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Effects of the dipolar interaction on the equilibrium morphologies of a single

supramolecular magnetic filament in bulk
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We study the equilibrium morphologies of a single supramolecular magnetic filament

in a three-dimensional system as a function of the effective strength of the magnetic

dipolar interactions. The study is performed by means of Langevin dynamics simula-

tions with a bead-spring chain model of freely rotating dipoles. We demonstrate the

existence of three structural regimes as the value of the dipolar coupling parameter

is increased: a coil compaction regime, a coil expansion regime and a closed chain

regime in which the structures tend progressively to an ideal ring configuration. We

discuss the governing effects of each regime, the structural transition between open

and closed morphologies, and the reasons why we see no multiloop configurations

that have been observed in two-dimensional systems under similar conditions.
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I. INTRODUCTION

Supramolecular magnetic filaments are assemblies of nanometer sized magnetic particles

linked by polymers or other molecules to form a chain. These systems are the basis of a novel

nanotechnology that combines in a unique way the interesting physical properties of magnetic

nanoparticles (MNPs) with the intrinsic anisotropies of one-dimensional semiflexible chains1.

Research on MNPs has become an extremely active field in recent years2–5. In particular,

the self-assembly of MNPs into stable structures, mainly governed by dipolar interactions,

is a topic of great interest. The zero-field self-assembly of magnetic colloids into dipolar

rings —with the individual magnetic moments disposed in a head-to-tail arrangement along

the chain— was predicted more than four decades ago6 and since then has been extensively

studied by means of theoretical models and simulations7–14. However, the first experimental

observations of self-assembled chains of MNPs are more recent and, in late years, have

led to the finding of different self-assembled structures of two-dimensional dispersions of

dipolar chains, including flux closure structures like rings, necklaces or other two-dimensional

multiloop configurations15–24. The direct observation of closed ring-like structures in three-

dimensional dispersions of MNPs is experimentally challenging, but their existence has been

predicted theoretically by means of different simulation models20,25–27.

On the other hand, research on magnetic filaments is rather scarce. After the seminal

works reported in the late 1990s for the assembly of micrometer sized particles28,29, the

progress in synthesis methods to produce them has allowed the preparation of magnetic fila-

ments made of particles of very different materials and characteristic sizes30–37. In addition,

the filaments can now be made much more flexible, a property which is mainly determined

by the nature of the molecular links between the MNPs and, to some extent, by the inten-

sity of their magnetic interactions. So far, most studies on single or highly diluted magnetic

filaments in bulk have been restricted to the understanding of their dynamic properties un-

der the action of external magnetic fields, paying a special attention to their application as

nanofluidic propellers and actuators22,32,37–43. The equilibrium configurational properties of

the filaments have been generally disregarded. Nevertheless, the chain morphology has been

pointed out as a relevant factor for some properties of the filaments that are of high interest

like its thermal and electric conductivity or its overall coercivity1.

As a general hypothesis, it is reasonable to expect that the configurations observed in
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self-assembled chains of MNPs may appear also as equilibrium morphologies of magnetic

filaments with an adequate degree of flexibility. Nevertheless, it is not obvious which con-

ditions may lead to the different equilibrium structures or what will be the behavior of the

filaments under conditions which do not lead to the self-assembly of free particles into dipo-

lar chains. Therefore, the chain connectivity imposed by the chemical links makes magnetic

filaments a system with a structural behavior that is expected to be clearly distinguishable

from the corresponding to assemblies of free particles. In addition, there is still little knowl-

edge on the equilibrium structures of either highly diluted self-assembled dipolar chains and

magnetic filaments in bulk.

In a recent work44 we introduced a simple coarse-grained simulation model for the study of

the equilibrium behavior of semiflexible magnetic filaments near an attractive flat surface.

We reported the effect of the dipolar interactions on the adsorption transition and the

existence of different equilibrium morphologies that depend on the temperature and the

magnetic dipole strength. In particular, we found different adsorbed closed chain structures,

ranging from simple rings to more complex two-dimensional closed configurations in which

not only the ends but also some middle points of the chain become in close contact to form

a number of small linked rings. Such simple rings and multiloop structures are very similar

to the ones found in the most recent experimental observations of self-assembled chains of

magnetic nanoparticles33,45.

In the present work we explore the corresponding equilibrium morphologies of magnetic

filaments in the bulk using our previously introduced model. In particular, we intend here

to qualitatively determine the effects of the magnetic interactions on the local and global

configurations of a fully flexible dipolar chain without the geometrical constrains imposed

by the presence of an adsorbing surface.

The work is organized as follows: in Section II we review the details of the proposed

model and the simulation method, in Section III we present and discuss the results of our

simulations and we end with the concluding remarks in Section IV.

II. SIMULATION MODEL AND METHOD

In order to explore the equilibrium behavior of a magnetic filament in bulk we have taken

just the required ingredients from our previous coarse-grained model44: the linking potential,
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the dipolar interaction and the steric repulsion between the beads. Therefore, in our model

a magnetic filament is represented as a bead-spring chain of N identical particles carrying

at their centers a point magnetic dipole, ~µ, which can freely rotate in any direction.

It is important to remark that in our model the free rotation of the dipoles is just a

computational simplification useful for dynamical simulations. In experimental chains of

ferromagnetic particles the molecular links tend to prevent the rotation of the particles and,

therefore, the reorientation of their respective dipoles. The natural disposition of such chains

is a permanent head-to-tail alignment of the dipoles with respect to the chain backbone. The

head-to-tail alignment is also found experimentally for chains of superparamagnetic parti-

cles as a consequence of a cooperative effect: the increase of the dipole reversal barriers in

every bead led by the external field generated by its neighbors46. Nevertheless, according

to what we observed in our previous studies with this model44, we expect that a sponta-

neous head-to-tail alignment will be observed for large enough values of the dipole moment

without imposing any explicit constraint to the reorientation of the dipoles. The draw-

back of this approach is that we should expect the existence of a region of relatively weak

dipolar interactions—either led by a low value of the dipole moments and/or by a high

system temperature—in which the alignment will not take place and the model will not be

representative of a ferromagnetic behavior.

The details of our model are the following: the steric repulsions between the beads are

modeled by means of a Weeks-Chandler-Andersen potential (WCA)47:

UWCA(r) =







ULJ(r)− ULJ(rcut), r < rcut

0, r ≥ rcut
, (1)

where r is the distance between the centers of the interacting beads, ULJ(r) = 4ǫ[(σ/r)12 −

(σ/r)6] is the standard Lennard-Jones potential, rcut = 21/6σ is the shifting parameter

selected to make the potential repulsive and σ is the characteristic diameter of the beads.

Typically, the range of experimental values of σ varies between 10 and 200nm. The bonds

between adjacent beads in the chain are formed by means of a finite extensible non linear

elastic potential (FENE), defined as:

UFENE(r) =
−Kf r2max

2
ln

[

1−

(

r

rmax

)2
]

, (2)

with Kf = 30/σ2, and rmax = 1.5σ. The use of this potential implies to have the linking

springs attached to the center of the beads, therefore neglecting the eventual bond stretching
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produced by rotations of the linked particles. The long-range magnetic interactions are

represented by the conventional point dipole-dipole potential

UDIP(~rij; ~µi, ~µj) =
~µi · ~µj

|~rij|
3 −

3 [~µi · ~rij] [~µj · ~rij ]

|~rij |
5 , (3)

where ~rij = ~ri − ~rj is the displacement vector between the centers of the beads i, j and

~µi, ~µj are the dipole moments associated to each bead. For spherical particles forming a

ferromagnetic monodomain µ is related to the intrinsic magnetization of the material, MS,

and the particle diameter, σ, as µ = 1
6
πσ3MS. Section I of the Supplemental Material of

this article48 includes a plot with the different potentials defined in our model.

In magnetic dipolar systems it is usual to define a dimensionless dipolar coupling pa-

rameter, λ, to represent the effective intensity of the dipolar interactions. For a system

of identical dipolar spheres, this parameter is commonly defined as the ratio between the

optimum magnetic energy of two dipoles—corresponding to a close contact in a head-to-tail

arrangement— and the thermal fluctuations: λ = µ2
e/ (kTb

3), where µ2
e is the experimental

squared dipolar moment of the spheres, k is the Boltzmann constant, T the experimental

temperature and b is the characteristic separation distance between the dipoles. Typically,

b is the diameter of the beads or, equivalently, the distance between first-nearest neigh-

bors in chain-like systems. Therefore, b is expected to be similar to the particle diameter

parametrized in our interaction potentials, b ∼ σ. We can take reduced units for the exper-

imental parameters by defining µ2 ≡ µ2
e/ǫe and T ∗ ≡ kT/ǫe, where ǫe is the characteristic

experimental strength of the pair interactions in our system. Therefore, we get the following

expression for the dipolar coupling parameter:

λ = µ2/
(

T ∗b3
)

. (4)

We assume the qualitative equivalence of the variation of µ2 or T ∗ as a reasonable approx-

imation for the description of the equilibrium morphologies of a filament under not too

extreme conditions. This assumption has been proven to be useful for the characterization

of other magnetic systems like ferrofluids. Thus, we have chosen to sample λ by taking

different values of the squared dipolar moment within a moderate range, µ2 ∈ [0, 20], at a

constant reduced temperature, T ∗ = 1. However, the dependence of λ on b prevents in our

model to sample this parameter in a straightforward way. In particular, we have a bounded

but not fixed distance between first-nearest neighbors in the chain. We expect such distance
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to depend, at least, on either the value of µ2 or the local degree of head-to-tail alignment

of the dipoles. This latter dependence makes the exact value of b unknown beforehand for

any simulation we could attempt, so we can not set λ directly as a running dipolar param-

eter. On the other hand, it is very convenient to express our results in terms of λ in order

to facilitate the comparison with previous studies. Thus we have taken µ2 as the running

dipolar parameter of our simulations and calculated the corresponding values of λ by ap-

plying Equation (4), with b being the measured average distance between the first-nearest

neighbors in our simulated equilibrium configurations. Finally, for each selected value of the

running dipolar parameter, four different chain lengths, N = {10, 25, 50, 100}, have been

sampled.

Our simulations have been performed by means of molecular dynamics employing a

Langevin thermostat in order to implicitly include the effects of the thermal fluctuations

of the solvent. According to the selected reduced units, in our dynamical simulations the re-

duced time, t∗, is related to the experimental time, t, by t∗ = t
√

ǫe/(Mσ2). In the following

we provide the parameters used in our simulations. The common details of the simulation

method can be found in Section II of the Supplemental Material48. In general, in a dy-

namical simulation the values of the mass, M , the inertia tensor, I, and the translational

and rotational friction constants, ΓT and ΓR, are irrelevant for the results associated to an

equilibrium state. For simplicity, we have taken σ = 1, ǫ = ǫe = 1, M = 1 and the identity

matrix for the inertia tensor in order to ensure isotropic rotations. For the friction constants

we have taken ΓT = 1,ΓR = 3/4, since these values are known to produce a fast relax-

ation to equilibrium for dipolar systems11,12. In order to enhance the statistics and avoid

the sampling overhead associated to eventual metastable configurations—which are likely

to appear at high values of λ—we have applied the replica exchange molecular dynamics

method (REMD)49,50 to our Langevin dynamics simulations. In particular, we used µ2 as

the replica parameter, with a set of 66 values in the range µ2 ∈ [0, 20]. These values have

been selected by requiring an exchange rate above 35% for all replicas and chain lengths. We

used open boundaries and an integration time step of δt = 0.001. At each simulation cycle,

we performed 3 · 106 equilibration steps followed by 2 · 106 further steps for measurements.

A total of 800 cycles have been performed, but only the measures collected in the last 300

cycles have been used in our statistics. As a last remark on the simulation method, the

limitation of our study to a single filament has made the direct summation the method of

6



choice for the calculation of the long-range dipolar interactions. The simulations have been

carried out using the coarse-grained simulation package ESPResSo 3.0.251.

III. RESULTS AND DISCUSSION

In order to present our results in terms of the dipolar coupling parameter, λ, as defined in

equation 4, the first property to be determined from the equilibrated filament configurations

is the average distance between the first-nearest neighbors, or mean bond length 〈b〉, as a

function of the running dipolar parameter—the squared dipole moment, µ2—and the chain

length, N . Figure 1 shows the values of 〈b〉 obtained for every selected chain length along

with the corresponding bond length of a dimer—i.e., a chain formed by just two dipoles—

which is the minimal conceivable conformation in this system. As expected, for all the cases

studied, 〈b〉 decreases smoothly with increasing strength of the dipole moment. On the other

hand, the chain length has a significant impact just for the shortest chains at high dipole

moments, for which the observed decrease of 〈b〉 is lower. For longer chains, the change of

〈b〉 is almost independent of N . The correct interpretation of this effect requires a complete

understanding of the arrangement of the dipoles in the chain as µ2, and consequently λ, are

increased. Such discussion is placed in Section IIIC. Finally, once the dependence of λ on

〈b〉 has been numerically established for each selected value of µ2 and N , we can express all
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FIG. 1. Mean bond length, 〈b〉, as a function of the squared dipole moment, µ2, for different

filament lengths. Error bars are smaller than symbols.
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FIG. 2. Selected snapshots of equilibrium configurations obtained for different values of the dipolar

coupling parameter, λ, and chain lengths, N . The magnetic beads are represented as two-color

spheres, with dark/light colors indicating the orientation of the associated dipole. The spheres at

the chain ends have a different dark color to be easily identified within the closed morphologies.

For the case of the lowest value of λ, the scale of a region of the chain has been increased for a

better observation of the clustering and disordered orientation of the dipoles.

our results in terms of λ.

A direct inspection of the equilibrium morphologies obtained in our simulations confirms

the expectation discussed in Section II about the head-to-tail alignment of the dipoles, as well

as the existence of important structural changes with the effective intensity of the dipolar

interactions. Figure 2 illustrates these changes for some selected values of λ and N . In

general, for low values of λ the chains show a shape similar to a swollen random coil, with a

high disorder in the orientations of the dipoles. As λ increases, the dipoles tend effectively to

align with the chain backbone in a head-to-tail configuration, while the backbone becomes

more straight. At even larger values of λ, the chains adopt an irregular ring-like closed

structure, with their ends becoming permanently in close contact. Finally, these ring-like

morphologies tend to reduce their irregularities as λ is further increased. Shorter chains

apparently show less backbone irregularities at high values of λ, getting closer to the two-

dimensional symmetry of an ideal ring. The rest of Section III is devoted to the formal

analysis of these qualitative observations by means of different structural parameters.
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FIG. 3. (a) Scaled mean squared value of the end-to-end distance (upper panel) and radius of

gyration (middle and lower panels), as a function of the dipolar coupling parameter, λ, for different

chain lengths. The scaling shown in the upper and middle panels corresponds to the behavior

expected for a self-avoiding walk,
〈

R2
g

〉

∝ N6/5. The scaling in the lower panel corresponds to

the ideal ring behavior,
〈

R2
g

〉

∝ N2, represented by the solid line. (b) Probability histograms of
〈

R2
e

〉

/N6/5 obtained for N = 100 and some selected values of λ. (c) Corresponding probability

histograms for
〈

R2
g

〉

/N6/5.

A. Characteristic equilibrium structures

The squared radius of gyration, R2
g, and end-to-end distance, R2

e, are useful parameters

for the characterization of the global shape of chain-like structures. Figure 3(a) shows the
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variation of the scaled mean value of such parameters as a function of λ. Some selected

examples of their probability distributions are also shown in Figures 3(b) and 3(c). Two

scaling relationships
〈

R2
g

〉

∝ N2ν have been assumed in the representation of the data in

Figure 3(a): the upper and middle panels show the values of 〈R2
e〉 and 〈R2

g〉 scaled with the

exponent 2ν = 6/5. This exponent corresponds to an ideal self-avoiding walk, which is the

expected behavior for this system in the limit λ → 0. The lower panel of Figure 3(a) shows

〈R2
g〉 scaled with the exponent 2ν = 2, that corresponds to an ideal ring structure expected

for λ ≫ 1. We can observe that the curves tend to collapse at different regions according

to each scaling behavior: 2ν → 6/5 at low λ values and 2ν → 2 at large λ. However, it is

remarkable that a perfect fit has not been reached in any case. This result indicates that

the system is far from an ideal behavior, specially in the limit of large λ values.

Independently of the scaling applied to the data, the results shown in Figure 3 clearly

indicate the existence of three different regimes and a transition-like structural change within

the explored range of parameters: for λ . 2 the chain structures tend to compact slightly

with λ, an effect that increases with the chain length. For 2 . λ . 6 this tendency is

reversed, with a significant expansion of the structures until a maximum of the overall

extension is reached. At λ ∼ 6 the chain overall extension experiences a remarkable drop,

with the end-to-end distance falling to its minimum equilibrium value, corresponding to

the close contact separation between two non-bonded, head-to-tail oriented particles. In

addition, the corresponding probability distributions show the existence of notably bigger

fluctuations of both structural parameters in this region. This important change corresponds

to the structural closure transition that leads to the ring-like morphologies pointed above.

Finally, for λ & 6 the end-to-end distance remains in its minimum value, showing almost a

delta function in its probability distribution, and the radius of gyration tends monotonically

to a plateau. The value of this plateau is slightly lower than the corresponding to an ideal

ring formed by N beads of effective diameter b, R2
g, ring = b2/[4 sin2(π/N)] ∼ [Nb/(2π)]2. It

is also remarkable that the tendency to the plateau and its similarity to the value expected

for an ideal ring are significantly lower for the longest chains. As an example, for N = 10

and λ ≈ 30.39 the mean squared radius of gyration measured for our equilibrium structures

is 〈R2
g〉 ≈ 1.92, while an equivalent ideal ring would have R2

g, ring ≈ 1.95. On the other hand,

for N = 100 and λ ≈ 30.79 we have measured 〈R2
g〉 ≈ 139.25 in front of the ideal value

R2
g, ring ≈ 186.88. Therefore, the difference between the measured and the ideal values for
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FIG. 4. Dependence with λ of the fitted exponent, 2ν, corresponding to the scaling relation for

the average squared radius of gyration with respect to the chain length,
〈
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〉

∝ N2ν (main plot).

The inset shows how the values of
〈

R2
g

〉

measured for λ = 0 (data points) deviate from the ideal

scaling, given by 2ν = 6/5 (solid line).

R2
g at λ ∼ 30 is of the order of 10% for N = 10 and 25% for N = 100. This effect will be

better illustrated in Section IIIC.

The strong dependence of the closed structures with the chain length discussed above

explains the deviation with respect to the ideal scaling behavior for large values of λ that has

been observed in Figure 3(a). The deviation corresponding to small values of λ is, instead, a

consequence of being not yet in the asymptotic scaling regime. This effect can be evidenced

by fitting the scaling exponent 2ν to the available data. In Figure 4 we have represented the

fitted exponent as a function of the dipolar coupling parameter. The fit has been performed

by using all the simulated chain lengths. The result is qualitatively consistent with the

theoretical expectations: we can observe that the value of 2ν is effectively bounded by the

values corresponding to the Flory exponent for the three-dimensional swollen random coil,

2ν = 6/5, and the ideal ring, 2ν = 2. The local peak observed at λ ∼ 6 corresponds to

the maximum expansion of the chain prior to the closure transition. However, the inset of

Figure 4 evidences that the exponent fitted for λ = 0 is slightly higher than the theoretical

value due to the fact that we have not yet reached the asymptotic scaling regime in our

sampling. An accurate estimation of the scaling exponent for the limit λ → 0 would require

the simulation of much longer chains.
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Another general effect of the dipolar interactions on the chains is to make the backbone

locally more straight as λ is increased, apparently in a rather independent way with respect

to the global structure. This magnetically driven decrease of the backbone local curvature

is similar to the effect led by the chain stiffness associated to bond bending potentials44.

Nevertheless, it is important to keep in mind that the dipolar interactions are not strictly

local as is the case of the bond stiffness. In other chain-like systems governed by long-ranged

interactions—like, for example, in polyelectrolyte systems—the effects of the intensity of

such interactions on the local structure of the chain are usually studied by means of the

persistence length52,53. In our case, however, the existence of a closure transition led by the

dipolar interactions introduces a non-local dependence of this parameter (for a discussion on

the locality of the persistence length see for instance ref.54 and references therein). Therefore,

we choose to analyze a simple but representative local parameter: the cosine bond angle

distribution. This is defined as the probability distribution of the vector product of adjacent

unitary bond vectors for every position i along the chain:

Ci = b̂i−1,i · b̂i,i+1, (5)

where b̂i,j is the unitary vector pointing in the direction from the center of bead i to the

center of bead j. Figure 5 shows the distributions for the cases N = {10, 100} corresponding

to some selected values of the dipolar coupling parameter. The results show a continuous

change with λ from an almost flat distribution, with a wide domain of values for Ci, to a

distribution that progressively approaches a delta function at the point corresponding to an

ideal ring:

Ci(λ ≫ 1) → δ[cos(2π/N)]. (6)

The almost flat distribution observed at low values of λ indicates an insignificant correlation

between adjacent bond vectors. For high values of λ the adjacent bond vectors are highly

correlated, as this corresponds to a locally straight backbone. In all cases Ci is unable to

take values far below -0.5 as a direct consequence of the steric repulsions.

In Sections III B and IIIC we analyze in more detail the structural properties found for

low and high values of λ, respectively.

12



#0.5 0.0 0.5 1.0
Ci

0

1

2

3

4

5

6

7

8

P
(C

i)

N=10

$=0.9

%=3.1

&=6.4

'=22.0

(0.5 0.0 0.5 1.0
Ci

0

1

2

3

4

5

6

7

8

P
(C

i)

N=100

)=0.9

*=3.1

+=6.5

,=22.2

FIG. 5. Probability distributions of the cosine bond angle parameter corresponding to N = 10

(left) and N = 100 (right) obtained for different values of the dipolar coupling parameter.

B. Properties of open structures

We have shown that two different regimes are found for open structures. In order to

understand these regimes and determine at which point the model becomes representative

of a ferromagnetic behavior, we have analyzed in the first place the degree of alignment of

the dipoles with the chain backbone. This alignment can be easily calculated by means of

the bond-dipole alignment modulus, A, defined as44:

A =
1

N − 2

N−1
∑

i=2

∣

∣

∣
b̂i−1,i+1 · µ̂i

∣

∣

∣
, (7)

where µ̂i is a unit vector parallel to the dipolar moment of bead i and b̂i−1,i+1 is the unit

vector parallel to the displacement vector between the centers of the beads i− 1 and i+ 1.

We expect that for any given equilibrium configuration found in our system this simple

parameter will take values from 1/2 to 1. The value 1/2 corresponds to a distribution of

dipole orientations completely uncorrelated with the chain backbone, whereas the value 1

is associated to a configuration in which all dipoles are perfectly aligned with it. Figure

6 shows the average and fluctuations of this parameter as a function of λ for every chain

length. From a fully uncorrelated state at λ = 0, the alignment of the dipoles grows quickly

with λ up to 〈A〉 ∼ 0.95 at λ ∼ 5, to smoothly approach to its maximum value 〈A〉 = 1

afterwords. For all cases, the fluctuations show an absolute maximum at around λ ∼ 1.6,
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FIG. 6. Average bond-dipole alignment modulus, 〈A〉, as a function of the dipolar coupling param-

eter for different chain lengths. Its corresponding fluctuations for low values of λ, scaled according

to the sampling statistics, are shown in the inset.

but neither the average nor the fluctuations exhibit any significant dependence on the chain

length. Interestingly, the maximum in the fluctuations corresponds quite well with the

minima found for R2
g and R2

e that separate the two behaviors associated to open structures.

We conclude that a compaction or an expansion of the open chains is obtained depending

on the degree of alignment of the dipoles with the chain backbone. In particular, disordered

dipoles tend to favor the chain compaction by increasing their lateral contacts and allowing

the formation of small, disordered and weakly interacting three-dimensional clusters, like the

ones that can be observed in Figure 2 for the lowest value of λ. Such disordered aggregates

should reduce the overall extension of the chain. The monotonous decrease of the bond

length with λ may help slightly to the overall compaction in this region, but its impact can

be neglected in front of the variations of the lateral contacts. An estimation of the number

of energetically and entropically favorable lateral contacts, obtained by applying the criteria

established for the aggregation of magnetic particles in ferrofluids55, supports this conclusion.

The details of such estimation can be found in Section III of the Supplemental Material48.

The analysis of 〈A〉 suggests that our free rotating dipoles tend to display a ferromagnetic

behavior for λ > 3, where the bond dipole alignment fluctuations drop almost to zero,

independently of the chain length. This limiting value can be reasonably identified with

the well known condition for the self-assembly of spherical MNPs into dipolar head-to-tail
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chains6,17,56–59. Such condition simply reflects the fact that thermal fluctuations should be

less significant than the magnetic energy of two head-to-tail aligned dipoles in order to allow

the formation of a stable dipolar-driven aggregate. In our case, the bonds keep the chain

connectivity even at the entropically dominated region λ < 3, but under such condition the

dipoles are unable to remain persistently aligned and rotate like free particles. It is for λ > 3

when the head-to-tail alignment becomes stable and the chains tend to be more straight as

the alignment increases. In summary, the behavior of the open structures is mainly the

result of the interplay between the thermal fluctuations and the dipolar interactions, both

acting at a relatively short scale around each particle.

C. Closure transition and properties of closed structures

The inspection of the configurations and the behavior of the radius of gyration and the

end-to-end distance has evidenced the existence of a closure transition in the bulk similar

to the one observed for chains adsorbed on a flat substrate44. It is known that the dipolar

energy of a chain of N > 4 dipoles disposed into a head-to-tail closed ring is lower than the

corresponding to a head-to-tail straight arrangement of the same length60. In particular, for

N > 4, the decrease of the dipolar energy led by the added head-to-tail close contact between

the chain ends overcomes the effect of the misalignments introduced by the ring curvature.

On the other hand, a closed chain structure has a lower configurational entropy than an

open one. Therefore, the closure transition separates the region of configurations dominated

by entropy, corresponding to the open chain structures, from the energy-dominated region

of the closed structures.

In order to analyze in more detail the closure transition of our equilibrium structures, we

have chosen the total magnetization of the chain, M , as the characteristic parameter. M

is simply defined as the module of the sum of the unit dipolar moment vectors along the

chain:

M =

∥

∥

∥

∥

∥

N
∑

i=1

µ̂i

∥

∥

∥

∥

∥

. (8)

The behavior of this parameter is expected to be qualitatively very similar to the one ob-

served for the end-to-end distance44, but the accurate estimation of the fluctuations of M

is found to be easier than the corresponding to R2
e. Figure 7 represents the relative mean

value of M and its fluctuations. Initially, M grows with λ up to a maximum value, from
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FIG. 7. Mean total magnetization as a function of the dipolar coupling parameter for different

chain lengths and its corresponding fluctuations (inset).

which a sudden drop to almost zero is observed around λ ∼ 6. For higher values of λ it

remains persistently close to zero. The almost zero value of M indicates that the mag-

netic flux along the chain is following a nearly closed trajectory, as corresponds to a closed

structure of head-to-tail aligned dipoles. Remarkably, the fluctuations of M , shown in the

inset of Figure 7, display clear peaks indicating the position of the transition points, λ0.

These transition points shift to higher values of the dipolar coupling parameter as the chain

length increases: from λ0 ∼ 5.5 for N = 10 to λ0 ∼ 6.5 for N = 100. These closure points

are consistent with the structural phase diagram known for low density dispersions of free

MNPs61. However, it is well known that self-assembled structures of free MNPs tend to

be quite heterogeneous, with a coexistence of open and closed structures in a wide range

of parameters. This heterogeneity is not limited to experimental observations—in which

other more complex short ranged interactions, hard to control and predict, might play an

important role—but is also found in simulations with other minimalistic models similar to

ours. Therefore, the self-assembly of free magnetic particles does not represents a structural

transition. This makes a significant difference with our dipolar chains, for which the chain

connectivity leads to a well defined transition-like behavior.

We have seen that for λ > λ0 the chains remain in a closed configuration, but it is left

to determine how far they are from an ideal ring configuration. This can be characterized

by means of different shape parameters calculated from the average principal moments of
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FIG. 8. Shape parameters of the chains for every sampled value of λ and N . These shape pa-

rameters are defined as the ratios of the average principal moments of the gyration tensor: L2/L1

(upper panel) and L3/L1 (lower panel).

the gyration tensor of the sampled configurations, L1 ≥ L2 ≥ L3. Here we choose to

analyze the ratios of the average second and third moments to the first one, L2/L1 and

L3/L1 respectively. Figure 8 shows the behavior of these parameters with λ for every chain

length. For λ = 0 we can observe that our measures are in good agreement with the ratios

corresponding to the shape anisotropy of a swollen random coil62, L1 : L2 : L3 ≈ 12 : 3 : 1.

For λ ≫ 1, the shape parameters tend to L2/L1 → 1 and L3/L1 → 0, values that correspond

to the ideal ring. This result evidences the tendency to approach an ideal ring structure as

λ increases. The strong dependence of this tendency on the chain length also evidences that

the ideal ring is more difficult to achieve for the longest chains. At values of λ in the vicinity

of the closure transition point λ0, the behaviour is rather complex and strongly dependent

on the chain length. In particular, for λ & λ0 a monotonic increase of L2/L1 can be observed

for chain lengths N < 100. For N = 100, instead, there exists an interval just above λ0 in

which L2/L1 slightly decreases, indicating an slight increase of the eccentricity of the closed

chain in the plane of its first two principal axes. This suggest that further structural regimes

with different shape anisotropies may appear as the chain length increases. An adequate

characterization of such eventual new regimes will require the exploration of a wider range

of chain lengths.

At the beginning of Section III we provided an evidence of a significant impact of the
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chain length on the average bond length, 〈b〉, mainly for short chains and strong dipolar

interactions (see Figure 1). This behavior can be explained by the interplay between the

dipolar interaction that every particle experiences with second and further nearest neighbors

in the chain and the local curvature imposed by the ring-like structures found for strong

dipolar interactions: on one hand, dipolar interactions with further nearest neighbors are

only significant for high dipolar moments and a good head-to-tail alignment with such close

neighbors. Under these conditions, the bonding potential well between first nearest neighbors

is shifted to a shorter equilibrium distance (see Figure 1 in the Supplemental Material48).

However, only long enough chains are able to keep a high local curvature—i.e., a good

alignment between further nearest neighbors—when they form a ring-like structure at high

values of λ. Instead, this effect of non-first nearest neighbors is hindered by the increased

misalignment led by a shorter chain ring.

Finally, and as a difference with previous results on magnetic filaments adsorbed onto

a planar surface44, we found no trace of two-dimensional multiloop structures in the bulk.

Smooth two-dimensional multiloop structures can be slightly more energetically favorable

than a single ideal ring, provided they keep the closed head-to-tail contact between the chain

ends and add some favorable lateral contacts. On the other hand, the formation of such

lateral contacts between middle points in the chain induces a decrease in the configurational

entropy with respect to a single ring. The balance between the changes in the configurational

energy and entropy associated to the formation of multiloop structures depends on the sys-

tem dimensionality: the presence of a steric or adsorbing surface imposes a two-dimensional

arragement of the chains, leading to a significant decrease in their configurational degrees

of freedom. Due to this entropy reduction mechanism, the formation of multiloop chains

requires a smaller change of entropy in two-dimensional systems than in the bulk, thus it

is favored in a broad range of parameters. Nevertheless, we expect that multiloop configu-

rations will be observed in bulk for low enough temperatures, when energetic contributions

overcome the entropic ones.

IV. SUMMARY AND CONCLUDING REMARKS

We have studied the equilibrium behavior of a single flexible supramolecular magnetic

filament in bulk as a function of the dipolar coupling parameter, λ, and the chain length.
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The study has been carried out by means of Langevin molecular dynamics simulations using

a bead-spring model of linked dipoles. Despite the fact that the dipoles in our model are

free to rotate in any direction, they adopt a persistent head-to-tail alignment with the chain

backbone for values of the dipolar coupling parameter above the limiting condition for stable

self-assembly of MNPs, λ > 3.

Three different structural regimes and a chain closure transition have been found in our

model: an open coil compaction regime for λ . 2, in which the dipoles are poorly aligned

and form small aggregates of favorable lateral contacts; an open coil expansion regime for

2 . λ . 6, in which the onset of the ferromagnetic alignment of the dipoles takes place; a

magnetic flux closure transition at λ ∼ 6, signaling the separation between the entropy and

energy dominated structures; and finally, for λ & 6, a regime of closed ring-like structures

that tend to an ideal ring as λ increases.

We have analyzed the local stiffening of the chain induced by the increasing local align-

ment of the dipoles with λ, as well as the significant impact of the chain length on the

equilibrium behavior of the system and its configurational entropy. We also discussed in our

three-dimensional system the absence of multiloop structures like the ones found theoreti-

cally and experimentally in two-dimensional systems. We attributed this fact to the excess

of configurational entropy in the bulk within the range of parameters explored.

Our results are found to be consistent with the known properties of self-assemblies of

free MNPs. However, we have shown that the chain connectivity makes a difference with

respect to dispersions and assemblies of free magnetic particles by imposing a more coherent

and predictable behavior. This suggests that magnetic filaments can have advantages as

building blocks for the synthesis of complex magnetic nanostructures.
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39M. Belovs and A. Cēbers, Phys Rev E 79, 051503 (2009).

40F. Fahrni, M. W. J. Prins, and L. J. van IJzendoorn, Lab Chip 9, 3413 (2009).

41A. Babataheri, M. Roper, M. Fermigier, and O. D. Roure, J Fluid Mech 678, 5 (2011).

42I. Javaitis and V. Zilgalve, Adv Mat Res 222, 221 (2011).

21

http://dx.doi.org/ 10.1039/C0JM04014B
http://dx.doi.org/10.1021/jp3020639
http://dx.doi.org/10.1021/jz300931s
http://dx.doi.org/10.1006/jcis.1996.0399
http://dx.doi.org/10.1016/j.jcis.2004.07.025
http://dx.doi.org/10.1039/C2SM25192B
http://dx.doi.org/10.1021/la980703i
http://dx.doi.org/10.1103/PhysRevLett.82.4130
http://dx.doi.org/ 10.1038/nature04090
http://dx.doi.org/ 10.1109/MEMSYS.2003.1189675
http://dx.doi.org/ 10.1021/nl070190c
http://dx.doi.org/ 10.1021/nn7001213
http://dx.doi.org/10.1021/ja072757x
http://dx.doi.org/ 10.1002/polb.21558
http://dx.doi.org/ 10.1021/nn8005366
http://dx.doi.org/10.1039/b918215b
http://dx.doi.org/10.1016/j.cocis.2005.07.002
http://dx.doi.org/10.1103/PhysRevE.79.051503
http://dx.doi.org/10.1039/B908578E
http://dx.doi.org/10.1017/S002211201100005X
http://dx.doi.org/10.4028/www.scientific.net/AMR.222.221


43J. L. Breidenich, M. C. Wei, G. V. Clatterbaugh, J. J. Benkoski, P. Y. Keng, and J. Pyun,

Soft Matter 8, 5334 (2012).

44P. A. Sánchez, J. J. Cerda, V. Ballenegger, T. Sintes, O. Piro, and C. Holm,

Soft Matter 7, 1809 (2011).

45B. Y. Kim, I.-B. Shim, O. L. A. Monti, and J. Pyun, Chem. Commun. 47, 890 (2011).

46S. Mørup, M. F. Hansen, and C. Frandsen, Beilstein J Nanotechnol 1, 182 (2010).

47J. D. Weeks, D. Chandler, and H. C. Andersen, J Chem Phys 54, 5237 (1971).

48See Supplementary Material at http://dx.doi.org/10.1063/1.4815915 for further de-

tails on the simulation method, model potentials and statistics of the dipole clustering at

low values of the coupling parameter.

49Y. Sugita and Y. Okamoto, Chem Phys Lett 314, 141 (1999).

50A. Mitsutake, Y. Sugita, and Y. Okamoto, Peptide Science 60, 96 (2001).

51H. J. Limbach, A. Arnold, B. A. Mann, and C. Holm,

Comp. Phys. Comm. 174, 704 (2006).

52U. Micka and K. Kremer, J Phys-Condens Mat 8, 9463 (1996).

53U. Micka and K. Kremer, Europhys Lett 38, 279 (1997).
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