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Abstract

The potential energy surface of an off-lattice model protein is characterized in detail by

constructing a disconnectivity graph and by examining the organisation of pathways on

the surface. The results clearly reveal the frustration exhibited by this system and explain

why it does not fold efficiently to the global potential energy minimum. In contrast, when

the frustration is removed by constructing a ‘G ō-type’ model, the resulting graph exhibits

the characteristics expected for a folding funnel.

1 Introduction

The potential energy surface (PES) of an interacting systemdetermines its structural,

dynamic, and thermodynamic properties. Formally, the links between the PES and these

properties are fully defined by the stationary points on the PES, its gradient (which gives

the forces on the particles), and the partition function. However, it is only relatively

recently that explicit connections have been sought between the overall structure of the

PES, or potential energy ‘landscape’, and the behaviour of the system it describes. This
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approach promises to provide insight into a number of fields,including protein folding,

global optimization and glass formation.

In the present contribution we provide a global characterization of the PES for a model

heteropolymer, and show how this picture explains the dynamical properties observed

in previous simulations. In the original model ‘frustration’ prevents efficient relaxation

to the global potential energy minimum. However, when the frustration is removed by

constructing the corresponding ‘G ō-like’ model, the deeptraps disappear and the result-

ing surface resembles a funnel. The term frustration was first used in the context of

spin glasses,1 where it is impossible to satisfy all favourable interactions simultaneously.

Analogous effects exist in proteins:2 a three-dimensional structure that brings together

two mutually attractive residues may involve generating unfavourable contacts elsewhere

(‘energetic frustration’), and the interconversion of twosimilar structures may require the

disruption of existing favourable interactions (‘geometric frustration’).

The major difficulty in providing a fundamental explanationof structure, dynamics

and thermodynamics in terms of the underlying potential energy surface is that the num-

ber of stationary points grows very rapidly with the size of the system.3 This growth is,

in fact, the basis of Levinthal’s ‘paradox’,4 which points out the apparent impossibility

of a protein finding its biologically active state in a randomsearch amongst the astro-

nomical number of available structures. Some attempts to resolve the paradox proposed

a reduction in the search space from the full configuration space.5–8 Although it seems

unlikely that this reduction is the solution to the paradox,there is an implicit realization

in such approaches that, in some way, the search is not random. In terms of the energy

landscape there are two reasons for this. Firstly, conformations have different statistical

weights in the thermodynamic ensemble, and secondly, they are not arranged at random

in configuration space. Levinthal’s analysis assumes that the energy landscape is flat,
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like a golf course with a single hole corresponding to the native state.2 By constructing a

simple model that includes an energetic bias towards the native structure, it can be shown

that the search time on the full conformational space is dramatically reduced to physically

meaningful scales.9,10

One of the first studies to consider more explicitly the organization of the energy

landscape was that of Leopold, Montal, and Onuchic.11 These authors proposed that the

landscape of a natural protein consists of a collection of convergent kinetic pathways that

lead to a unique native state which is thermodynamically themost stable. Such a land-

scape structure was termed a ‘folding funnel’ because it focuses the manifold misfolded

states towards the correct target. This approach highlights the fundamental fallacy of the

random search in Levinthal’s ‘paradox’.

Funnel theory has gained widespread acceptance through itsdevelopment by Wolynes

and coworkers in terms of afree energy landscape.2,12 The funnel can be described in

terms of the free energy gradient towards the native structure, and the roughness—a mea-

sure of the barrier heights between local free energy minima, which can act as kinetic

traps. Folding is encouraged when the roughness is not largecompared with the energy

gradient. Simulations have shown that the folding ability can be measured by the ratio of

the folding temperature,Tf, where the native state becomes thermodynamically the most

stable, to the glass transition temperature,Tg, where the kinetics slow down dramatically

because of the free energy barriers.8,13 Tg is usually defined as the temperature at which

the folding time passes through a certain threshold. Folding is easiest for largeTf/Tg,

since the native state is then statistically populated at temperatures where it is kinetically

accessible. The effect of frustration is to increase the roughness of the energy landscape

relative to its gradient towards the native structure, thereby hindering relaxation to the

latter.
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We have recently shown14,15 how a new visualization of the potential energy surface

using disconnectivity graphs16 reveals the features which determine relaxation of clusters

to their global potential energy minimum. This approach hasalready been used by others

to examine the energy landscape of a tetrapeptide16,17 and to study the effects of con-

formational constraints in hexapeptides18 employing an all-atom model. In the present

contribution we analyse a coarse-grained representation of a larger polypeptide with 46

residues. Connected sequences of minima have been reportedbefore for this system,19

and we will show how the disconnectivity graph approach provides a clearer picture of

the relation between the energy landscape and dynamics.

2 The Model Potential

Intermediate in detail between lattice and all-atom modelsof proteins are continuum bead

models, in which each monomer is represented by a single beadon a chain. These off-

lattice systems have received relatively little attentionin terms of landscape analysis, but

provide a useful medium for such an approach, since atomistic representations of proteins

are computationally demanding.

Here we examine the effects of frustration in a model heteropolymer introduced by

Honeycutt and Thirumalai.20,21These authors proposed a ‘metastability hypothesis’ that

a polypeptide may adopt a variety of metastable folded conformations with similar struc-

tural characteristics but different energies. The particular state reached in the folding

process depends on the initial conditions. We shall see thatthis scenario arises from

frustration effects intrinsic to the model, which are not expected for a ‘good folder’.

The heteropolymer hasN = 46 beads linked by stiff bonds. There are three types of
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bead: hydrophobic (B), hydrophilic (L), and neutral (N), and the sequence is

B9N3(LB)4N3B9N3(LB)5L.

The potential energy is given by21

V = 1
2Kr

N−1

∑
i=1

(r i,i+1− re)
2+ 1

2Kθ

N−2

∑
i
(θi −θe)

2

+ ε
N−3

∑
i
[Ai(1+cosϕi)+Bi(1+cos3ϕi)]

+4ε
N−2

∑
i=1

N

∑
j=i+2

Ci j

[

(

σ
r i j

)12

−Di j

(

σ
r i j

)6
]

, (1)

wherer i j is the separation of beadsi and j. The first term represents the bonds linking

successive beads. The bond lengths were constrained atre in Ref. 21, but here we follow

Berry et al.19 by replacing these constraints with stiff springs:Kr = 231.2εσ−2, where

σ andε are the units of length and energy defined by the last term in Eq. (1). To put

the energy parameter in a physical context, the value ofε suggested by Berry et al.19 is

121K, such as might be used for the van der Waals interactionsbetween argon atoms.

The second term in Eq. (1) is a sum over the bond angles,θi , defined by the triplets of

atomic positionsri to ri+2, with Kθ = 20ε rad−2 andθe = 105◦. The third term is a sum

over the dihedral angles,ϕi , defined by the quartetsri to ri+3. If the quartet involves

no more than one N monomer thenAi = Bi = 1.2, generating a preference for the trans

conformation (ϕi = 180◦), whereas if two or three N monomers are involved thenAi = 0

andBi = 0.2. This choice makes the three neutral segments of the chain flexible and likely

to accommodate turns. The last term in Eq. (1) represents thenon-bonded interactions,

andσ is set equal tore. The coefficients for the various combinations of monomer types
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are as follows.

i, j ∈ B Ci j = 1 Di j = 1

i ∈ L, j ∈ L,B Ci j =
2
3 Di j =−1

i ∈ N, j ∈ L,B,N Ci j = 1 Di j = 0,

with Ci j = Cji andDi j = D ji . Hence, hydrophobic monomers experience a mutual van

der Waals attraction, and all other combinations are purelyrepulsive, with interactions

involving a hydrophilic monomer being of longer range.

The global minimum of this system, which we call the BLN model, is a four-stranded

β-barrel,21 illustrated in Figure 1. The hydrophobic segments congregate at the core, and

there are turns at the neutral segments. By cutting the sequence at these regions, Vekhter

and Berry have also used this model to study the self-assembly of theβ-barrel from the

separated strands.22

3 Characterizing the Energy Landscape

The most important points on a PES are the minima and the transition states that connect

them. A transition state is a stationary point at which the Hessian matrix has exactly one

negative eigenvalue whose eigenvector corresponds to the reaction coordinate. Minima

linked by higher-index saddles (the index being the number of negative Hessian eigen-

values) must also be linked by one or more true transition states of lower energy.23 The

pattern of stationary points and their connectivities define the topology of the PES.
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3.1 Exploring the Landscape

All the transition states in the present work were located byeigenvector-following,24–29

where the energy is maximized along one direction and simultaneously minimized in all

the others. Details of our implementation have been given before.30 The minima con-

nected to a given transition state are defined by the end points of the two steepest-descent

paths commencing parallel and antiparallel to the transition vector (i.e., the Hessian eigen-

vector whose eigenvalue is negative) at the transition state. Rather than steepest-descent

minimization, we have employed a conjugate-gradient method (using only first deriva-

tives of the potential) to calculate the pathways. This technique gives similar results, and

has the advantage of being much faster. However, it is possible for conjugate-gradient

minimization to converge to a stationary point of higher index than a minimum. To guard

against this problem, each optimization was followed by reoptimization with eigenvector-

following to a local minimum. In the majority of cases, the reoptimisation converged in

a few steps, indicating that the conjugate-gradient methodhad indeed found a true mini-

mum.

A number of similar approaches have been developed for systematically exploring

a PES by hopping between potential wells,31–34 and these can be adapted to obtain a

topographical database in several ways. Here we want to explore the energy landscape

thoroughly, working from the global minimum upwards. In ourscheme, we commenced

at the lowest-energy known minimum, and performed an eigenvector-following search

for a transition state along the eigenvector with the smallest non-zero eigenvalue. Having

located a transition state, the connected minima were foundby evaluating the path as

described above. The process was then repeated, always starting at the lowest-energy

minimum found so far, and searching along eigenvectors in both directions in order of

increasing eigenvalue. To enable the search to explore awayfrom the starting minimum,
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an upper limit,nev, was imposed on the number of eigenvectors to be searched from each

minimum. Whennev eigenvectors had been exhausted, the search moved onto the next-

lowest energy minimum. We note that, even ifnev is set to its maximum value of 3N−6,

there is no guarantee of finding all the transition states connected to a given minimum.

The low-energy regions of the BLN model energy landscape were explored using

nev = 10 until 250 minima had been found. Because of the harmonic bond potential,

following normal modes uphill in energy did not always lead to a transition state in a

reasonable number of iterations in this system. To compensate for this problem, the value

of nev was raised to 20 and the search continued until a total of 500 minima had been

found. The final number of transition states was 636.

3.2 Visualization

A useful visual representation of a PES is provided by the disconnectivity graph of Becker

and Karplus.16 This technique was first introduced to interpret a structural database of the

tetrapeptide isobutyryl-(ala)3-NH-methyl, produced by Czerminski and Elber,17 and was

subsequently applied to study the effects of conformational constraints in hexapeptides.18

The method is formally expressed16 in the language of graph theory, but can easily be

summarized as follows.

At a given total energy,E, the minima can be grouped into disjoint sets, called ‘super-

basins’, whose members are mutually accessible at that energy. In other words, each

pair of minima in a super-basin are connected directly or through other minima by a path

whose energy never exceedsE, but would require more energy to reach a minimum in

another super-basin. At low energy there is just one super-basin—that containing the

global minimum. At successively higher energies, more super-basins come into play as

new minima are reached. At still higher energies, the super-basins coalesce as higher
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barriers are overcome, until finally there is just one containing all the minima (provided

there are no infinite barriers).

A disconnectivity graph is constructed by performing the super-basin analysis at a se-

ries of energies, plotted on a vertical scale. At each energy, a super-basin is represented

by a node, with lines joining nodes in one level to their daughter nodes in the level be-

low. The choice of the energy levels is important; too wide a spacing and no topological

information is left, whilst too close a spacing produces a vertex for every transition state

and hides the overall structure of the landscape. The horizontal position of the nodes is

arbitrary, and can be chosen for clarity. In the resulting graph, all branches terminate at

local minima, while all minima connected directly or indirectly to a node are mutually

accessible at the energy of that node.

Visualization of the PES in terms of connectivity patterns between minima represents

a mapping from the full configuration space onto the underlying ‘inherent structures’.35

Although this approach discards information about the volume of phase space associated

with each minimum, the density of minima with energy can provide a qualitative impres-

sion of the volumes associated with the various regions of the energy landscape.

Some example schematic potential energy surfaces and the corresponding discon-

nectivity graphs are illustrated in Figure 2. The first two examples demonstrate that a

funnel-shaped landscape produces a disconnectivity graphwith a single stem leading to

the global minimum, from which branches sprout corresponding to local minima that are

progressively cut off as the energy descends below the barriers. The contrasting nature

of the funnels in Figures 2(a) and (b) is immediately discernible from the corresponding

graphs, where we see that the higher barriers and lower potential energy gradient towards

the global minimum in (a) produce long dangling branches in the disconnectivity graph.

Figure 2(c) is qualitatively different. The PES possesses ahierarchical arrangement of
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barriers, giving rise to multiple sub-branching in the graph. The strength of the discon-

nectivity graph in representing the topology of the PES is that it is independent of the

dimensionality of the system, whereas schematic plots of the potential energy itself are

restricted to one or two dimensions.

The disconnectivity graph for the low-energy regions of theBLN model landscape is

shown in Figure 3, using the sample of 500 minima and 636 transition states obtained

in Section 3.1. It is immediately apparent that the PES is nota single funnel. In fact,

it is a good example of a rough energy landscape, with repeated splitting at successive

nodes and long descending branches. A number of low-energy structures exist which are

separated by high barriers. Even if the barriers were not so high, there would be little

thermodynamic driving force towards the global minimum. The fact that the attractive

forces are of relatively long range and non-specific character means that it is possible to

construct many significantly different structures from common motifs such as the four

strands in the global minimum. For example, some of the low-energy minima differ only

by the relative positions of the two purely hydrophobic strands. These can register with

each other in a number of positions, related visually by a parallel slide. However, such a

slide would be an unlikely mechanism because all the non-bonded interactions would be

disrupted at once. Instead, the shortest path between such structures typically proceeds

through over ten separate rearrangements.

Other ways in which low-energy structures are related involve a reorientation of the

hydrophobic strands, so that the beads which are outermost and those that come into con-

tact in the core in Figure 1 are interchanged. Again, such a process involves many steps

and a high barrier. The neutral turn regions can also adopt a number of configurations.

The barriers between structures related in this way tend to be somewhat smaller, since the

torsion potential is weaker in these regions.
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The same structural database that is used to construct the disconnectivity graph can

also be analysed in terms of ‘monotonic sequences’ of connected minima in which the

potential energy decreases with every step.36,37 The collection of sequences leading to a

particular minimum define what we will call a monotonic sequence basin (MSB). Whilst

the super-basin of the disconnectivity graph is defined at a specified energy, a monotonic

sequence basin is a fixed feature of the landscape.

Berry et al.19 have characterized some monotonic sequences leading to theglobal

minimum of the BLN model. The sequences are connected by barriers that are relatively

low compared with the energy gradient along the sequence, leading these authors to place

the BLN model into the category of ‘structure seekers’. We note, however, that only 67

of our sample of 500 minima lie on monotonic sequences to the global minimum, so that

such sequences are not representative of paths to the globalminimum. Furthermore, other

low-energy minima also lie at the bottom of separate monotonic sequences of comparable

or even larger sets of minima. Hence, this system ‘seeks’ only a generalβ-barrel structure;

consideration of the arrangement of the monotonic sequences shows that significantly

different low-energy minima will be reached from differentstarting configurations, and

interconversion of these minima will be relatively slow with little preference for any given

one.

3.3 The Effects of Frustration

The folding characteristics of the BLN model have recently been questioned in other

studies. Guo and Brooks38 used MD simulations and a histogram method to study the

thermodynamics of folding. They identified a collapse transition to compact states with a

peak in the specific heat, and a folding transition in terms ofa similarity parameter with

the global minimum. The free energy surface as a function of this parameter and the com-
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pactness showed that collapse occurs before any appreciable native structure is attained,

rather than the cooperative collapse and structuring expected for a good folder. Nymeyer

et al.39 inferred the roughness of the energy landscape from the model’s thermodynamic

and dynamic behaviour.40 To demonstrate the effects of frustration, they compared their

simulations of the BLN model with a modified version in which the frustration is largely

eliminated. We now characterize the energy landscape of this modified model.

To remove the effects of frustration in the BLN model, all attractive interactions be-

tween pairs of monomers that are not in contact in the native state (global minimum) are

removed. This transformation is equivalent to settingDi j = 0 in Eq. (1) for non-bonded

pairs of hydrophobic monomers which are separated by more than 1.167σ in the global

minimum. This change increases the heterogeneity of the interactions, since it makes

the attractive forces more specific. The modified potential was termed ‘G ō-like’, follow-

ing G ō and collaborators, who constructed model lattice proteins by defining attractive

interactions between neighbouring non-bonded monomers inan assumed ground state

structure.41

Performing a survey of the energy landscape of the G ō-like model as for the BLN

model above produced 805 transition states linking the 500 low-lying minima. The dis-

connectivity graph is shown in Figure 4. The appearance is much more funnel-like, with

no low-energy minima separated from the global minimum by large barriers. Relaxing

the BLN global minimum with the G ō-like potential actuallyproduces the second-lowest

energy structure; a similar structure differing in the orientation of one of the turns lies

slightly lower. The energy range of the disconnectivity graph is a much larger proportion

of the global minimum well depth than in the analogous graph for the BLN model (Figure

3). This range reflects the lower density of minima per unit energy in the G ō-like system

that results from the specificity of the attractive forces. The highest-energy minima in the
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BLN sample were still relatively compact, whereas those forthe G ō-like model showed

considerable unfolding of theβ-barrel.

The plots of energy versus shortest integrated path length to the global minimum in

Figure 5 display the difference between the BLN and G ō-likeenergy landscapes clearly.

For the BLN model there is little correlation between distance and energy, whereas for the

G ō-like model the energy rises with distance, as one would expect in a funnel-like land-

scape.42 The number of individual rearrangements along the shortestpaths to the global

minimum is shown for both models in Figure 6. The distribution for the BLN model is

broader, with some minima lying as far as 24 steps from the global minimum, in contrast

with a maximum of 15 for the G ō-like model. This reveals the greater organization of the

G ō-like energy landscape into pathways converging at the global minimum.

A funnel-like interpretation for the G ō-like model is alsoencouraged by the changes

in the average properties of the individual paths between minima, as demonstrated in

Table 1. Uphill barriers are, on average, higher and downhill barriers lower for the G ō-

like model, producing a steeper downhill gradient between minima. However, the funnel

of the G ō-like model is far from ideal. A monotonic sequenceanalysis shows that only

124 of the 500 minima lie in the primary MSB, so that the relaxation from an arbitrary

structure to the global minimum is likely to involve a numberof uphill steps.

In simulations, Nymeyer et al.39 found that the collapse from unfolded states and the

formation of native structure occurred cooperatively for the G ō-like model, producing

a single narrow peak in the heat capacity. They also showed that glassy dynamics, as

measured by non-exponential relaxation from unfolded states, starts at temperatures just

below the collapse for the BLN model, hindering the search for the native structure. In

the G ō-like model, in contrast, glassy dynamics only set inbelow the folding tempera-

ture, where the global minimum still has a large equilibriumprobability. These results
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are entirely in accord with those expected from the direct characterization of the energy

landscape presented here.

4 Conclusions

The disconnectivity graph analysis of the 3-colour, 46-bead model polypeptide reveals a

frustrated energy landscape with a number of low-lyingβ-barrel structures in competition

with the global potential energy minimum. Although relaxation to one of theseβ-barrel

minima may be quite efficient, much longer time scales are needed for the system to

reliably locate the global minimum, in agreement with previous simulations.

In contrast, when the frustration is removed by changing thepotential to a G ō-type

model, the landscape is transformed to one where the global minimum should be located

easily. The competitive low-lying minima disappear following the transformation, and the

metastable minima are organised with an energy gradient towards the global minimum.

Our results illustrate the utility of the disconnectivity graph approach as a tool to ratio-

nalize and predict structural, dynamic and thermodynamic behaviour from the potential

energy surface.
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Tables

Table 1: Properties of individual pathways for the BLN and G¯o-like models. bup
i is

the larger (uphill) barrier height between the two minima connected by transition state
i, andbdown

i is the smaller (downhill) barrier.∆Econ
i = bup

i −bdown
i is the energy differ-

ence between the two minima. The angle brackets indicate averaging over the sample of
pathways. The units of energy areε.

Model BLN G ō-like

〈bup〉p 2.59 3.07
〈bdown〉p 0.862 0.635
〈∆Econ〉p 1.73 2.43
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Figures

Figure 1: Side and end views of the global minimum of the BLN model. Hydrophobic,
hydrophilic, and neutral beads are shaded dark grey, white and light grey, respectively.
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Figure 2: Schematic examples of potential energy surfaces (potential energy as a function
of some generalized coordinate) and the corresponding disconnectivity graphs. In each
case, the dotted lines indicate the energy levels at which the super-basin analysis has been
made. (a) A gently sloping funnel with high barriers, (b) a steeper funnel with lower
barriers, and (c) a ‘rough’ landscape.
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Figure 3: Disconnectivity graph for the BLN model, based on asample of 500 minima
and 636 transition states. The energy is in units of the parameterε.
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Figure 4: Disconnectivity graph for the G ō-like model, based on a sample of 500 minima
and 805 transition states. The energy is in units of the parameterε.
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Figure 5: Energy of minima as a function of the integrated path length along the shortest
path to the global minimum. Upper panel: the BLN model; lowerpanel: the G ō-like
model.
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Figure 6: Distribution of the number of rearrangements along the shortest path from a
given minimum to the global minimum for the BLN model (black)and the G ō-like model
(grey).
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