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Stabilization of charged and neutral colloids in salty mixtures
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We present a mechanism for the stabilization of colloids in liquid mixtures without use of surfac-
tants or polymers. When a suitable salt is added to a solvent mixture, the coupling of the colloid’s
surface chemistry and the preferential solvation of ions leads to a repulsive force between colloids
that can overcome van der Waals attraction. This repulsive force is substantial in a large range of
temperatures, mixture composition and salt concentrations. The increased repulsion due to addition
of salt occurs even for charged colloids. This mechanism may be useful in experimental situations
where steric stabilization with surfactants or polymers is undesired.

The stability of colloidal dispersions is essential in ma-
terial science and technology. Steric stabilization of col-
loids against the attractive van der Waals (vdW) forces
can be achieved using surfactant or polymer molecules
that are physically or chemically attached to the colloid’s
surface. Charged colloids can also be stabilized via the
screened Coulomb repulsion, whose range depends on the
Debye length κ−1. In the celebrated Derjaguin, Landau,
Verwey, and Overbeek (DLVO) theory, addition of salt to
the suspension decreases the Debye length and the elec-
trostatic repulsion leading eventually to coagulation and
sedimentation of the colloids [1].
In recent years we began to better understand the dif-

ferences between the electrostatics of pure solvents com-
pared to liquid mixtures. The preferential wetting of one
liquid component at the colloid surface [2, 3] affects the
density of the ions, the electrostatics of the mixture, and
the interaction between the colloids [4–12]. A key pa-
rameter is the selective solvation of the ions in the liquids
[13–22].
In this paper we present a new method for the stabiliza-

tion of electrically charged or neutral particles in solvent
mixtures by addition of salt, without use of surfactants
or polymers. The stabilization relies on (i) selective ad-
sorption of one solvent on the colloids and (ii) a difference
in the preferential solubilities of the anion and the cation
in the solvents, namely a difference between the Gibbs
transfer energy of moving the anion from one solvent to
the other and the analogous Gibbs energy of the cation.
These energies are often larger than the thermal energy
[23, 24] and therefore particles can be stabilized even
without other additives. In fact, requirements (i) and
(ii) above are generally met because any surface is hy-
drophilic or hydrophobic to some extent and no two ions
have identical solvation energies [23, 24]. The coupling
of the colloid’s surface chemistry and the preferential sol-
vation of ions leads to a repulsive force between colloids
that can overcome the van der Waals attraction. This
repulsive force is large in a unexpectedly wide range of
temperatures, mixture compositions and salt concentra-
tions. This method preserves the chemical properties of
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the surface and therefore is advantageous in cases where
surfactants, polymers, or a chemical modification of the
particle are undesired.
We consider relatively dilute mixtures in which ion-ion

correlations effects are small [25, 26]. In order to isolate
the effect of preferential solvation we ignore specific ion-
surface interactions [27, 28]. These short range interac-
tions can either enhance or counteract the stabilization
mechanism we discuss and their magnitude is of specific
nature.
We focus on a system composed of a binary aqueous

mixture containing a 1 : 1 monovalent salt and confined
between two identical flat plates. The plates are located
at z = ±D/2 and their area is S. The mixture composi-
tion is given by the water volume fraction φ (0 ≤ φ ≤ 1)
while the cosolvent composition is given by 1 − φ. The
number densities of the point-like positive and negative
ions are denoted by n±. The fluid between the plates
is in contact with an electroneutral matter reservoir at
composition φ0 and a salt concentration n0.
The mean-field free energy density of the system is

given by [17]:

f = kBT

[

fm(φ) +
1

2
C|∇φ|2

]

−
1

2
ε0ε(φ)(∇ψ)

2

+ e(n+ − n−)ψ + kBT
∑

i=±

ni
[(

log(v0n
i)− 1

)

−∆uiφ
]

,

(1)

where kB is the Boltzmann constant, T is the tempera-
ture, ε0 is the vacuum permittivity, and v0 = a3 is the
molecular volume. v0fm is the dimensionless mixing free
energy density: v0fm = φ log(φ) + (1 − φ) log(1 − φ) +
χφ(1 − φ), where the Flory parameter is χ ∼ 1/T . The
mixture demixes for T < Tc (χ > χc = 2). The energetic
cost of composition inhomogeneities is accounted for by
the square-gradient term, where C is a positive constant
with units of inverse length. In the electrostatic energy
in Eq. (1), ψ is the electric potential and ε is the dielec-
tric constant, assumed to depend linearly on composition
by ε(φ) = εc + (εw − εc)φ, where εw and εc are the wa-
ter and cosolvent dielectric constants, respectively. The
first term on the second line of Eq. (1) is the ions’ elec-
trostatic energy, where e is the elementary charge. The
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first term in the sum is the ideal-gas entropy of the ions
and the second term is the ion solvation energy. In our
simple theory, the solvation energy is proportional to the
local solvent composition and its strength is measured
by the parameters ∆ui [13, 14]. Here we are interested
in salts where the asymmetry in the cation and anion
solvation parameters, defined as υ ≡ (∆u+ − ∆u−)/2,
is large. This is commonly satisfied in antagonistic salts
where one ion is hydrophilic and the other is hydropho-
bic: ∆u+∆u− < 0.
The short range and electrostatic interactions between

the fluid and the solid surfaces are given by the surface
free energy density fs :

fs = kBT∆γφ(rs) + eσψ(rs), (2)

where rs is a vector on the colloid surface and eσ is the
surface charge density of the plates. The surface wettabil-
ity is given by the parameter ∆γ that measures the differ-
ence between the solid-water and solid-cosolvent surface
tensions.
The equilibrium state of the system is found by ex-

tremization of the grand potential

Ω =

∫

[

f − kBT (λ
+

0 n
+ + λ−0 n

− + µ0φ)
]

dr+

∫

fsdrs ,

where λ±0 and µ0 are the chemical potentials imposed
by the species in the reservoir. This leads to the first
Euler-Lagrange (EL) equation δΩ/δφ = 0:

−C∇2φ+
∂fm
∂φ

−
∑

i=±

∆uini − ε0
dε/dφ

2kBT
(∇ψ)2 = µ0,

(3)

with the boundary condition n · ∇φ = ∆γ/C, where n

is a unit vector perpendicular to the surface. The EL
equation for the potential δΩ/δψ = 0 naturally yields
Gauss’ law: −∇ · (ε0ε(φ)∇ψ) = e(n+ − n−) with the
boundary condition −n · ∇ψ = eσ/ε0ε(φ). The densities
n± from δΩ/δn± = 0 obey the Boltzmann distribution
n± = v−1

0 exp(∓Ψ+∆u±φ+ λ±0 ), where Ψ = eψ/kBT is
the dimensionless potential.
A solution of the EL equations in a planar geometry

yields the one dimensional profiles φ(z), ψ(z) and n±(z).
In Fig. 1 we plot the resulting profiles for a salty mixture
between two electrically neutral and hydrophobic plates
with a wettability ∆γ = 0.2/a2. The mixture has a bulk
critical composition, φ0 = 1/2, and its temperature is far
above Tc, ∆T = T −Tc = 21.5K. The bulk concentration
of the antagonistic salt is n0 = 20mM and the solvation
parameters are ∆u+ = −∆u− = υ = 6.
The ionic profiles in Fig. 1 (b) show that an elec-

trostatic diffuse layer (EDL) is realized near the plates,
despite their electric neutrality. The reason is the adsorp-
tion of the cosolvent on the hydrophobic plates shown by
the profile of φ in Fig. 1 (a). The cosolvent “drags” the
hydrophobic anions and repels the hydrophilic cations.
Hence, a net charge density develops in the vicinity of the
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FIG. 1. Profiles of the (a) composition, dimensionless po-
tential and (b) scaled ion densities between two electrically
neutral plates immersed in a critical mixture (φ0 = 1/2) at
a temperature ∆T = T − Tc = 21.5K and containing 20mM
of antagonistic salt (∆u+ = −∆u− = υ = 6). Here and in
other figures the plates are hydrophobic with ∆γ = 0.2/a2,
corresponding to about 7 mN/m. As an approximation to
water–2,6-lutidine mixtures we used Tc = 307.2K, v0 = 39Å3,
C = χ/a [29], εlutidine = 6.9 and εwater = 79.5.

plates, giving rise to the electric potential profile shown
in Fig. 1 (a).
The width of the adsorbed fluid layer is comparable

to the bulk correlation length ξ. Beyond this distance
φ(z) decays to its bulk value. However, electroneutrality
dictates that the ionic profiles must compensate for the
deviation from the bulk values near the plate. At sur-
face separation of D = 20nm (Fig. 1 (b), solid curves),
this means that the anion (cation) concentration becomes
smaller (larger) than the bulk value n0 before it decays to
n0 at the midplane (z = 0), leading to a minimum (max-
imum) in the profile. On the other hand, at a distance
of D = 6nm, the extremum is missing since the EDLs
from each plate overlap, such that n±(z = 0) 6= n0. Such
an overlap implies a repulsive osmotic force between the
plates.
Using the profiles we calculate the osmotic pressure Π

between the plates at a given distance D from Π(D) =
Pzz−P0, where Pzz = φδf/δφ+n+δf/δn++n−δf/δn−−
f − ε0ε(∂ψ/∂z)

2 is the zz component of the Maxwell
pressure tensor [17] and P0 = Pzz(φ0, n

±

0 , ψ = 0) is
the bulk pressure. The interaction potential U(D) be-
tween the plates is obtained from the osmotic pressure

via U(D) = −S
∫D

∞
Π(D′)dD′ .

The interaction potential for the parameters of Fig. 1
with solvation asymmetry υ = 6 is plotted in Fig. 2 (red
curve). At close separations the potential is attractive
due to adsorption of the cosolvent on the plates, but a
repulsive barrier of ≈ 10kBT appears in U(D) at a dis-
tance denoted by Dmax of a few nanometers. The barrier
height Umax = U(Dmax) strongly depends on υ. For an
antagonistic salt with υ = 4 (blue curve) the barrier is
much smaller, while for a hydrophilic salt with υ = 0
(green curve), the potential is purely attractive.
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FIG. 2. (color online) The interaction potential U(D) be-
tween electrically neutral and hydrophobic plates immersed
in a mixture with φ0, T and n0 as in Fig. 1. When both ions
are hydrophilic the interaction is purely attractive (∆u± = 6,
green curve). A weak repulsive barrier Umax appears with
antagonistic salts (∆u+ = −∆u− = 4, blue curve), and its
height increases with increasing ∆u+

−∆u− (∆u+ = −∆u− =
6, red curve). Full numerical solutions (solid curves) are in
good agreement with linear theory (dash-dot curves), where
we used κ−1 = 1.68nm, ξ = 0.94nm and l = 1.78. Two crosses
are the approximation (Dmax, Umax) of Eq. (14). Inset: The
two components of the osmotic pressure (see text) for the red
curve. Here and in Fig. 3 the area of the hydrophobic plates
is S = 0.01µm2 and ∆γ = 0.2/a2.

In order to better understand the physical origin of
the repulsion we examine the components of the osmotic
pressure. For symmetric plates, Π can be recast in term
of the mid-plane composition φm = φ(z = 0;D) and ion
densities n±

m = n±(z = 0;D) as Π(D) = Πions(n
±
m) −

Πmix(φm), where

Πions = kBT
(

n+
m + n−

m − 2n0

)

, (4)

Πmix = kBT (fm(φm)− fm(φ0)− µ0(φm − φ0)) . (5)

The inset of Fig. 2 shows Πions and Πmix for the υ = 6
potential curve. It is seen that Πions is repulsive at D &
4nm; when the EDLs overlap this leads to an increase
of n±

m. −Πmix on the other hand is attractive. Since
U is the cumulative integral of Πions −Πmix, a repulsive
barrier is created by a range of D for which Πions > Πmix,
corresponding to D & 6nm in the Figure.
To better characterize the repulsive potential we solve

the governing equations in the limit where the perturba-
tions in the composition ϕ = φ − φ0 and ion densities
δn± = n± − n0 are small [18]: δn± = n0(∆u

±ϕ ∓ Ψ),
κ−2∇2Ψ = Ψ − υϕ, κ−2∇2ϕ = l2ϕ + ω2(Ψ/υ − ϕ),
where κ = (2lBn0)

1/2 is the Debye wavenumber and ω =
|υ|/(lBC)

1/2 is a scaled υ. Here, lB = e2/(ε0ε(φ0)kBT ) is
the Bjerrum length at φ0 and l = 1/κξ is the ratio of the
Debye length and the modified correlation length ξ: ξ =
(C/τ)1/2, where τ = ∂2fm(φ0)/∂φ

2−n0(∆u
++∆u−)2/2.

The solution of the linear equations with the z → −z
symmetry is:

Ψ(z) = a1 cosh(q1z)− a2 cosh(q2z), (6)

ϕ(z) = b1 cosh(q1z)− b2 cosh(q2z). (7)

The wavenumbers qi obey

(qi/κ)
4 −

(

1 + l2 − ω2
)

(qi/κ)
2 + l2 = 0. (8)

The amplitudes ai and bi are determined using the
boundary conditions; in the special case where the plates
are electrically neutral they are

ai =
∆γ

C

κ2υ

qi(q22 − q21) sinh(qiD/2)
, (9)

bi =
∆γ

C

q2i − κ2

qi(q22 − q21) sinh(qiD/2)
(10)

In the linear case it follows that

U

kBT
= S ×

(∆γ)2

2C

[

Λ1

coth(q1D/2)− 1

q1

−Λ2

coth(q2D/2)− 1

q2

]

, (11)

where

Λi =
q2i − κ2

q22 − q21
. (12)

One can see from Eq. (11) that the interaction is
∝ (∆γ)2 and that the interplay between the two terms in
brackets determines the nature of U . In the limit of van-
ishing solvation asymmetry ω → 0, we have from Eq. (8):
q1 → κ and q2 → ξ−1, leading to Λ1 → 0 and Λ2 →1.
The resulting potential is attractive, as expected when
ion solvation is absent due to critical adsorption [30].
For non-vanishing ω, we focus on the region above Tc

for which l > 1+ω and hence both q1 and q2 are positive
real numbers. For sufficiently small ω we find

q1 ∼= κ

√

1 +
ω2

l2 − 1
, q2 ∼= ξ−1

√

1−
ω2

l2 − 1
. (13)

In this region, it is easy to show that q2 > q1 > κ and thus
Λ1 > 0 and Λ2 > 0. Therefore, the first term in brackets
in Eq. (11) is repulsive while the second is attractive,
leading to the existence of a maximum in the potential.
The location and magnitude of this repulsive barrier are
found by solving ∂U/∂D = 0. In the limit D ≫ q−1

1 , q−1
2

we find for Dmax and Umax:

Dmax =
log(Λ2/Λ1)

q2 − q1
, (14)

Umax

kBT
= S ×

(∆γ)2

C

[

Λ1

q1

(

Λ2

Λ1

)

q1

q2−q1

−
Λ2

q2

(

Λ2

Λ1

)

q2

q2−q1

]

.

Whether Umax is significant depends on the ratio of am-
plitudes Λ2/Λ1.



4

0 20 40 60
0

5

10

∆T [K], n0 [mM]

U
m
ax

[k
B
T
]

(a)(a)(a)

0 20 40 60

5

10

15

∆T [K], n0 [mM]
D

m
ax

[n
m
]

(b)

FIG. 3. (a) Barrier height and (b) location as a function of
∆T and n0 for υ = 6 and ∆γ = 0.2/a2. Dashed curves are
numerical results for φ0 = 0.5, n0 = 20mM and varying ∆T ;
a repulsive barrier appears at ∆T ' 2K. For the solid curves
φ0 = 0.5, ∆T = 21.5K and n0 varies. Dash-dot curves are
Eq. (14) for varying n0 plotted in the validity range given by
l > 1 + ω.

At large enough colloid separations D the
repulsive tail of the interaction is U/kBT ≃
S(∆γ)2/(C/Λ1) exp(−q1D)/q1. This expression
is analogous to the regular Debye-Hückel result
U/kBT ≃ S(σ2/ε0ε) exp(−κD)/κ for charged colloids
[1]. In our theory q1 is a modified Debye wavenumber,
C/Λ1 is a property of the medium, and ∆γ plays the role
of an effective surface charge, reflecting the properties of
the surface.

The comparison between the full potential and the an-
alytical approximation Eq. (11) is shown in Fig. 2. For
both υ = 6 (ω = 0.64) and υ = 4 (ω = 0.43), the lin-
ear theory (dash-dot curves) agrees quite well with the
numerical solution (solid curves). Two circles in Fig. 2
show Dmax and Umax evaluated using Eq. (14). Our
analysis shows that q1 and Λ1 must be large enough for
significant repulsion to appear. Hence, from Eq. (13)
and Eq. (12) we conclude that ω should not be too small
and l not too large. The first requirement is satisfied by
choosing antagonistic salts while the second dictates the
temperature window given the salt concentration.

The two experimentally important quantities Umax and
Dmax are plotted in Fig. 3 (a) and (b), respectively. For
increasing ∆T (dashed curves) a repulsive barrier first
appears at ∆T ≈ 2K, and it has a maximal value. The
solid curves give results for varying n0, showing again a
maximum in Umax. Dash-dot lines are Umax and Dmax vs
n0 from Eq. (14) in the range l > 1+ω. Fig. 3 (a) shows
that stabilization can be achieved far above the critical
temperature. Thus, in principle the theory applies to ex-
periments with completely miscible mixtures, e.g, water
and alcohol, which in our theory is the χ → 0 limit of
athermal mixtures.

The behavior of Umax is determined by the interplay
between the attractive adsorption-related part of interac-
tion and the repulsive solvation-related part. An increase
in ∆T or n0 increases ξ−1 or κ, respectively. The result
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FIG. 4. The maximum of the interaction potential,
UT,max(φ0, T ), in the φ0–T plane including vdW attraction
and using Derjaguin’s approximation for a colloid radius
R = 1µm. (a) Contours of UT,max for a Hamaker constant
AH = 0.2 × 10−20J. (b ) The contour lines corresponding to
UT,max = 3kBT for different Hamaker constants. The values
of Hamaker’s constant are indicated by the labels in units of
10−20J. Here υ = 6, n0 = 20mM and ∆γ = 0.2/a2.

in both cases is an increase in the wavenumbers qi and
therefore a decrease in Dmax, see Fig. 3 (b). Further-
more, the relative magnitudes of the wavenumbers qi and
the amplitudes Λi change in a non trivial manner due to
the coupling of the attractive and repulsive contributions,
given by the parameter l in the linear theory.
In the spirit of the DLVO theory, the more realistic

case of spherical colloids of radius R is evaluated by
applying Derjaguin’s approximation to the potential U
and adding the vdW interaction between the spheres:
UT = πR

∫∞

D
U(D′)dD′ −AHR/(12D), where AH is the

Hamaker constant. Contours of the maximum of UT ,
UT,max, are shown in Fig. 4 (a) in the φ0–T plane. Notice
that UT,max increases significantly for water-rich compo-
sitions (φ0 > 0.5). The reason for this is twofold: (i)



5

1 5 10 15

−100

−50

0

50
U

T
[k

B
T
]

D [nm]

FIG. 5. UT (D) for two charged colloids with a surface charge
density σ = 0.1nm−2. When ∆γ = 0 and ∆u± = 0 (solid
curve) the potential is marginally stable. For a hydropho-
bic surface, ∆γ = 0.2/a2, the potential is unstable for a hy-
drophilic salt (∆u± = 6, dashed curve) while it has a large
barrier for an antagonistic salt (∆u+ = −∆u− = 6, dash-dot
curve). Here n0 = 20mM, φ0 = 0.5, ∆T = 21.5K, R = 1µm
and AH = 1× 10−20J.

the adsorption force is weaker at off-critical compositions
and (ii) relative to the bulk composition, the water-poor
layer on the surface is more attractive for hydrophobic
ions. For hydrophilic colloids (∆γ < 0) UT,max would
be larger at compositions φ0 < 0.5. While the absolute
values of UT,max do not depend on the sign of ∆γ, the hy-
drophobicity or hydrophilicity of the colloids determines
the ideal working region in the φ0–T plane. The con-
tour lines of UT,max = 3kBT are shown in Fig. 4 (b) for
different values of the Hamaker constant. The area en-
closed by this contour defines approximately the working
conditions for a stable dispersion. Indeed, even for large
values of the Hamaker constant a stable region exists for
water-rich compositions and closer to the binodal curve.
Hence, one could add only a small amount of co-solvent
to an unstable dispersion of charge-free colloids to obtain
a stable dispersion.

The linear solvation model adopted by us for its sim-
plicity is a first-order approximation, and the study of
more complex and realistic solvation models is an active
area of research [22]. Nonetheless, the large repulsive
barriers we predict are not restricted to a linear solva-
tion model [31]. In addition, a significant barrier can be
obtained also for weakly antagonistic salts (υ ≃ 1) if the
plates are made more hydrophobic or hydrophilic (Eq.

(11)), or if the bulk composition is changed (Fig. 4 (a)).
In Fig. 5 we show that addition of antagonistic salts

can enhance the stability of charged colloids as well.
When the colloids’ surface and the ions are indifferent
to the solvents, ∆γ = 0 and ∆u± = 0, as in the regu-
lar Poisson-Boltzmann theory, the effect of the mixture
on the interaction is via the dependence of the dielectric
constant on φ. The result for UT (D), shown by the solid
curve in Fig. 5, is a marginally stable potential. For
hydrophobic colloids (∆γ > 0), UT becomes attractive if
the salt is hydrophilic (dashed curve), indicating a desta-
bilization of the suspension. However, for hydrophobic
colloids and an antagonistic salt (dash-dot curve) the re-
pulsive barrier increases significantly, indicating a stabi-
lization of the suspension. Here, the hydrophobic and
positively charged colloids draw a larger amount of hy-
drophobic anions towards their surface, leading to an in-
crease in the repulsive osmotic pressure of ions.
In conclusion, the theory predicts that significant po-

tential barriers exist in a wide temperature and compo-
sition range and shows that neutral and charged colloids
can be effectively suspended in a binary mixture by ad-
dition of antagonistic salts. It is worth noting that the
specific adsorption of ions to the surface not discussed
here will typically enhance the stabilization. The ion
affinity to the wetting liquid will usually come hand in
hand with a similar surface affinity thus enhancing the
electrostatic repulsion.
The mechanism we describe is of potential use in nu-

merous colloidal systems where currently only one sol-
vent is employed and it is advantageous over existing
methods in cases where the modification of the colloid
surface chemistry is undesired. The most important re-
quirement to achieve a stable suspension is to chose a
salt in which the ions’ solvation asymmetry in the mix-
ture is large enough. We expect our results to be most
beneficial for dispersing charge-free particles. For exam-
ple, there have been large efforts recently in “transpar-
ent and conducting” electrodes for solar cell applications
[32]. In these works graphite is typically sonicated to
yield graphene sheets, and these sheets are dispersed us-
ing surfactants. Using evaporation or slow sedimentation
these sheets assemble as a thin and conducting layer on
top of a transparent substrate. In those works surfactants
stay between graphene sheets and reduce the conductiv-
ity immensely. In this and other cases, using salts for the
dispersion instead of surfactants could increase markedly
the conductivity of the film.
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van Roij. Stability of additive-free water-in-oil emulsions.
J. Phys.: Condens. Matter, 20(49):494238, 2008.

[17] Sela Samin and Yoav Tsori. Attraction between like-

charge surfaces in polar mixtures. EPL, 95(3):36002,
2011.

[18] Ryuichi Okamoto and Akira Onuki. Charged colloids in
an aqueous mixture with a salt. Phys. Rev. E, 84:051401,
2011.

[19] Akira Onuki and Ryuichi Okamoto. Selective solvation
effects in phase separation in aqueous mixtures. Curr.

Opin. Colloid Interface Sci., 16(6):525 – 533, 2011.
[20] Markus Bier, Andrea Gambassi, Martin Oettel, and

Siegfried Dietrich. Electrostatic interactions in critical
solvents. EPL, 95(6):60001, 2011.

[21] Sela Samin and Yoav Tsori. The interaction between
colloids in polar mixtures above tc. J. Chem. Phys.,
136(15):154908, 2012.

[22] Markus Bier, Andrea Gambassi, and Siegfried Dietrich.
Local theory for ions in binary liquid mixtures. J. Chem.

Phys., 137(3):034504, 2012.
[23] C. Kalidas, Glenn Hefter, and Yizhak Marcus. Gibbs en-

ergies of transfer of cations from water to mixed aqueous
organic solvents. Chem. Rev., 100(3):819–852, 2000.

[24] Yizhak Marcus. Gibbs energies of transfer of anions from
water to mixed aqueous organic solvents. Chem. Rev.,
107(9):3880–3897, 2007.

[25] Matej Kanduc̆, Ali Naji, Jan Forsman, and Rudolf Pod-
gornik. Attraction between neutral dielectrics mediated
by multivalent ions in an asymmetric ionic fluid. J.

Chem. Phys., 137(17):174704, 2012.
[26] Jos W. Zwanikken and Monica Olvera de la Cruz. Tun-

able soft structure in charged fluids confined by dielec-
tric interfaces. Proc. Nat. Acad. Sci., 110(14):5301–5308,
2013.

[27] Alexandre P. dos Santos and Yan Levin. Ion specificity
and the theory of stability of colloidal suspensions. Phys.
Rev. Lett., 106:167801, Apr 2011.

[28] T. Markovich, D. Andelman, and R. Podgornik. Surface
tension of electrolyte solutions: A self-consistent theory.
ArXiv e-prints, page 1305.3142, 2013.

[29] Samuel Safran. Statistical Thermodynamics of Surfaces,

Interfaces, and Membranes. Westview Press, New York,
1994.

[30] Michael E. Fisher and Pierre-Gilles de Gennes.
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