposed magnetiza-
tion configuration varies along the volume of the nano-
magnet, we have that ̺ = 0 and so, only the surface
magnetic charges accounts to the magnetostatic energy
calculations.

FIG. 1. [Color online] Paraboloidal shell described by Eq.
(1). Upper figures show a transversal cut and a paraboloid
with ξ0/ηR

= 1. Lower figures show a transversal cut and a
paraboloid with ξ0/ηR

= 1/4.

III. RESULTS

By applying the described model on the paraboloidal
surface, the exchange energy associated with the vortex
configuration is

E
ex

2πA
= E

C
+ (η2

R
− η2c ) ln

(

√

2L+ ξ20
ξ0

)

+L ln

(

R

rc

)

, (5)

where E
C

is the vortex core exchange energy. Since we
are leading with a rigid core model, the vortex core ex-
change energy does not depend on the geometry, being
evaluated as20

E
C
= L

(

1

2
H [2n]− nH [−

1

2n
]

)

, (6)

where

H [z] =

∞
∑

i=1

(

1

i
−

1

i+ z

)

(7)

are the harmonic numbers20.
The third term in the right of Eq. (5) is the exchange

energy associated to the in-plane component of the vor-
tex on a plane disk with height L. Then, the in-plane
component of the vortex energy depends on the geomet-
rical parameters of the paraboloid such that the greater
the relation η

R
/ξ0, the larger the vortex energy. Notably,

lowest vortex exchange energy is obtained for η
R
/ξ0 → 0

in such a way that the second term in the right of Eq.
(5) vanishes. Thus, the vortex exchange energy is always
larger on the paraboloid than the energy in its cylindrical
counterpart.
Aiming calculate the dipolar energy of the vortex core

on the paraboloid, we must determinate the magneto-
static potential, which can be calculated from expanding
the inverse of the distance in parabolic coordinates21.
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Defining mz
′ ≡ mz(r

′), after some manipulation, the
magnetostatic potential is evaluated as (See Supplemen-
tal Material22 for more details)

Φ =

∫ ηc

0

mz
′η ′ dη ′

∫

∞

0

dk kΛ(ξ)J0(kη
′)J0(kη) , (8)

where Λ(ξ) = ξ21I0(kξ)K0(kξ1) − ξ20I0(kξ0)K0(kξ), J0 is
the Bessel function of first kind, I0 and K0 are the modi-
fied Bessel functions of first and second kind, respectively.
Taking this result into Eq. (3), we find

Edip

µ0M2
S

= π

∫

∞

0

dk k

(

2

k

)n
η−n+1
c

k
Jn+1(kηc)Γ(n+ 1)

{

(

2

k

)n
η−n+1
c

k
Jn+1(kηc)Γ(n+ 1)

×

[

Ψ(k)−
2

k
Ξ(k)

]

−2nη3c (kηc)
−(n+1)Jn+2(kηc)Γ(n+ 1)Ξ(k)

}

(9)

where

Ψ(k) = ξ41I0(kξ1)K0(kξ1) + ξ40I0(kξ0)K0(kξ0)

−2ξ21ξ
2
0I0(kξ0)K0(kξ1) (10)

and

Ξ(k) = ξ31I1(kξ1)K0(kξ1)− ξ21ξ0I1(kξ0)K0(kξ1)

+ξ20ξ1I0(kξ0)K1(kξ1)− ξ30I0(kξ0)K1(kξ0) (11)

The remaining integral can be transformed into a series
of hypergeometric functions of various variables, however
the obtained expression can not be evaluated with our
present computational numeric tools. Due to space lim-
itations, the methodology used to obtain these results
is presented in the supplemental material accompanying
this paper22. Therefore, we solve numerically Eq. (9).
The main results are shown in Fig. 2, that illustrates the
behavior of the dipolar energy of the vortex core on the
paraboloid in function of the thickness of the particle for
some values of ξ0. It can be observed that the dipolar en-
ergy increases with ξ0 in such way that when ξ0 & 0.003,
the energy approximates to the value of the energy of the
vortex core in a planar disk. It can be also observed an
increasing in the vortex core energy by rising the thick-
ness of the nanoparticle. This curvature-induced reduc-
tion in the dipolar energy of the vortex core is associated
to the reduction of surface magnetostatic charges on the
paraboloid. We have also analyzed the case in which the
paraboloid is obtained from deforming a disk with radius
rc, however, qualitative changes are not observed in this
case.
Due to the reduction in the dipolar energy when the

nanomagnet is curved, there must be an increasing in
the vortex core radius in order to reduce the associated
exchange energy. In this way, the new core radius is ob-
tained from the interplay between magnetostatic and ex-
change energy in such a way that, by minimizing the total
energy, one can get the new vortex core radius. This is-
sue is under preparation23. Another consequence of this
result is that by assuming that curved defects appear-
ing in planar nanomagnets with a vortex state can be
modeled by the paraboloidal shape, the reduction of the

dipolar energy when a moving vortex core is on a curved
region of the planar device may be behind the pinning
mechanisms of vortices by curved defects.
Now we analyze the effect of the dipolar energy on

the width of a skyrmion on a paraboloidal shell. Al-
though physically realizable curved thin nanostructures
have thicknesses L, we follow the formalism developed
in Ref. [9] and derive an effective two-dimensional ex-
change energy of a paraboloidal shell as a limiting case of
L ≪ lex, where lex is the exchange length of the material.
In a previous work, it has been shown that skyrmions
can appear as excitations of the Heisenberg system on a
paraboloidal surface and a geometrical frustration com-
ing from the two characteristic lengths of the paraboloid
leads to a well defined width of the skyrmion18. How-
ever, the dipolar interaction brings a new characteristic
length into the system in such way that the skyrmion
must adopt a new width due to the interplay between cur-
vature and a dipolar-induced in-plane anisotropy. Thus,
in order to simplify our analysis, we will reduce the mag-
netostatic energy as an effective in-plane anisotropy given
by

Edipani = ωL

∫∫

(m · n)2dA , (12)

where ω is a positive constant proportional to µ0M
2
S . It

was shown that this is a good approximation to calcu-
late the magnetostatic energy of thin shells with in-plane
magnetization configurations24. Despite the lack of a
more systematic work showing that this kind of approx-
imation is valid when the magnetization points to the
out-of-plane direction, for our purposes it is enough to
assume that Eq. 12 represents the dipolar energy of the
skyrmion magnetization configuration. A more detailed
report about the effects of the dipolar interaction on the
skyrmion in a curved manifold is under preparation23.
When only the exchange energy is taken into account,

a skyrmion can be well represented by Eq. (13) in Ref.

[13], in which mz = 1/
√

1 + ζ2, where

ζ =

√

1 +
η2

ξ20
− ln

[

1

η

(

1 +

√

1 +
η2

ξ20

)]

. (13)
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FIG. 2. Normalized dipolar energy of the vortex core in the
paraboloid in function of L for different values of ξ0.

In this context, the skyrmion width is λ = (1 + 1/ξ20)
−1.

However, in the presence of the interaction given by Eq.
(12), the new skyrmionic profile is evaluated as

mz =
1 + ω

√

(1 + ω)2 + ζ2
, (14)

and the width of the skyrmion is evaluated as

λ =

(

1

1 + ω
+

1

ξ20

)

−1

. (15)

The new characteristic length introduced by the dipo-
lar energy reduces the skyrmion width because the spins
try to align along the surface. Thus, due to the inter-
play between curvature and anisotropic-like dipolar en-
ergy, the skyrmion is shrunk to a smaller region of the
paraboloid. It is worth to note that the skyrmion width
in a paraboloid is smaller than the one in a planar device,
showing the possibility of controlling the skyrmion width
by curving planar devices.

IV. CONCLUSIONS

We have calculated the magnetostatic and exchange
energy of a vortex on a paraboloidal shell. The com-
petition between exchange and dipolar energy plays an
important role on the stability of the vortex in curved
nanomagnets. While the exchange energy associated
with the in-plane configuration of the vortex is larger on
the paraboloid than in a planar counterpart, the dipo-
lar energy associated to the vortex core is smaller in the
paraboloidal case. In this way, if a paraboloidal defect is
present on a planar magnet in which a vortex is moving,
the vortex equilibrium on the defect is possible when the
total energy is lower than that one associated to a vortex
on a plane geometry. Then, since the magnetic energy of
the vortex core is larger when it is in a planar region of a
nanomagnet, the reduction of the energy induced by the

curvature may be associated to pinning and depinning
mechanisms of vortices.

Furthermore, we have analyzed the effect of an
anisotropic-like dipolar interaction in the width of a
skyrmion on a paraboloidal shell. It was shown that this
energy yields a reduction of the skyrmion width by the
introduction of a new characteristic length into the sys-
tem. Then, the interplay between curvature and dipolar
energy can be used to control the skyrmion width, once
a smaller skyrmion radius appears in a paraboloid when
compared to a planar device. This result opens the pos-
sibility of controlling the skyrmion width by curvature.
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