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Abstract

We investigate the structural and thermodynamic properties of a new class of patchy colloids,

referred to as inverse patchy colloids (IPCs) in their fluid phase via both theoretical methods

and simulations. IPCs are nano- or micro- meter sized particles with differently charged surface

regions. We extend conventional integral equation schemes to this particular class of systems:

our approach is based on the so-called multi-density Ornstein-Zernike equation, supplemented by

the associative Percus-Yevick approximation (APY). To validate the accuracy of our framework,

we compare the obtained results with data extracted from NpT and NV T Monte Carlo simula-

tions. In addition, other theoretical approaches are used to calculate the properties of the system:

the reference hypernetted-chain (RHNC) method and the Barker-Henderson thermodynamic per-

turbation theory. Both APY and RHNC frameworks provide accurate predictions for the pair

distribution functions: APY results are in slightly better agreement with MC data, in particular

at lower temperatures where the RHNC solution does not converge.
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I. INTRODUCTION

Inverse patchy colloids (IPCs) have been introduced [1] as a new class of particles within

the wide field of colloids with patterned surfaces that are usually referred to as patchy par-

ticles [2, 3]; IPCs can indeed be seen as patchy particles with charged patches. The IPC

model put forward in Ref. [1] originated from the idea that positively charged star polymers

adsorbed on the surface of negatively charged colloids give rise to complex units with dif-

ferently charged surface regions [4]; the coarse-grained model developed for such systems is

nonetheless generally valid to describe colloids with a heterogeneous surface charge [5].

IPCs are characterized by highly complex spatial and orientational pair interactions [1]

due to the fact that regions of unlike charges attract each other, while regions of like charges

mutually repel. The calculation of the effective interactions between IPCs – evaluated via

simple electrostatic considerations – leads to expressions in terms of truncated series ex-

pansions that are not amenable to investigations in extended ensembles via either computer

simulations or theoretical approaches. However, appropriate coarse-graining schemes have

been proposed such that the effective interactions reduce to simple analytic expressions,

which nevertheless include the characteristic features of the original model [1], thus allowing

many body simulation approaches and theoretical investigations.

The intricate shape of the interaction potential (which can be tuned via either the dec-

oration of the particles or the properties of the solvent) is responsible for the self-assembly

of IPCs into well-defined structures at mesoscopic length scales. In striking contrast to con-

ventional patchy particles, the assembly behavior of IPCs can be selectively addressed by

easily accessible, external parameters: in recent studies on IPCs systems confined to planar

quasi two-dimensional geometries, it was shown that the self-assembly scenarios of IPCs

can be reversibly tuned by e.g. minute pH changes of the solution [6, 7]. Further, several

investigations in the bulk have shown that IPCs can form – apart from different types of

disordered phases (such as gas, liquids, or gels) – a broad variety of highly complex ordered

phases [8–12]. An exact localization of the phase boundaries of competing phases is ex-

tremely difficult and expensive from both the methodological and the computational point

of view, as demonstrated in the comprehensive evaluation of the thermodynamic properties

of a particular system of IPCs forming a lamellar bulk phase [9, 11].

In view of the complexity of IPCs systems, it is advisable to search for methods that are
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computationally cheaper than simulations. Our theoretical approach is based on the ideas

proposed by Wertheim in the 80s: to describe the properties of associating fluids, Wertheim

used a model system with an isotropic steric repulsion complemented with patch-patch

attractive interactions [13–16]. In a successive step, thanks to the modelization of patch-

center interactions introduced by Nezbeda [17], Wertheim further extended his theory [18].

Wertheim’s concept for associating liquids is ideally suited to describe the structural and

thermodynamic properties of patchy particles and forms the foundation on which our work

is based. Our Wertheim-type approach relies on an analogue of the Ornstein-Zernike (OZ)

equation [19] expanded in terms of so-called bonded correlation functions, indexed by the

number of bonds that a particle actually forms; such an expansion is referred to as the multi-

density OZ equation. The original associative scheme is very versatile and can be applied to

any type of patch decoration; the complexity is drastically reduced when particles are deco-

rated only by a few, equivalent patches, as it is the case in our IPC systems. By introducing

in addition the ideal network approximation and an extension of the Percus-Yevick or the

hypernetted-chain closure, we outline a computationally cheap iterative scheme, referred to

in the following as APY or AHNC, respectively.

Our associative description is compared to two other well known and widely used theories,

namely the reference hypernetted-chain approach (RHNC) [20] and the Barker-Henderson

thermodynamic perturbation theory (BH-TPT) [21]. Similar to our associative theory, also

RHNC relies on the molecular OZ equation but in this case the expansion of the corre-

lation functions occurs in terms of rotational invariants; in contrast, BH-TPT is a simple

perturbative description of the free energy of the system.

In the present manuscript we have two main focuses. On one side, we investigate to

what degree of accuracy the APY approach is able to describe the features of two selected

IPC models in the fluid phase. On the other side, we study how the choice of the map-

ping procedure, used to derive the coarse-grained potential parameters from the analytical

effective interaction, affects the static properties of IPC systems. As shown in Ref. [1], the

same effective interaction can be coarse grained in different ways, thus affecting the value

of the contact energies, the patch size and the particle interaction range. We focus here on

two different mappings of a microscopic IPC system presented in Ref. [1] and we investigate

its structural and thermodynamic properties. We perform Monte Carlo (MC) simulations

which provide reference data. Both the APY and RHNC frameworks are able to give a
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faithful description of the simulation results, APY being slightly more accurate and having

a broader convergence range. The main difference between the two chosen systems relies in

the patch bonding volume: when this volume is relatively small, APY works better since the

theory neglects multiple bonds per patch; nonetheless, also for IPCs with a bigger bonding

volume, the associative theory provides a good description of the static observables.

The paper is organized as follows. In Sec. II the general associative description is pre-

sented together with the expressions for the thermodynamic properties of the system in

terms of the distribution functions; we consider here the general case of IPCs with ns equiv-

alent patches. In Sec. III we apply the developed formalism to study the two-patch version

of the model. Here we specify the potential model parameters for the coarse-grained version

of the IPC model and report details of the MC simulation method, RHNC and BH-TPT

theories. In Sec. IV we present our results and conclusions are collected in Sec. V.

II. THE THEORY FOR THE GENERAL MODEL

A. The general model

In the following we present a general model for an IPC, which consists of a spherical

particle decorated by an arbitrary number (ns) of patches, called off-center interaction sites.

The pair potential between two interacting IPCs is given by U(1, 2), where 1, 2 = {r1,2,ω1,2}

denotes the spatial as well as the orientational degrees of freedom of particle 1, 2. U(1, 2)

consists of a spherically symmetric potential, U00(r), where r is the distance between par-

ticle 1 and 2, acting between the centers of the particles and an orientationally dependent

potential due to the ns off-center interaction sites:

U(1, 2) = U00(r) +
∑
K

[
UK0(1, 2) + U0K(1, 2)

]
+
∑
KL

UKL(1, 2). (1)

Here the index 0 denotes the particle centers and capital letters (such as K or L) specify

off-center sites. The set of all these sites will be denoted as Γ and subsets of Γ will by

specified by small Greek letters, i.e. α, β, etc. It is assumed that the center-site potential,

U0K(1, 2), is attractive and short-ranged, such that each site K of one particle can be bonded

only to one center of another particle and two sites of one particle cannot be simultaneously

bonded to the center of the other particle. Furthermore, it is assumed that the site-site
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potential, UKL(1, 2), is repulsive and short-ranged.

Our particular choice of potentials (i.e., their particular functional form, the positions of

the attractive sites, etc.) will be discussed in Section III, where our theory will be applied

to describe the properties of a specific IPC model, recently proposed in Ref. [1].

We consider N particles, confined in a volume V , at temperature T , and pressure p; the

homogeneous number density is ρ = N/V .

B. Diagrammatic analysis and topological reduction of the general model

In the diagrammatic analysis of the general model introduced above we will follow a

scheme developed earlier to describe models with multiple site-site bonding [15, 16] and

combine it with a framework put forward for a model with site-center bonding [22, 23].

For the sake of our theoretical analysis we split up the total pair potential, U(1, 2), into

a reference and an associative part, i.e., Uref(1, 2) and Uass(1, 2), respectively

U(1, 2) = Uref(1, 2) + Uass(1, 2), (2)

where

Uref(1, 2) = U00(r) +
∑
KL

UKL(1, 2) (3)

and

Uass(1, 2) =
∑
K

[
UK0(1, 2) + U0K(1, 2)

]
. (4)

Consequently, the Mayer function (or Mayer f -bond), f(1, 2) = exp [−βU(1, 2)]− 1, can

be decomposed as follows

f(1, 2) = fref(1, 2) + eref(1, 2)

{∏
K

[fK0(1, 2) + 1]
∏
L

[f0L(1, 2) + 1]− 1

}
(5)

= fref(1, 2) +
∑
K

FK0(1, 2) +
∑
L

F0L(1, 2) +
∑
KL

FKL(1, 2)

where
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eref(1, 2) = exp [−βUref(1, 2)] and fref(1, 2) = eref(1, 2)− 1, (6)

fK0(1, 2) = exp [−βUK0(1, 2)]− 1, (7)

FK0(1, 2) = eref(1, 2)fK0(1, 2) FKL(1, 2) = eref(1, 2)fK0(1, 2)f0L(1, 2). (8)

We now introduce the activity z via

z = Λ−3eβµ

where Λ is the de Broglie wavelength, β = 1/(kBT ) (with kB being the Boltzmann constant)

and µ is the chemical potential. Note, that in the decomposition (5) we neglect terms

containing the products fK0(12)fL0(12) or/and f0K(12)f0L(12), which describe the bonding

of the two patches of one particle to the center of the other. In the diagrammatic expansion

of the grand partition function of the system, Ξ, in terms of the activity z, each Mayer

f -bond will be substituted by either fref-bonds or by products of eref(1, 2) with one or more

fK0- or/and f0K-bonds. We assume that each of the sites can be bonded only once.

Usually in diagrammatic expansions the particles are depicted by a circle; however for

our problem it is more convenient to introduce in the diagrammatic expressions hypercircles

(which now represent the particles) instead of circles [15]: each hypercircle is depicted as an

open circle that contains small circles, denoting the sites. Now the cluster integrals that enter

the diagrammatic expansion of Ξ are represented by the collection of field z̃-hypercircles,

connected by fref- and eref-bonds in parallel to one or more fK0- and/or f0K-bonds. Here

z̃(i) = ze−βU(i)

denotes the spatially and orientationally dependent activity and U(i) is a possible external

field acting on particle i; again, this index stands for the spatial and the orientational degrees

of freedom of this particle. For a uniform system z̃(i) = z.

In Figure 1 we show a diagram representing an ensemble of s hypercircles, referred to

as s-mer. In the figure different types of bonds, i.e. fref-, eref-, f0K- and fK0-bonds, are

distinguished by different lines. Diagrams are constructed via the three following steps: (i)
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generate the subset of all possible connected diagrams with fK0- and f0K-bonds and insert

an eref-bond between hypercircles directly connected by either a fK0- or a f0K-bond; (ii)

insert an eref-bond between all pairs of not directly connected hypercircles, whose centers

are connected via either a fK0- or a f0K-bond to the same site K of a third particle; (iii)

consider all possible ways of inserting fref-bonds between the pairs of hypercircles which

have not been not directly connected during the previous two steps.

As a result the diagrams, which appear in the expansions for ln Ξ and for the one-point

density ρ(1), defined as

ρ(1) = z̃(1)
δ ln Ξ

δz̃(1)
(9)

can be expressed in terms of s-mer diagrams, as follows

ln Ξ = sum of all topologically distinct connected diagrams consisting of (10)

s−mer diagrams with s = 1, . . . ,∞ and fref − bonds between pairs of

hypercircles in distinct s−mer diagrams;

ρ(1) = sum of all topologically distinct connected diagrams (11)

obtained from ln Ξ by replacing in all possible ways one field z̃ − hypercircle

by a z̃(1)− hypercircle labeled 1.

The diagrams appearing in the expression for the one-point density ρ(1) can be classified

with respect to the set of bonded sites at the labeled point 1. We denote the sum of the

diagrams with the set of the bonded sites α at the labeled hypervertex as ρα(1). Thus we

have

ρ(1) =
∑
α⊆Γ

ρα(1). (12)

Here the terms with α = 0 (where 0 identifies the subset of diagrams where sites have

no bonds) and α = Γ (where Γ is the subset of diagrams where all sites are bonded) are

included. Note that the term ρ0(1) denotes the one-point density of particles without bonded

sites at 1; however, this does not mean that particle 1 is unbonded, since its center may still

be bonded to any number of sites belonging to other particles.
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Now we will apply the procedure of topological reduction to switch from an expansion

in terms of z̃(i) to a multi-density expansion. Following Wertheim’s work [15] we introduce

operators (which are denoted by ε’s) as follows: we associate with each labeled hypercircle

i an operator εα(i) with the properties

εα(i) =
∏
K∈α

εK(i) α ⊆ Γ

ε2
K(i) = 0 ε0(i) = 1. (13)

for all off-center sites K.

Now any one- or two-point quantity – denoted by a(1) or b(1, 2), respectively – can be

presented in the operator notation in the form

â(1) =
∑
γ⊆Γ

εγ(1)aγ(1), (14)

b̂(1, 2) =
∑
γ,λ⊆Γ

εγ(1)bγλ(1, 2)ελ(2), (15)

where the hat denotes an expansion of the respective quantity in terms of the operators

εα(i).

The usual algebraic rules for linear and bi-linear terms apply to these expressions; further,

analytic functions of these quantities are defined via their corresponding power series.

Here we also define an operation that will be useful below

aΓ(1) = 〈â(1)〉1. (16)

In this relation, the angular brackets mean that as a consequence of this operation only the

coefficient of the operator εΓ(1) is retained in the expression for â(1).

Analyzing the connectivity of the diagrams in ρ(1) at a labeled hypercircle z̃(1) we

find [15, 16]

ρ̂(1)/z̃(1) = exp [ĉ(1)]; (17)

cα(1) (with α 6= 0), appearing in the expansion of ĉ(1), denotes the sum of diagrams in

the function ρα(1)/ρ0(1) for which the labeled hypercircle 1 is not an articulation circle.
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Similarly, c0(1) denotes the sum of diagrams in the function ρ0(1)/z̃(1) for which hypercircle

1 is not an articulation circle.

To remove the diagrams containing field articulation circles we will follow the earlier

studies [15, 16] and switch from the expansions of ln Ξ and of ρ(1) in terms of the activity to

density expansions using the following rule: in all irreducible diagrams appearing in ĉ(1) each

field hypercircle z̃, with the bonding state of its sites represented by the set α, is replaced by

a σΓ−α(1) hypercircle, where the minus sign denotes henceforward the set-theoretic difference

sign of two sets; these new quantities σα(1) are related to the densities ρα(1) via [15].

σ̂(1) = ρ̂(1)
∑
α⊆Γ

εα(1). (18)

This relation can be inverted by formally expanding
[∑

α⊆Γ εα(1)
]−1

in a power series

and by retaining the first term

ρ̂(1) = σ̂(1)
∏
K∈Γ

[1− εK(1)] . (19)

Now the diagrammatic expansions for cα(1) introduced above can be expressed in terms of

irreducible diagrams. To present this result in a compact and convenient form we introduce

the fundamental diagrams c(0) defined as follows

c(0) = sum of all topologically distinct irreducible diagrams (20)

consisting of s−mer diagrams with s = 1, . . . ,∞ and fref − bonds

between pairs of hypercircles in distinct s−mer diagrams.

All hypercircles are field circles carrying the σ − factor

according to the rule formulated above.

The cα(1) can be obtained by functional differentiation of c(0) with respect to σΓ−α(1)

cα(1) =
δc(0)

δσΓ−α(1)
. (21)

Now we are able to rewrite the regular one-density virial expansion for the pressure p and

for the Helmholtz free energy A in terms of the density parameters σ̂(1) defined in Equation

(18). Following a scheme proposed by Wertheim [15] we obtain

βpV =

∫ [
ρ(1)−

∑
α⊆Γ

σΓ−α(1)cα(1)

]
d1 + c(0). (22)
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and

βA =

∫ [
ρ(1) ln

σ0(1)

Λ
− ρ(1) +

∑
α⊆Γ,α 6=0

σΓ−α(1)cα(1)

]
d1− c(0). (23)

These expressions satisfy the standard thermodynamic relations

ρ = β

(
∂p

∂µ

)
T

A

V
= ρµ− p,

where the homogeneous density ρ is recovered via

ρ =

∫
ρ(1)d1.

C. Integral equation theory for the general model

1. Multi-density Ornstein-Zernike equation

So far our analysis was focused on one-point quantities. Now we proceed to the cor-

responding analysis of two-point quantities. In particular we consider the pair correlation

function h(1, 2) which can be calculated via the following functional derivative [19]

ρ(1)h(1, 2)ρ(2) = z̃(1)z̃(2)
δ2 ln Ξ

δz̃(1)δz̃(2)
; (24)

here the diagrammatic expansion for ln Ξ – introduced in the preceding subsection – Equa-

tion (10)– has to be used. Elimination of the diagrams containing articulation circles can

be realized following the topological reduction scheme described above. Via this route we

obtain for the final expression for the pair correlation function in operator notation

ρ(1)h(1, 2)ρ(2) = 〈σ̂(1)ĥ(1, 2)σ̂(2)〉1,2. (25)

In the case of two particle quantities the subscripts on the brackets denote the arguments

to which the procedure specified in Equation (16) has to be applied.

Alternatively, in the regular notation one finds

ρ(1)h(1, 2)ρ(2) =
∑
α,β⊆Γ

σΓ−α(1)hαβ(1, 2)σΓ−β(2). (26)

Here the partial correlation functions, hαβ(1, 2), represent those diagrams that have sets of

bonded sites α and β, which belong to hypercircles 1 and 2, respectively.
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On differentiating the diagrammatic expansion for c(0), defined in statement (20), we

obtain the analogue of the partial direct pair correlation functions [19]

cαβ(1, 2) =
δ2c(0)

δσΓ−α(1)δσΓ−β(2)
α, β ⊆ Γ. (27)

The functions satisfy an Ornstein-Zernike (OZ) like integral equation, which – using the

operator notation – can be written as [15, 16]

ĥ(1, 2) = ĉ(1, 2) +

∫
〈ĉ(1, 3)σ̂(3)ĥ(3, 2)〉3d3. (28)

In addition to the partial direct and total correlation functions, this equation involves also

the set of the density parameters σα(1) introduced in Equation (18) which are not known

in advance. The self-consistent relation between the densities follows from Equations (17)

and (19) with cα(1) expressed in terms of the pair correlations. We find for the regular

notation [15, 16]

cα(1) =
∑
γ⊆Γ

∫
gα−A,γ(1)fA0(1, 2)σΓ−γ(2)d2. (29)

Here we have introduced the partial distribution functions gαβ(1, 2), defined as

gαβ(1, 2) = hαβ(1, 2) + δα,0δβ,0. (30)

To close the system of equations, we require an additional link between the partial direct

and total correlation functions, known in literature as a closure relation: it emerges from

the diagrammatic analysis of the cavity correlation functions, yαβ(1, 2), defined in operator

notation [15, 16] as

ŷ(1, 2) = exp
[
t̂(1, 2)

]
; (31)

here t̂(1, 2) is the sum of all topologically distinct, irreducible diagrams consisting of two

so-called white hypercircles labeled 1 and 2, corresponding to coordinates that are not

integrated over. Such a formulation is possible since t̂(1, 2) does not have white articulation

pairs and no two white circles are adjacent [16, 19].

The relation between the partial cavity correlation functions and the partial pair distri-

bution functions is established via the following equation [15, 16]
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ĝ(1, 2) = eref(1, 2)ŷ(1, 2) exp
[
f̂(1, 2)

]
(32)

with

f̂(1, 2) =
∑
K∈Γ

[εK(1)ε10(1, 2)fK0(1, 2) + f0K(1, 2)ε01(1, 2)εK(2)] . (33)

Here we have introduced the two-point operator ε10(1, 2) in order to prevent bonding of

several sites of the same particle to the center of the other particle. This operator has the

following properties

ε10(1, 2)ε01(1, 2) = 1 ε2
10(1, 2) = ε2

01(1, 2) = 0. (34)

Extracting the subset Ê(1, 2) from the set of diagrams t̂(1, 2) which have no nodal circles

leads to the following expression for the cavity correlation function

ŷ(1, 2) = exp
[
N̂(1, 2) + Ê(1, 2)

]
; (35)

where N̂(1, 2) is the subset of diagrams with nodal circles and is equal to the convolution

term in the OZ equation (28)

N̂(1, 2) = ĥ(1, 2)− ĉ(1, 2). (36)

Combining Equations (36), (35), and (32) we finally obtain

ĝ(1, 2) = eref(1, 2) exp
[
ĥ(1, 2)− ĉ(1, 2) + Ê(1, 2) + f̂(1, 2)

]
. (37)

Once Ê(1, 2) is given, we can derive the analogues of the commonly used closure relations

in standard integral equation theory.

2. Associative hypernetted-chain and associative Percus-Yevick approximations

A hypernetted-chain (HNC)-like approximation to Equation (37) can be derived by set-

ting Ê(1, 2) = 0, i.e.

ĝ(1, 2) = eref(1, 2) exp
[
ĥ(1, 2)− ĉ(1, 2) + f̂(1, 2)

]
. (38)
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On the other hand, if we assume that all possible products of the irreducible diagrams of

t̂(1, 2) are canceled by the diagrams in Ê(1, 2), i.e.,

Ê(1, 2) + exp[t̂(1, 2)]− 1− t̂(1, 2) = 0 (39)

we obtain a Percus-Yevick (PY)-like approximation,

ŷ(1, 2) = ĝ(1, 2)− ĉ(1, 2). (40)

In what follows we will refer to these closure relations as to the associative HNC (AHNC)

or the associative PY (APY) approximations.

III. IPC MODEL WITH TWO EQUIVALENT PATCHES

In this section we will apply the theory developed above to the evaluation of the structural

and the thermodynamic properties of a recently proposed two-patch version of the IPC model

[1]. Our theoretical results will be compared with data obtained in computer simulations

as well as with results originating from the reference hypernetted-chain (RHNC) integral

equation theory [24] and from the Barker-Henderson thermodynamic perturbation theory

[21] (BH-TPT).

A. Potential model

Recently, a coarse-grained model for colloids has been put forward, characterized by an

axially symmetric surface charge distribution due to the presence of two polar patches of the

same charge, Zp, and an equatorial region of opposite charge, Zc [1]. The model takes into

account the three different regions on the particle surface and is characterized by three inde-

pendent parameters: the range and the strengths of the interaction – reflecting the screening

conditions and the ratio Zp/Zc, respectively – and the patch surface coverage [1]. The choice

of the parameters takes advantage of the analytical description of the microscopic system

that was developed in parallel by extending the concepts of the Debye-Hückel theory [25].

The coarse-grained model put forward in Ref. [1] features an IPC as a spherical, impene-

trable colloidal particle (of diameter D and central charge Zc) carrying two interaction sites

(each of charge Zp) located at distances e (< D/2) in opposite directions from the particle
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center (see Figure 2). The two patches are thus positioned at the poles of the particle,

the remaining bare surface of the colloid will be referred to as the equatorial region. The

electrostatic screening conditions (expressed via the Debye screening length κ−1) determine

the range δ of the pair interaction independently of the relative orientation of the particles.

For each parameter set (D, e, δ) the patch size, defined by the opening angle γ, is uniquely

determined by Equations (10) and (11) of Ref. [1]. The energy strengths are set by mapping

the coarse-grained potential to the analytical Debye-Hückel potential developed for IPCs in

water at room temperature [1]. As in Ref. [1], we considered here only overall neutral par-

ticles, i.e. Ztot = Zc + 2Zp = 0. In contrast to Ref. [1], the coarse-grained pair potential is

further normalized such that the minimum of the equatorial-polar attraction (εm) sets the

energy unit. The final expression for the pair potential acting between particles is given by

U00(r00) = UHS(r00) +
4ε00

εmD3

(
2R0 +

1

2
r00

)(
R0 −

1

2
r00

)2

Θ(2R0 − r00), (41)

U01(r01) =
2ε01

εmD3

{[
2R0 +

1

2r01

(
R+R− + r2

01

)] [
R0 −

1

2r01

(
R+R− + r2

01

)]2

+ (42)

+

[
2R1 +

1

2r01

(
R+R− − r2

01

)] [
R1 −

1

2r01

(
R+R− − r2

01

)]2
}
× (43)

×Θ(R+ − r)Θ(r −R−),

U11(r11) =
4ε11

εmD3

(
2R1 +

1

2
r11

)(
R1 −

1

2
r11

)2

Θ(2R1 − r11).

Here, r00, r01, and r11 are the distances between the particles centers, between the center and

an attractive site, and between the sites, respectively; UHS(r00) is the hard-sphere potential,

ε00, ε01, and ε11 are the corresponding energy strength parameters, Θ(x) is the Heaviside step

function, R0 = (D + δ)/2, R1 = R0 − e, R+ = R0 + R1, R− = R0 − R1; δ and e have been

defined above (see also Figure 2).

B. Multi-density OZ equation for the IPC model with ns equivalent patches.

Ideal Network Approximation

Expressions obtained in subsection II C are general and thus applicable to a number

of different versions of the model. Here our goal is to apply this formalism to study the

structure and thermodynamics of the IPC model proposed in Ref. [1], having ns equivalent
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attractive sites. We note that in absence of double bonding FKL(1, 2) is zero. We assume

that double bonding does not occur in the IPC models considered here.

A straightforward application of expression (15) and of the corresponding OZ equation

(28) to our particular model will turn the correlation functions into matrices with 2ns × 2ns

elements; taking into account the equivalence of the sites (i.e., patches), this dimensionality

can be reduced to (ns + 1)× (ns + 1). An additional reduction of the dimensionality of the

problem can be achieved by introducing certain approximations. We will follow here earlier

studies [26–30], that were carried out for different versions of models with site-site bonding

and utilize the analogue of the so-called “ideal network approximation” (INA) combined

with the orientationally averaged version of the multi-density OZ equation. According to

these approximations it is assumed that

cα(1) = 0 and εα(1) = 0, for |α| > 1 (44)

where |α| denotes the cardinality of set α. Further the OZ equation (28) and the closure

relations are expressed in terms of the orientationally averaged partial correlation functions

hαβ(r) and cαβ(r). We will henceforward drop the ubiquitous explicit argument ‘1’, since we

consider a uniform system. Within the INA and taking into account the equivalence of the

ns sites, the dimensionality of the OZ equation can finally be reduced to 2× 2.

As a consequence of the INA (44), all correlation functions which involve particles with

more than one bonded site are neglected. However, this does not mean that correlations

between particles in all possible bonded states are neglected. Instead, they are accounted for

via the convolution terms in the right-hand side of the OZ equation due to the appearance

of the density parameters σ̂ introduced in Equation (18). In a certain sense this approxi-

mation is similar (but not equivalent) to the approximation utilized in the thermodynamic

perturbation theory of Wertheim [16, 31].

In the following, boldfaced symbols collect partial correlation functions. Replacing the

angular dependent correlation functions h(1, 2) and c(1, 2) in the OZ equation (28) by their

orientationally averaged counterparts, h(r) and c(r), we arrive at

h(r12) = c(r12) +

∫
c(r13)σh(r32) dr3, (45)

where
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h(r) =

 h00(r) h01(r)

h10(r) h11(r)

 c(r) =

 c00(r) c01(r)

c10(r) c11(r)

 σ =

 ρ nsσns−1

nsσns−1 ns(ns − 1)σns−2

 .

(46)

In equation (46) the following notation is used

h0K(r) ≡ h01(r), hKL(r) ≡ h11(r),

σΓ−K ≡ σns−1, σΓ−K−L ≡ σns−2.

The AHNC closure (37) with Ê(1, 2) = 0 takes the form

c00(r) = g00(r)− t00(r)− 1,

c01(r) = g00(r) [t01(r) + f01(r)]− t01(r),

c10(r) = g00(r) [t10(r) + f10(r)]− t10(r),

c11(r) = g00(r) [t11(r) + t01(r)t10(r) + f01(r)t10(r) + f10(r)t01(r)]− t11(r), (47)

while the APY closure (40) reads as

c00(r) = f
(0)
ref (r) {t00(r) + 1} ,

c01(r) = e
(0)
ref (r) {t01(r) + [t00(r) + 1] f01(r)} − t01(r),

c10(r) = e
(0)
ref (r) {t10(r) + [t00(r) + 1] f10(r)} − t10(r),

c11(r) = e
(0)
ref (r) {t11(r) + t01(r)f10(r) + t10(r)f01(r)} − t11(r), (48)

where

e
(0)
ref (r) = exp [−βU00(r)] f

(0)
ref (r) = e

(0)
ref (r)− 1 g00(r) = e

(0)
ref (r) exp [t00(r)]

and

tij(r) = hij(r)− cij(r).

Note that in the expressions (47) and (48) the term F11(1, 2) = eref(1, 2)f01(1, 2)f10(1, 2),

which takes into account contributions due to double bonding, has been dropped and that
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the Boltzmann factor for the reference potential, eref(1, 2), has been approximated by the

Boltzmann factor e
(0)
ref (r) for the potential U00(r), which is acting between the centers of the

colloidal particles.

Finally, in order to obtain a closed set of equations the relations between the density

parameters σi, introduced in Equation (46), and the pair distribution functions gij(r) have

to be specified. This can be achieved by combining equations (17), (19), (29) and (44). One

obtains the following relations

nsρX
2

∫
e

(0)
ref (r)f10(r)y01(r)dr +X

[
ρ

∫
e

(0)
ref (r)f10(r)y00(r)dr + 1

]
− 1 = 0, (49)

σns−2 = ρX2 with X = XΓ−K = σns−1/ρ. (50)

where X is the fraction of particles where the patch (site) K is not bonded.

For the partial cavity correlation functions, yij(r), defined in Equations (35) and (31),

we find within the AHNC approximation

y00(r) = exp [t00(r)]

y01(r) = y00(r)t01(r)

y10(r) = y00(r)t10(r)

y11(r) = y00(r) [t01(r)t10(r) + t11(r)] (51)

and within the APY approximation

yij(r) = tij(r) + δi0δj0. (52)

The use of the orientationally averaged version of the OZ relation, specified in Equa-

tion (45), introduces an additional approximation. The orientational averaging, originally

proposed in Refs. [26–30] might seem to be a crude approximation since the correlation

functions entering the OZ equation (45) and the closure relations (47) and (48) do not dis-

play an explicit dependence on the orientational degrees of freedom. Nevertheless we note

that, even though APY does not account directly for the repulsion between patches, it cor-

rectly takes into account the major effect due to the patch-patch repulsion, i.e. restricting

the appearance of the double bonds between the particles. According to previous studies
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[22, 23, 28, 30] the orientationally averaged theory is able to provide accurate results for

both the structural and the thermodynamic data of related systems.

Together with either the AHNC (47) or the APY (48) closure relations, Equations (45)

and (50) form a closed set of equations that has to be solved.

Finally, the total pair distribution function g(r) is obtained from the partial distribution

functions gij(r) via the following relation

g(r) = g00(r) + nsXg01(r) + nsXg10(r) + n2
sX

2g11(r). (53)

Now we derive the expressions needed to calculate thermodynamic properties; they are

based on the solution of the OZ equation (45). In our derivation of the expressions for the

internal energy E and for the (virial) pressure pv of the IPC model in terms of the partial

distribution functions gij(r) we used a scheme that was developed for a model with one

attractive site [18, 22, 23]. We start from the following general expressions

E

V
=

1

2

∫
ρ(1, 2)U(1, 2)dr12dΩ1dΩ2 = −1

2

∫
ρ(1, 2)

e(1, 2)

∂e(1, 2)

∂β
dr12dΩ1dΩ2 (54)

and

βpv

ρ
= 1− β

6ρ

∫
ρ(1, 2)r12∇2U(1, 2)dr12dΩ1dΩ2 = 1 +

1

6ρ

∫
ρ(1, 2)

e(1, 2)
r12∇2e(1, 2)dr12dΩ1dΩ2,

(55)

where r12 = r1 − r2 and ρ(1, 2) = ρ(1)g(1, 2)ρ(2) is the pair density.

The derivatives in the above relations can be rewritten as

∂e(1, 2)

∂β
=
∂eref(1, 2)

∂β
+
∑
K

[
∂FK,0(1, 2)

∂β
+
∂F0K(1, 2)

∂β

]
(56)

and

∇2e(1, 2) = ∇2eref(1, 2) +
∑
K

(∇2FK0(1, 2) +∇2F0K(1, 2)) . (57)

We now substitute these expressions into Equations (54) and (55) and perform a resum-

mation of the diagrams representing ρ(1, 2)/e(1, 2) in terms of the activity z. Within the

INA, and with a subsequent replacement of the orientationally dependent quantities by their

averaged counterparts, we find the following expression
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βE

V
= 2πβ

∫
g(r)U00(r)r2dr (58)

−2πβnsX

∫
e

(0)
ref (r)

{[
y00(r) + nsXy01(r)

]∂f10(r)

∂β
+
[
y00(r) + nsXy10(r)

]∂f01(r)

∂β

}
r2dr

and

βpv

ρ
= 1− 2π

3
βρ

∫
g(r)

∂U00(r)

∂r
(59)

+
2π

3
ρnsX

∫
e

(0)
ref (r)

{[
y00(r) + nsXy01(r)

]∂f10(r)

∂r
+
[
y00(r) + nsXy10(r)

]∂f01(r)

∂r

}
r3dr.

These expressions are valid for ns equivalent patches and can be used in combination with

any approximate closure relation.

In addition we also present the expression for the pressure calculated via the compress-

ibility route, pc; it can be obtained using the APY closure relation (48) and following a

scheme developed by Wertheim [16, 22]

βpc

ρ
= 1− 2π

ρ

∫ ∞
0

[σ̃C(r)σ̃]00 r
2dr (60)

+
1

2π2ρ

ns∑
`=0

∫ ∞
0

{
λ̂2
`(k)

2(1− λ̂`(k))
+ λ̂`(k) + ln

[
1− λ̂`(k)

]}
k2dk. (61)

Here σ̃ and C(r) are matrices with the following elements (i, j = 1, . . . , ns)

[σ̃]00 = ρ, [σ̃]0i = [σ̃]i0 = σns−1, [σ̃]ij = (1− δij)σns−2, (62)

[C(r)]00 = c00(r), [C(r)]0i = c01(r), [C(r)]i0 = c10(r), [C(r)]ij = c11(r); (63)

the λ̂i(k) denote the eigenvalues of the matrix Ĉ(k)σ̃, with the elements of the matrix Ĉ(k)

being the Fourier transforms of the corresponding elements of the matrix C(r).

Note that in the above expressions the reference potential Uref(1, 2) has been approxi-

mated by the potential U00(r) acting between the colloidal centers.
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C. The reference hypernetted-chain approach

This approach is based on the OZ equation for orientationally dependent correlation

functions [19],

h(1, 2) = c(1, 2) +
ρ

4π

∫
c(1, 3)h(3, 2)d3, (64)

where h(1, 2) = g(1, 2)− 1 is the total correlation function and c(1, 2) the direct correlation

function.

This relation is complemented by the RHNC closure

g(1, 2) = exp [−βU(1, 2) +N(1, 2) + E(1, 2)] , (65)

where U(1, 2) is the potential, E(1, 2) is the bridge function, and N(1, 2) = h(1, 2)− c(1, 2)

is the indirect correlation function. The above relations are formally exact; however, since

E(1, 2) is known only in terms of a complex diagrammatic representation one has to resort

to approximate schemes introduced below.

A route to solve equations (64) and (65) was originally proposed by Lado [24]; ever since

this method was steadily extended and improved. Specific details of the last version are

summarized in Ref. [20]. For this contribution we have adapted the most recent version of

the code to our system of IPCs. In the following we briefly sketch the algorithm.

In Lado’s approach Equation (64) is solved by projecting the correlation functions onto

spherical harmonics, e.g., for a generic function f(1, 2),

f(1, 2) = f(r, θ1, θ2, ϕ) = 4π
∞∑
`1=0

∞∑
`2=0

M∑
m=−M

f`1`2m(r)Y m
`1

(θ1, ϕ1)Y −m`1
(θ2, ϕ2), (66)

where M = min(`1, `2), θi is the angle between r12, the vector joining the two particle

centers, and ωi, the orientational unit vector of particle i, and ϕ = ϕ2 − ϕ1 is the angle

between ω1 and ω2 in the plane orthogonal to r12. Via a Fourier transform with respect to

r, we can transform Equation (64) into a linear system of equations involving the respective

coefficients. In contrast, all functions involved in the non-linear closure relation (65) have

to be treated as full functions of their spatial and orientational variables.

The numerical program follows an iterative procedure that can be divided into two steps.

In the first one, we start from an initial guess for N(1, 2), and so the closure relation (65)

is solved for c(1, 2). The bridge function we used is EHS(r;D∗), i.e. the bridge of an HS
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fluid calculated via the parametrization proposed in [32]; the parameter D∗ is an effective

HS diameter that differs from the diameter of the IPC particles, and for which at the

beginning of the iterative procedure a suitable guess is assumed. In the second step, c(1, 2)

is expanded in terms of the c`1`2m(r), which are given by a transformation that is inverse to

the one specified in Equation (66), namely

f`1`2m(r) =
1

(4π)2

∫
[Y m
`1

(θ1, ϕ1)Y −m`2
(θ2, ϕ2)]∗f(r, θ1, θ2, ϕ) sin θ1 dθ1 sin θ2 dθ2 dϕ1 dϕ2; (67)

here the star denotes complex conjugation and the angular integrals are carried out using

Gaussian quadratures. These coefficients are are then Fourier transformed so that Equa-

tion (64) can be solved for Ñ`1`2m(k) = h̃`1`2m(k)− c̃`1`2m(k). Finally, the new N`1`2m(r) and

the old g`1`2m(r) are used to calculate the new c(1, 2) via its coefficient functions

c`1`2m(r) = g`1`2m(r)− δ`10δ`20δm0 − γ`1`2m(r). (68)

These two steps constitute an iteration loop.

When convergence is achieved (i.e., the difference in the correlation functions of two

subsequent steps differ less than a small threshold value, in our case typically 10−5) for a

particular value of D∗, then this parameter is modified and the iterative scheme is repeated,

until the free energy of the system, which is convex with respect to D∗, has been minimized.

The initial guess for g(1, 2) and N(1, 2) stems, whenever possible, from a previous solu-

tion of the problem for a neighboring state point; otherwise the program can resort to the

parametrization of the isotropic HS counterparts of g(1, 2) and N(1, 2), proposed in Ref.

[32].

Once the algorithm has converged, the internal energy and the pressure are obtained from

the following equations [20]

E

N
=
ρ

2

∫
dr12〈g(1, 2)U(1, 2)〉ω1ω2 (69)

and

p = ρkBT −
ρ2

6

∫
dr12

〈
g(1, 2)r12

∂

∂r12

U(1, 2)

〉
ω1ω2

(70)

where 〈. . . 〉ωi
= 1

4π

∫
. . . dωi denotes an angular average over the orientation of the two

particles.
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D. The Barker-Henderson thermodynamic perturbation theory

In recent work [21] the original Barker-Henderson thermodynamic perturbation theory

(BH-TPT) [33] was extended to systems with anisotropic potentials. Within this framework

the Helmholtz free energy, A, is calculated as a truncated series expansion, starting from

the free energy of the reference system, which in our case is the HS one, namely

βA

N
=
βAHS

N
+
∑
i

βAi
N

. (71)

For the hard-sphere contribution, AHS, we use the Carnahan-Starling equation of state [34].

The first two terms of the above series expansion are given by [21]

βA1

N
= 2πρ

∫ D+δ

D

gHS(r)〈βU(r,ω1ω2)〉ω1ω2dr (72)

and
βA2

N
= −

(
πρ

χ̃

)∫ D+δ

D

gHS(r)〈[βU(r,ω1ω2]2〉ω1ω2dr. (73)

For the quantity χ̃, defined as

χ̃ =
6

π

∂

∂ρ

(
βp

ρ

)
HS

(74)

we use again the Carnahan-Starling equation of state, while for the HS radial distribution

function, gHS(r), we rely on the Verlet-Weis parametrization [32].

Having computed the free energy up to second order via Equation (71), we obtain the

pressure according to
βp

ρ
= ρ

∂

∂ρ

(
βA

N

)
. (75)

The BH-TPT does not provide any expressions to directly calculate the internal energy.

E. Monte Carlo simulations

We perform Monte Carlo (MC) simulations both in the NV T as well as in the NpT

ensemble [35]. In the canonical ensemble, each MC step consists of N trial particle moves,

where the acceptance rule is imposed via the Metropolis algorithm. A particle move is defined

as both a particle displacement in each of the Cartesian directions by a random quantity,

uniformly distributed within [−δr,+δr], and a rotation of the particle around a random

spatial axis by a random angle, uniformly distributed within [−δϑ,+δϑ] with δϑ = 2δr/D.
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In the isobaric-isothermal ensemble, each MC move consists of N trial particle moves as

defined above and one trial change in the volume; the latter one is an attempt to change the

volume of the cubic box by a random quantity, uniformly distributed within [−δV,+δV ], see

Ref. [35]. During the equilibration runs, the values of δr and δV are allowed to change in

order to guarantee an acceptance ratio of the corresponding moves between 30% and 50%.

Successive sampling runs with constant values of δr and δV extend over 106 MC steps in

the NV T ensemble and 3 · 106 MC steps in the NpT ensemble.

In the NV T ensemble, we evaluate the structural properties of the system at hand. We

consider ensembles of N = 1000 particles in a cubic volume with edge lengths L ≈ 17D and

L ≈ 13D; the corresponding number densities are ρD3 = 0.20, and 0.45, respectively. For

each system, we choose four temperatures, namely T ∗ = 0.5, 0.32, 0.23, 0.18 (in units of

kBT/εm, where εm is the minimum of the pair interaction energy, see Table I). For each state

point, we determine the radial distribution function, g(r), the average number of bonds per

particle, Q, and the average number of particles that form nb bonds with other particles in

the system, N(nb). All these quantities are averaged over 2000 independent configurations.

In the NpT ensemble, we consider systems of N = 1000 particles at the same four

temperatures specified above and we consider eleven pressure values, ranging from p∗ =

0.01 to 0.50 (in units of pD3/εm). At each state point, we determine the thermodynamic

properties of these systems, namely the internal energy per particle E/N and the equilibrium

number density, ρ. Both quantities are averaged over 2000 independent configurations.

IV. RESULTS AND DISCUSSION

We have studied the properties of two selected systems of IPCs, denoted as M1 and M2

and specified in Table I via their model parameters. The corresponding pair interactions are

shown in Figure 3 for three characteristic particle configurations. The difference between

the two models lies in both the interaction range and the patch size. In model M1 we have

δ = 20% of D/2 and γ ' 22◦, while in model M2 we have δ = 60% of D/2 and γ ' 43◦.

In the following we show and discuss structural and thermodynamic data obtained for

the two model systems in MC simulations (obtained in the NV T or NpT ensembles) and

via the APY approach; where applicable (i.e., if convergence could be achieved) results from

RHNC and BH-TPT are added. The AHNC results are not shown in the following since

24



they were found to be very similar to the APY ones; further the APY closure was found to

converge in a broader region of the phase diagram.

1. Structural properties

We start our discussion with a comparison of the results obtained for the pair distribution

function, g(r); MC data were obtained in NV T simulation runs. A thorough check of g(r)

is of particular relevance as this function forms the basis of the subsequent calculation of

thermodynamic quantities, such as energy and pressure. In addition, we have analysed

and compared results for the average number of bonds per particle, Q, as obtained from

the simulation and from the APY approach; while in simulation this quantity is obtained

by simple counting of bonds, in the theoretical approach it is calculated via the following

expression:

Q = πρ

∫ D+δ

D

[
g(r)− e(0)

ref (r)y(r)
]
r2dr, (76)

where y(r) = y00(r) + nsXy01(r) + nsXy10(r) + n2
sX

2y11(r).

In Figure 4 we show results for g(r) of system M1. In the left column we display data

of state points characterized by a low density (ρD3 = 0.2), while the panels in the right

column show data at high density (ρD3 = 0.45); temperature decreases as we proceed from

the top to the bottom panels.

In the low-density, high-temperature state point (upper-left panel), g(r) shows a main

peak of relative moderate height and a very flat, hardly visible maximum at the second

nearest neighbour distance (r ∼ 2D); simulations and all theoretical data are in excellent

agreement. As we decrease the temperature from T ∗ = 0.50 to T ∗ = 0.23, the contact value

of g(r) increases substantially; the agreement between the different data sets is still very

good, only small discrepancies are observed at contact (i.e., at r = D).

As we proceed to the higher density, we observe a substantial change in the shape of g(r):

while we still observe the pronounced peak at contact, a distinctive, characteristic maximum

at the second nearest neighbour distance emerges (see insets of the panels). For both high

density state points these features are reproduced on a qualitative level by all approaches;

on a more quantitative level we observe that differences between APY data and simulation

results are only found in the immediate vicinity of the second peak in g(r).
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In Figure 5 we display the average number of bonds per particle, Q, as a function of tem-

perature for model M1. Along the low-density branch the agreement between the different

sets of data is very satisfactory; in contrast, at ρD3 = 0.45 discrepancies become substantial

at intermediate and higher temperatures. In the inset of this figure we display simulation

results for the average number of particles that form nb bonds, N(nb), for both high density

states at different temperatures. These data confirm the expected trend: while at higher

temperature particles are preferentially isolated, at lower temperature most of them is in

bonded states.

In Figure 6 we show results for g(r) of model M2. Again, density increases from left

to right while temperature decreases from top to bottom. The fact that the interaction

range is now substantially broader than in model M1 represents a severe and thus very

stringent test for the reliability of the theoretical approaches: except for the high-density,

low-temperature state, both APY and RHNC provide converged results. In contrast to

model M1, discrepancies between the different approaches (simulation, APY and RHNC)

are now visible; still, the characteristic features of g(r), i.e., the pronounced peak at contact

and the emergence of a maximum at the second nearest neighbour distance are reproduced

throughout at a qualitative level. We observe that in particular the contact values and

the features of the second maximum are very sensitive to the respective approaches (see in

particular the insets).

The values of Q for model M2 are reported in Figure 7. While the trend in temperature

for the agreement between simulation and APY data is similar to model M1, we observe a

significantly different behaviour for the N(nb)-values as functions of T : as a consequence of

the larger interaction range, the number of unbonded particles is now throughout substan-

tially lower (by about a factor of two), while the number of particles forming more than two

bonds is now significantly larger. Probably due to the formation of more than one bond

per patch, we observe that the agreement between simulation and theoretical data is not as

good as in model M1.

2. Thermodynamic properties

Our analysis of the thermodynamic properties (in terms of the pressure, p, and of the

internal energy per particle, E/N) is based on both NpT simulations and theoretical results.
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Both APY and RHNC data are reported, while BH-TPT data are added only for system

M1.

The pressure has been calculated for our two models along four isotherms (T ∗ =

0.5, 0.32, 0.23, and 0.18), the corresponding results are shown in the two panels of Fig-

ure 8. APY allows to calculate the pressure via the compressibility [cf. Equation (61)] and

via the virial route [cf. Equation (60)]; since the latter results are considerably less accurate

than the former ones we have not included them in Figure 8.

Starting with model M1 we see from the top panel of Figure 8 that the results obtained via

the different methods essentially coincide on a single curve for the highest temperature (T ∗ =

0.5). However, as the temperature decreases this agreement deteriorates: only the APY-

data agree nicely with the simulation results over the entire temperature range considered.

Further, we observe that – as compared to the simulation results – BH-TPT overestimates

these data, while RHNC predicts systematically smaller values; for the lowest temperature

value considered, the latter approach badly fails for ρD3 ≥ 0.1, leading to negative pressures

that are not showed in the picture.

For the pressure data of model M2 we observe already for the highest temperature differ-

ences between the different approaches which become more pronounced as the temperature

decreases. These discrepancies are related to the increased bonding volume, due to the longer

interaction range and larger patch angle of model M2. Also for this model APY seems to be

the most reliable theoretical approach, even though the agreement with MC data is slightly

worse than for the previous model. RHNC works reasonably good, better than for model

M1, but it does not converge for the lowest temperature; instead, BH-TPT results turned

out to differ by an entire order of magnitude, showing that this very simple theory is to-

tally inappropriate to describe systems where the potential differs so substantially from the

reference interactions.

In the two panels of Figures 9 we show the results for the internal energy per particle

E/N for the two models considered as a function of density along the same four isotherms

considered above. Again, good agreement between the different data sets is observed for

model M1 at high and intermediate temperatures, while differences of up to 15% occur

along the (T ∗ = 0.18)-isotherm. The agreement for the results obtained for model M2,

shown in the bottom panel of Figure 9, is less satisfactory. Throughout, APY data are

closer to the simulation results.
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V. CONCLUSIONS

In this contribution we have put forward an extension of the multi-density integral equa-

tion formalism proposed by Wertheim [15, 16, 22, 23] to describe the properties in the

fluid phase of inverse patchy colloids (IPCs), a new class of particles with heterogeneously

patterned surfaces. These particles consist of mutually repelling, spherical colloids whose

surfaces are decorated by well-defined regions (so-called patches or interaction sites); the

patches repel each other while they are attracted by the bare surface of the colloidal parti-

cle. Applying Wertheim’s formalism, all relevant structural and thermodynamic quantities

can be expanded in terms of partial correlation functions, each of them specified by the

number of bonds formed by the patches. These functions are obtained from an Ornstein-

Zernike (OZ) type integral equation, complemented by closure relations similar to the ones

used in standard liquid state theory [19]; the ensuing schemes are called associative liq-

uid state theories. In this contribution we have focused on the associative Percus-Yevick

(APY) approach. The introduction of the ideal network approximation in combination with

the orientationally averaged version of the multi-density OZ equation leads to convenient

simplifications: in the case of ns equivalent patches (in our case we have considered two-

patch IPCs), only ns × ns partial correlation functions have to be taken into account. In

this associative framework substantially less expansion coefficients have to be considered as

compared to standard expansions of structural and thermodynamic quantities in terms of

spherical harmonics in systems with directional interactions.

We have applied the associative approach to two different types of two-patch IPCs, that

differ substantially in their interaction properties. We have compared the ensuing results

with data obtained via Monte Carlo (MC) simulations and via standard liquid state theories,

that have been adapted to our model: a standard integral equation based approach – the

reference hypernetted-chain approximation (RHNC) – and a thermodynamic perturbation

theory – the Barker-Henderson thermodynamic perturbation theory (BH-TPT). On varying

the temperature and the density over a broad range of values, we observe a remarkable

agreement between MC data and both APY and RHNC results for the structural properties;

this concerns in particular the contact value and the characteristic shape of the second peak

of the pair distribution functions. It worth noting that the APY scheme has a wider range

of convergence than RHNC and its agreement with MC data can be followed down to rather
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low temperatures with the same level of accuracy. Agreement for the thermodynamic data

(i.e. for the energy per particle and the pressure at different state points) is satisfactory for

high temperatures but deteriorates on lowering the temperature.

In general, the APY approach proved to be the most stable and reliable theoretical

description among the ones considered here. The quality of the APY results was found

to be better for IPC systems with relatively small patches and a short interaction range,

being these features important in defining the bonding volume of an IPC. In fact, the APY

description neglects the possibility of more than one bond per patch. We mention that our

APY approach has been recently used to describe also the static properties of an IPC system

characterized by a short interaction range – the one used here for the short ranged model

– and a small patch size – intermediate between the ones of the two models studied in this

paper [10]. For this system, the APY results proved to be very accurate also in the regime

where the dynamics of the system slows down.

The APY theory can also be extended to describe IPC systems with non identical patches.

In fact an analtytical as well as a coarse-grained description of IPCs with different patches in

either size or charge has been recently proposed [36] and could offer an additional application

for our associative description.

Acknowledgments

The authors would like to thank Fred Lado (Raleigh, USA) for providing the original

RHNC code. E.B., S. F. and G.K. gratefully acknowledge financial support by the Austrian

Science Foundation (FWF) under Proj. Nos. M1170-N16, V249-N27, P23910-N16, and F41

(SFB ViCoM). The work was supported within a bilateral ”Wissenschaftlich-Technisches

Abkommen” project by the ÖAD (Proj. No. UA 04/2013).
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Model δ e ε00 ε01 ε11 εm

M1 0.1 0.3 2.8628 -74.612 660.92 -0.6683

M2 0.3 0.3 0.2827 -6.857 57.12 -0.6683

TABLE I: Model parameters that specify the two different IPC systems investigated in this con-

tribution; they are denoted by M1 and M2. Values of δ and e are given in units of the hard-sphere

diameter, D, while energy parameters are given in units of kBT [1].
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FIG. 1: (Color online) Example of a typical diagram as it emerges in the diagrammatic expansion

of ln Ξ: it corresponds to an hexamer, where each particle is represented by a hypercircle. The

diagram is depicted for a general two-patch model where the small full circles denoted by A and

B represent the patches; f0K- and/or fK0-bonds are denoted by solid arrows pointing from site

(patch) K of one hypercircle to the center of another hypercircle, eref -bonds by dashed lines and

fref -bonds by solid lines. Diagrams are built according to a three-step procedure; here step (i) is

drawn in black, step (ii) in red, and step (iii) in cyan. Step (i) corresponds to drawing all possible

combinations of f0K- and/or fK0-bonds, and to subsequently adding an eref -bond between the

particles that have been connected. Step (ii) corresponds to adding an eref -bond to all the pairs

of particles bonded to the same patch of a third particle, unless they are already linked: in the

depicted example particles 1 and 2 are both connected to patch B of particle 4, so an eref -bond is

added; this procedure does not apply to particles 3 and 6 because they have been already linked

by an eref -bond in step (i). In step (iii) we consider all possible combinations of fref -bonds between

pair of particles that have not already been directly linked by any kind of bond.
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D+δ/2

e
γ

FIG. 2: (Color online) Schematic representation of a two-particle IPC model. The dark gray sphere

features the colloidal particle and the small yellow points, located inside the colloid, represent the

two interaction sites. The yellow caps correspond to the interaction areas, while the interaction

sphere of the bare colloid is delimited by the black outermost circle. The relevant parameters of the

system are the particle diameter, D, the interaction range, δ, the distance between the interaction

sites and the colloid center, e, and the half opening angle, γ, which defines the patch extension on

the particle surface.
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FIG. 3: (Color online) The main panels show the normalized interaction energy U(r) in units of

kBT between two IPCs as a function of their distance r; left panel – model M1, right panel – model

M2. Three particular particle configurations have been considered, referred to as polar-polar (PP;

dark and light green), equatorial-equatorial (EE; dark and light blue), and equatorial-polar (EP;

dark and right red). The insets display the non-normalized pair energy U∗(r) = U(r)εm, which

correspond to the pair potentials shown in panels (a) and (c) of Figure 7 in Ref. [1]. In all the

graphs, continuous and dashed lines correspond to the two different coarse-graining procedures put

forward in Ref. [1] and termed there “tot”- and “max”-schemes, respectively. It is worth noting

that, once normalized, potentials obtained via both the “tot” and the “max” routes coincide.

Schematic representations of the two models are shown, where particle size and patch extent are

drawn to scale.

33



FIG. 4: (Color online) Pair correlation functions g(r) for model M1 at selected state points (as

labeled); note the logarithmic scale of the vertical axis. Symbols correspond to MC simulation

data, while lines represent either APY (red) or RHNC (green) results. Insets show enlarged views

around the second peak of the g(r) when appropriate.
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FIG. 5: (Color online) Average number of bonds per particle Q versus temperature for system M1

at two different densities (as labeled); for the definition of Q see text. Symbols correspond to MC

data while lines represent APY results. The inset displays simulation data for the average number

of particles with nb bonds, N(nb), versus the number of bonds for selected temperatures at density

ρD3 = 0.45 (as labeled).
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FIG. 6: (Color online) Pair correlation functions g(r) for model M2 at selected state points (as

labeled); note the logarithmic scale of the vertical axis. Symbols correspond to MC simulation

data, while lines represent either APY (red) or RHNC (green) results. Insets show enlarged views

around the second peak of the g(r) when appropriate.
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FIG. 7: (Color online) Average number of bonds per particle Q versus temperature for system M2

at two different densities (as labeled); for the definition of Q see text. Symbols correspond to MC

data while lines represent APY results. The inset displays simulation data for the average number

of particles with nb bonds, N(nb), versus the number of bonds for selected temperatures at density

ρD3 = 0.45 (as labeled).
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FIG. 8: (Color online) Pressure p∗ versus density for system M1 (top panel) and system M2

(bottom panel) for selected temperatures (as specified by the different colors). Open circles – MC

data, continuous lines – APY data, crosses – RHNC results, and dotted lines – BH-TPT results (if

applicable).
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FIG. 9: (Color online) Internal energy E/Nεm versus density for system M1 (top panel) and system

M2 (bottom panel) for selected temperatures (as specified by the different colors). Open circles –

MC data, continuous lines – APY data, crosses – RHNC results.
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