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Molecular dynamics of polymer growth
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The irreversible polymerization of a monomer liquid has been studied by molecular-dynamics
simulation in two and three dimensions. The growth process is studied under good solvent
conditions in the dilute regime and up to semidilute and concentrated regimes. In the dilute regime
we observe a reaction limitation due to trapping of the growing centers, which is more pronounced
in the lower dimension. At higher concentrations the presence of other chains decreases the
monomer mobility and reaction rate. Conformational properties are studied by scaling analysis of
end-to-end and gyration radii. A crossover from swollen conformations towards screened
conformations is observed as growth proceeds. ©1998 American Institute of Physics.
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I. INTRODUCTION

Relaxation times of molecular systems easily exce
those covered by molecular dynamics~MD! simulations
when the size of the molecules increases. In particular,
simple linear polymers, the relaxation of the end-to-end d
tance scales asN2 with the polymer length, according t
Rouse theory. Clearly, if one wants to calculate configu
tional properties of such systems from MD simulation,
large number of simulations starting from different initi
structures have to be performed to sample a sufficient pa
the configuration space. It is then important to have a met
available that generates initial states from the expected e
librium distribution.

An effective method will generate structures that sati
at least two criteria:~i! The chains have correct conform
tional statistics and~ii ! the polymer segments are homog
neously distributed. A number of methods for generat
equilibrium polymer samples have been proposed1–10 start-
ing from either one of the two criteria.

The technique most widely used in generating am
phous polymer melt structures is to generate chains
vacuum satisfying the expected conformational statistics
the melt and to pack these into a periodic box at the requ
density.1 The conformational statistics in the melt are simp
fied by Flory’s hypothesis,11 stating that the intrachain ex
cluded volume interactions in the melt just offset the int
chain interactions. This allows one to generate sin
polymer configurations in accordance with those in a m
by taking only local interactions into account, for examp
using the rotational isomeric state model11 or, similarly, by
equilibrating a single chain with a localized Hamiltonia
~pivot Monte Carlo2!. The major problem in this approach
how to pack the chains into a periodic box; that is, how
account for the supposedly screened interactions. By sim
2920021-9606/98/109(7)/2929/12/$15.00
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packing the chains at the final densities one reaches a
with severe overlap and straightforward equilibration us
the full Hamiltonian is prohibited. Instead, energy minimiz
tion is often used to reach a state with reasonable pote
energy, but this may affect the conformational statistics a
does not guarantee a homogeneous system. It has been
that the packing is conveniently carried out using a modifi
purely repulsive, Hamiltonian combined with isobaric sim
lation with low coupling to a high-pressure bath starti
from a rarefied system.12,13

Another approach is to start from a homogeneous dis
bution of monomers and to introduce the bonded interacti
in a separate step.4–10 This can be thought of as anin situ
polymerization. Here, it is important to have a polymeriz
tion process that yields chains with a conformation distrib
tion that is expected at the concentration of interest. It
the advantage that polymer systems of arbitrary dilution
easily be generated. Moreover, the method can also be
plied to two-dimensional~2D! systems, which is not straight
forward with the first method, because of severe restricti
caused by repulsive interactions in two dimensions. T
growing process is the target of this study.

Apart from being of interest as a tool in the simulation
polymer solutions, the very process of polymer growth is
interesting and challenging subject to simulation scien
MD methods are becoming increasingly useful in study
dynamical processes involving chemical reactions, for
ample the phase separation in reactive binary mixtures,14 and
can be useful in understanding polymerization processes.
example, a molecular scale simulation can reveal the imp
tance of the trapping of growth centers, the evolution of m
lecular weight distributions, conformational statistics duri
growth and explain how the polymerization product is r
lated to processing history. In this work we develop a sim
9 © 1998 American Institute of Physics
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dynamic model for addition polymerization of a model li
uid, where monomers stick irreversibly and no termination
growing centers takes place, a situation similar to livi
polymers.

As we focus on simulating a polymerization process a
are also interested in intermediate states, our work dif
from the previous studies.4–10 These are concerned with de
veloping efficient algorithms that generate monodispe
polymer melt structures. In most studies the chains are g
erated statically. In order to connect all the monomers,
reaction radius has to be large and the generated structu
generally one of high potential energy. Consequently, ene
minimization has to be performed to relax the genera
structure. For example, Khareet al.5 developed a method
connecting monomers on a lattice in such a way that
shortest possible chain is obtained. Chains that did not
isfy the expected~experimental! end-to-end distance wer
rejected. Gao6 connects;70% of the monomers staticall
and uses simultaneous equilibration and growth with a lar
reaction radius to connect the remaining monomers. In
last stage the spring constant is reduced to prevent the d
culty of very large bond forces. Kolinskiet al.7 developed a
lattice Monte Carlo method for growth and equilibration
polymer chains, which was generalized for a continuum
Guptaet al.9 They also included rotation barriers and fou
that due to the lack of internal rotations the method co
only be applied to rather short chains~fewer than 25 seg-
ments!. Finally, Lin et al.10 used a growth and equilibratio
method to polymerize dimethyl ether to form polyethyle
oxide. They also studied two different growth rates a
found that the structure factor of the rapidly grown cha
differs considerably from the one of the slowly grown cha
in particular for small scattering vectors, indicating that t
large scale structure is not uniquely represented.

In this study we simulate the polymerization process
itself, without introducing any artificial changes in th
growth mechanism with the sole purpose of speeding up
structure generation. We consider several reaction rates
compare the results with kinetic rate equations.

Lattice formulations have become a standard tool
study irreversible growth.15–17Here a ‘‘walker’’ travels on a
lattice according to some given rule leaving a ‘‘polymer’’
its trail. Clearly one can invent a variety of growth rule
e.g., random walk, self-avoiding walk, kinetic growth wal
etc., and each rule represents a different growth model.
only moving part in these formulations is the walker; t
monomers~i.e., the lattice sites! have zero mobility and also
the structure generated is frozen and not changing during
polymerization. As a consequence the ‘‘trapping problem
i.e., the walker being surrounded by its own trail, is inher
to lattice formulations. It is then important to have a grow
rule that avoids such situations.

Another approach in a related field is that of diffusio
limited aggregation.18 Here particles perform Brownian mo
tion and stick irreversibly if they come close to each oth
thereby building a cluster. These models have the advan
of being easily simulated on a lattice, but loose their simp
ity when one wants to account for diffusion~translation and
rotation! of the cluster or restructuring of the cluster durin
Downloaded 04 Nov 2008 to 130.89.112.87. Redistribution subject to AIP
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the aggregation process. This is, for example, importan
shear forces are present. A Brownian dynamics simulation
the diffusion-controlled growth of two-dimensional rodlik
polymers under shear in which these effects are taken
account has been reported19 but neglecting excluded-volum
interactions. The MD method used in this study has the
vantage that it is off-lattice and all motions~i.e., restructur-
ing and diffusion! are implicitly taken into account while
using a force field that includes excluded-volume inter
tions in a realistic manner.

The present study covers both two- and thre
dimensional~3D! systems. Although chains in two and thre
dimensions share the properties of a connected object,
topologies differ in many aspects. In two dimensions ste
hindrance is dramatic since a linear object behaves as a f
tier in a plane, whereas in three dimensions it is essenti
the finite system volume that causes steric effects. Moreo
one cannot speak of entanglements in two dimensions.
polymer melt the interaction between two monomers in
chain is screened by the presence of all the other chain
both two and three dimensions. In two dimensions t
means that the volume of the coil is proportional to the ch
length; that is, the concentration inside the coil does not
pend on the chain length, which is similar to the collaps
state of a two-dimensional chain in solution.20,21 In three
dimensions the melt conformations correspond to the th
state of a chain in solution.

The use of two-dimensional systems is motivated by
increasing amount of experimental data on 2D polymeri
tion processes.22–25 Diffusion and trapping phenomena a
found important in the description of reaction kinetics.22,26

As simulating two-dimensional systems is generally le
time consuming than 3D systems, these systems have
extensively studied.18,21,27,28Theoretically they have the ad
vantage that some problems can be treated analytically,
that the differences in scaling regimes are more pronoun

In the following section we describe the simulation a
growth model. Equilibrium properties of a single chain
solution were investigated and are reported in Sec. III.
Sec. IV we discuss the growth model and report the sin
chain properties obtained from the growth simulations. R
sults on simultaneous growth of several chains towards c
centrated solutions and melts are given in Sec. V. Discus
of these three sections is presented in the last section tog
with the conclusions.

II. MODEL AND SIMULATION DETAILS

Polymer growth is characterized by obeying universa
laws, which indicates that details of the potential energies
unimportant and that orders of magnitude just set the unit
time, density, and temperature. Although polymerization
actions are usually exothermic we believe that this is m
an obstacle from a simulation point of view, than someth
that determines the physical chemistry of the product. T
when simulating polymer growth by MD one has to conce
trate on having a correct dynamics rather than simulatin
certain polymerization. Also, the reaction time scale of
realistic polymerization looks to be prohibitive for MD whe
having in mind that MD only covers time intervals of th
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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order nano seconds, which means that one necessarily
ensure very fast kinetics with a low reaction barrier.

The polymerization is performed by creating covale
bonds between monomer units. Doing so we may introd
forces into the MD which are no longer given by a spec
Hamiltonian. As a rule for the kinetics in the open MD sy
tem one should not introduce larger forces than the syste
already exposed to especially during a high ene
collision.14 There is, however, a simple method to perfo
fast kinetics and polymerization by MD without introducin
large forces and heat of reactions, which is used in
present study and described below.

In a condensed melt of monomers or polymers the m
units are confined in cages of nearest-neighbor mass u
from which they escape occasionally. Thus they perform
brations by colliding with their surroundings, determined
our case by the repulsive part of the Lennard-Jones~LJ! po-
tential

uLJ~r !/e5H 4~~s/r !122~s/r !6!11, 0,r ,r m

0, r>r m
, ~1!

wherer m521/6s.
The polymerization step is effected by not allowing

reacting monomer to escape simply by binding it on ret
from a collision. In order to ensure a smooth and symme
bond potentialub we reflect the LJ potential at its minimum
r m

ub~r !5uLJ~r m2ur 2r mu!, 0,r ,2r m . ~2!

This bond potential is anharmonic and allows for a fin
extensibility of the bonds of 2r m with an equilibrium dis-
tance ofr m . It does not involve parameters other than the
parameters. We note that this spring-model is much wea
and the equilibrium distance is much larger than of a typi
covalent bond. However, regarding the universal proper
of polymers, the differences in spring-model only show up
prefactors and do not affect scaling properties. The lo
structure is kept simple~no higher order interactions, such a
bond or torsion angles! in order to have a small persistenc
length such that scaling properties show up for compara
short chains. By using a bond potential similar to that
nonbonded interaction we bring the time scale of vibratio
motion in correspondence with that for translational motio
and hence it allows us to use the same time step for a typ
LJ liquid in simulating polymers. Furthermore we ensure t
while the establishing the covalent bonds changes in
pressure are kept to a minimum, as a dimer has almos
same volume as two monomers in a liquid.

In the following we will distinguish between three type
of particles: We will denote free monomers~or solvent mol-
ecules! by M and bonded monomers~or beads! by P. The
bead at the chain end which acts as growth center is i
cated byP* . A polymer chain ofn beads~or, n-mer! is
denoted byPn .

The reaction between growth centers and free monom
to give bonded monomers

M1P*→P* 2P,

M1P* 2Pn→P* 2Pn11 , n51,2, . . . ,
Downloaded 04 Nov 2008 to 130.89.112.87. Redistribution subject to AIP
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is implemented by occasionally binding (M ,P* )-pairs on a
high-energy collision. This includes all (M ,P* )-pairs that
are separated by less than an encounter distancer c . As in
our model there is no difference between bonded and n
bonded interactions forr<r m , we have setr c5r m to have
high reaction rate and no introduction of discontinuities
the forces or energy on reaction. Each time intervalt r a
reaction trial is performed by collecting all reactants of ea
growing center in the system. Withm being the number of
free monomers within a distancer m from a growth center,
we bind a random monomer with a probabilitym/mmax,
wheremmax is a preset value, which should always be larg
than m. From simulations of pure monomer liquid in thre
dimensions at the state point under investigation we kn
that the probability of finding more than eight monome
within a distancer m around a given monomer is negligible
hence we have setmmax58, in both two and three dimen
sions. The reaction probability defined in this way accou
for the fact that the reaction rate of the bimolecular react
is proportional to the local free monomer concentration.

We can thus write the average decrease in free mono
concentration as

@M ~ t1t r !#2@M ~ t !#52@P* #
^m&
mmax

't r

d@M #

dt
, ~3!

where@•••# stands for number density~or concentration! and
@P* # is the concentration of growth centers in the syste
The average number of monomers around a growth ce
within the distancer m , ^m&, can be expressed in terms of th
radial distribution function of (M ,P* )-pairs

^m&'@M #E gM P* ~r !dr

5@M #
2pd/2

G~d/2!
E

0

r m
gM P* ~r !r d21dr, ~4!

where we have integrated over the angles ind-dimensions. In
the following we use the expression for the thre
dimensional case. For short chains the distribution funct
gM P* (r ) depends on the chain length but the integral co
verges rapidly to a constant value as the chain length
creases. We shall use this value in the following and assu
that the time dependence of^m& stems from@M # only, and
not from the structure.

By combining Eqs.~4! and ~3! we obtain an expression
for the consumption rate of free monomers in terms of
model parameters

d@M #

dt
52

*0
r mgM P* ~r !4pr 2dr

t rmmax
@M #@P* #. ~5!

In our model growth centers cannot be destroyed; tha
we do not allow two chains to combine by binding the
growth centers, nor do we allow disproportionation, whe
two growth centers saturate leaving two chains. As a con
quence the number of growth centers and thus of chain
conserved during the simulation. We will also ignore
kinds of transfer reactions, where the growth center is tra
ferred to other molecules. Furthermore, we assume the
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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tiation step to be sufficiently fast, or unimportant, such t
all the growth centers are present from the very beginn
These are conditions similar to preparation of livin
polymers.29

The kinetic equations for a sequence of reactions
does not involve destruction of the reactive species are g
by30,31

H d@P1#

dt
52k@M #@P1#

d@Pn11#

dt
52k@M #~@Pn11#2@Pn# !, n51,2, . . . ,

~6!

d@M #

dt
52k@M # (

n51

`

@Pn#, ~7!

where @Pn# is the concentration ofn-mers, which is zero
initially except for @P1(0)#[@P* #. k denotes the reaction
rate coefficient for the bimolecular reaction, which we a
sume independent ofn. Consequently it is assumed that th
reactants are ideally mixed and that diffusion is not imp
tant.

From Eq.~6! it is clear that the total number of reactiv
molecules is conserved,(n51

` @Pn(t)#5@P* #. Using this in
the expression for the monomer consumption@Eq. ~7!#, we
obtain

@M ~ t !#

@M #0
5exp~2k@P* #t ! ~8!

with initial condition @M (0)#5@M #0. In other words, the
free monomer concentration decreases exponentially to z
as long as diffusion plays no role. To solve Eq.~6! it is
useful to introduce the average number of bondsN(t)

N~ t !5
@M #02@M ~ t !#

@P* #
~9!

5
@M #0

@P* #
~12exp~2k@P* #t !! ~10!

5kE
0

t

@M ~t!#dt, ~11!

which shows that the chain length increases linearly
small t, N(t);k@M #0t, and then levels off asymptotically t
@M #0 /@P* #, the case where all monomer is consumed.

Equation~6! can be solved for@Pn(t)# by substituting
~11! in differential form,dN5k@M #dt. This leaves a Pois
son distribution ofn-mers,

5
@P1~ t !#

@P* #
5exp~2N~ t !!

@Pn11~ t !#

@P* #
5

N~ t !n

n!
exp~2N~ t !!, n51,2, . . . .

~12!

The reaction rate coefficientk can be estimated by com
paring Eqs.~5! and ~7!. If we assume that the integral ove
gM P* (r ) is constant this yields
Downloaded 04 Nov 2008 to 130.89.112.87. Redistribution subject to AIP
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r mgM P* ~r !4pr 2dr

t rmmax
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Using this value fork we will compare the macroscopi
equations with our simulation results.

The simulation starts from a pure monomer at liqu
density (r), taken as 0.60s22 and 0.80s23 in two and three
dimensions, respectively. In this system we perform an
tiation step, simply by changing the identity of a given, ra
domly chosen, fractionf05@P* #/r of the monomer liquid
into growth centers. The growth simulation is then pe
formed by successive reaction and dynamic steps, as
scribed before.

All simulations are performed in theNVT-ensemble (N
being the total number of particles! using the Nose´–Hoover
technique32 with a thermostate friction of 0.025t to keep the
temperature to a preset value, which was taken to
1.0e/kB . Throughout this report we use the reduced unitse,
s, and t5s(m/e)1/2. The massm is the same for all free
monomers and beads. The time step is 0.005t, which is
much smaller than the mean collision time.

We remark that in this model reaction and equilibrati
take place simultaneously. Hence, the model involves
time scales; the reaction time scale is set by the time betw
two reaction trials,t r . Secondly, the equilibrium motion
including diffusion of free monomers and polymer chains,
set by the temperature, and internal motion of the cha
mainly depends on the chain length. In an attempt to d
criminate among the time scales we have varied the reac
rate using the parametert r . However, it is obvious that as
polymerization proceeds, eventually the relaxation of
chains becomes the slowest process in the system.

III. RESULTS

We are interested in the properties of the chains gro
by the proposed method using the system at equilibrium
reference. To this end we start with calculating the equil
rium properties of our model, in particular the case of
single chain in a solvent~Sec. III A!. Here we focus on the
static properties as a function of chain length. Next we c
culate the same properties from the growth simulations.
investigate the effect of the reaction rate, by varying the ti
interval between successive reactions,t r ~Sec. III B!. We
proceed by extending the growth simulation to simultane
growth of several chains into the semi-dilute and conc
trated regime~Sec. III C!. The simulated growth process
compared with the kinetic equations derived in the previo
section.

We recall that in our model all interactions are equ
there is no net interaction between polymer segments
solvent molecules and only excluded volume~EV! is opera-
tional. The EV severely restricts the volume available to
polymer, so that it spreads over a larger volume and
average size increases with respect to the unperturbed c
i.e., it swells. On the other hand, EV is also present in
solvent; thus, whereas a polymer swells in the solvent, sw
ing is less than the swelling of the same chain in a gas
vacuum. We emphasize that, although the solvent may c
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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press the chain as density increases, the solvent does
prevent the chain from swelling; as long as the solven
much smaller than the polymer its effect is essentially tha
an external pressure bath. This, of course, cannot hold if
solvent itself is a polymer, i.e., in the case of a polymer m
Indeed, Flory’s hypothesis states just this, that in the melt
chains are not swollen, but behave like if there was no EV11

For sufficiently long chains diluted in a solvent the pro
lem of estimating polymer sizes becomes particularly simp
as it is known to obey a scaling relation20

X5bXNn, ~14!

whereX stands for any variable characterizing the avera
size of a chain withN11 monomers andbX is a model-
dependent prefactor with the unit of length; in particular
will focus on the end-to-end distanceX25^R2&5^r 0N

2 & and
the radius of gyration X25^S2&5@ 1/(N11)# ( i , j^r i j

2 &,
wherer i j is the distance between beadi and j. The exponent
n is independent of the choice forX and characterizes th
scaling regime of an infinitely long chain. In the presence
EV the exponent is equal to 3/(d12) in d-dimensions, ac-
cording to the standard Flory-argument.20,33In the absence o
EV the chain is equivalent to a random walk and the cor
sponding exponent is12. This indeed shows that chains a
swollen by EV interactions, and that this is more pronounc
in the lower dimension.

The Flory-argument relies on minimizing an approx
mated expression for the free energy of the chain, but res
in surprisingly accurate values forn. The values obtained
using more sophisticated methods34 include 0.58860.001
~using renormalization theory35! for d53 and 3

4 ~using Cou-
lomb gas renormalization36 or conformal group invariance37!
for d52. These values have also been confirmed by co
puter simulations34 and will be used by us in this study.

A. Single chains at equilibrium

We calculated the size of a polymer chain diluted in
solvent of like particles. In order to compare our results w
the scaling relation~14!, the chain has to be sufficiently lon
and the concentration has to be sufficiently low. As the sim
lation box has periodic boundaries we can exclude dir
interaction of the chain with any of its periodic images
adding solvent. If we anticipate on the result that due
equilibrium fluctuations chains expand at most twice th
average size, for which we substitute a sphere with radiu
gyration S, we have the conditionL/S.4, whereL is the
box size in one direction. To exclude hydrodynamic inter
tions as well, box sizes should be even larger than this. H
ever, we will be concerned with static properties, for whi
hydrodynamic interactions are found to be of
importance.38,39

To estimate the total simulation time that is required
sample the conformational space by time evolution we h
to take into account that relaxation times scale with expon
dn to the chain length.33 Thus, sampling the conformation
of a N5100 chain requires;60 times longer runs than i
required for aN510 chain~in three dimensions!. This adds
to the increase in the total number of particles, which
creases with the same exponent~sinceN}Ld}Sd}Ndn). As
Downloaded 04 Nov 2008 to 130.89.112.87. Redistribution subject to AIP
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the time spend by the computer is~in the fortunate case!
more or less proportional to the number of particles, it
creases with an exponent 2dn. To give an indication, for
N599 ~the longest chain we simulated! in three dimensions
it was necessary to simulate 15 000 particles over 100 0t
~say, ;0.2 ms if we substitute the parameters for a typic
methylene monomer!.

We have calculated the root mean square end-to-end
tance and radius of gyration of chains of length from 10
100 monomers. Results are shown on log–log format in F
1 and 2 for two- and three-dimensional systems. Also sho
are curves with the universal exponents for the EV regim
0.588 for d53 and 3

4 for d52. The results are in good

FIG. 1. Root-mean-square end-to-end distances~circles! and radii of gyra-
tion ~squares! vs the number of bondsN of two-dimensional chains in dilute
solution drawn on double logarithmic scale. Also shown are the scaling l

with n5
3
4 and fitted prefactors.

FIG. 2. Root-mean-square end-to-end distances~circles! and radii of gyra-
tion ~squares! vs the number of bondsN of three-dimensional chains in
dilute solution drawn on double logarithmic scale. Also shown are the s
ing laws withn50.588 and fitted prefactors.
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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agreement with the theoretical exponents. The chains
clearly swollen and even the shortest chain (N59) studied is
in accordance with the scaling relation.

Using the universal scaling exponents, we calculated
prefactorsbX from Eq. ~14!, obtaining bR51.0s and bS

50.38s in the limit for long chains in two dimensions. I
three dimensions we obtainedbR51.15s and bS50.45s.
Note that the two factors involve only one model depend
parameter, as their ratio is another universal constant.34 An
approximate value for this ratio can be found by substitut
the scaling relation for all segmentsr i j in the definition of
the radius of gyration; this yields (bR /bS)25(2n11)(2n
12) which equals 8.75 (d52) and 6.91 (d53). This
should be compared with 6 for a random walk and 12 fo
rigid rod. We first note that the characteristic length of t
chain is similar to the equilibrium bond length,bR'r m . The
radii of gyration are somewhat higher than suggested by
approximation given above; this stems from the fact t
internal segments are relatively more swollen than the ch
itself. Using direct renormalization one obtains 7.51, resp
tively, 6.30 as the ratio,34 whereas the simulation gives u
6.91, respectively, 6.53. The results are in qualitative ag
ment, but the convergence is rather slow. To account for
difference in swelling between inner segments we proba
need much longer chains.

Further evidence for EV behavior is found from all oth
moments, by investigating the distribution of end-to-end d
tances. The distribution ofR is predicted to scale accordin
to34

XdP~R!5 f ~R/X!, ~15!

whereX5^R2&1/2 and f (r) is a scaling function with zeroth
and second moment equal to 1. The asymptotic behaviorf
for small and large values ofr can be derived using field o
renormalization theory40–42

f ~r!}H r u, r !1

r k exp~2Crd!, r @1
, ~16!

whereu, k, andd are universal constants. Note thatP(R),
and consequently alsof (r), describe the full distribution of
the vectorR. The proportionality constant andC are derived
from the unity moments off. Sinceu andk are predicted to
be close in magnitude,34 it is reasonable to use the seco
expression for the whole range ofr, with k replaced byu.
Note that foru50 andd52, f (r) is a Gaussian distribution
valid for random walks (n5 1

2). For chains with excluded
volume u must be larger than zero, asf (r)→0 for r→0.
Hence,u measures the strength of EV interaction at sm
distances. For infinitely long chains it has been found t
u50.275.40,42 The parameterd describes the tail of the dis
tribution and should be related ton. Indeed it has been foun
thatd51/(12n),41 which is also consistent with the rando
walk case.

The vector distribution of the reduced distancer 5R/X
is shown in Fig. 3 for different chain lengths in three dime
sions. The data reduce reasonably well to a universal di
bution. Also shown is the theoretical prediction usingd
52.427 andu50.275. The behavior for larger is in accor-
dance with theory, whereas for short distances the the
Downloaded 04 Nov 2008 to 130.89.112.87. Redistribution subject to AIP
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underestimates the effective excluded volume. This may
due to the finite size of the chains; the reduced range of
excluded volume interaction cannot be neglected in this
ure. The effective value ofu should be higher. Using exac
enumeration for chains withN,18 Domb conjectured43 u
5d2250.427. The corresponding distribution is als
shown in Fig. 3. Clearly the agreement for smallr is im-
proved. However, it has been shown recently44 that for suf-
ficiently long chainsN.200 the lower valueu50.275 is far
superior.

As discussed in Sec. II, the radial distribution function
monomers around a chain end is of interest to estimate
reaction rate coefficient from Eq.~13!. The number of free
monomers around a chain end depends on the chain len
as neighboring polymer beads prevent monomers from
ting close to the chain end. The average number of mo
mers within a distancer m from a chain end is shown fo
different chain lengths in Fig. 4 for both the two- and thre
dimensional case. We can see that for any but the sho
chains it approaches an asymptotic value of 0.75 (d52) and
3.4 (d53). The large difference stems not only from th
dimensionality but also from the different densities. If w
divide the asymptotic values by the monomer concentrat
which is essentially the liquid density in this dilute regim
we obtain the integral overgM P* (r ) in Eq. ~13!. Using
mmax58 we then find,kt r50.16s2 and 0.53s3 in two and
three dimensions, respectively.

Finally, we calculated the diffusion coefficient for th
pure monomer liquid, for comparison with the reaction tim
scale. Using the Einstein relationD5^(r(t)2r(0))2&1/2/2dt
we obtainD50.25s2/t andD50.08s3/t for two and three
dimensions, respectively. Again, the diffusion is faster in tw
dimensions because of the low density.

B. Single chains growth

We next investigated to what extend the propos
growth mechanism reproduces the properties of a sin

FIG. 3. Distribution of the end-to-end vectorR vs the scaled end-to-end
distancer 5R/^R2&1/2 for several chain lengths studied. Also shown is t
theoretical curvef (r )50.3r 0.275 exp(21.271r 2.427) ~upper curve! and the
conjecture of Domb~lower curve!.
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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chain at equilibrium. The kinetics of the growth is param
eterized by the time interval between two successive re
tions,t r . By simple arguments we can speculate on its eff
on the polymer properties.

If t r is small compared to, say, the time a monom
needs to travel its own diameter, growth is more or le
static. That is, we perform a random walk on a frozen dis
dered lattice, by stepping to free monomers only. If no f
monomers are left, the walk stops unless a free mono
moves into the capture radius of the growth center. In
absence of diffusion, this situation is similar to Rosenblu
sampling of self-avoiding walks on a lattice.45 In this sam-
pling method a walker has some knowledge about its lo
environment and a next step on such a walk jumps to em
sites only. By stepping to unoccupied sites only, the Ros
bluth sampling favors steps, that eventually lead to comp
walks, above excluded sites, whereasa priori all directions
should be equally probable.46 We should note that in ou
growth method we grow only with a probabilitym/mmax,
where m is the number of available directions andmmax a
fixed number. However, the unreacted chains are not reje
but remain in the system; they are the starting point for
next reaction. These chains are on average more contra
than others~sincem is small!. Hence, for smallt r we expect
to find an ensemble of configurations that is biased to
swollen chains, with respect to the equilibrium distributio

On the other hand, ift r is sufficiently large, monomers
can diffuse in and out the capture radius of the growth ce
in between two reactive collisions. Any bias introduced
the growing method towards a certain distribution of co
figurations should become unimportant as the chain
enough time to relax from the nonequilibrium state. Ho
ever, this relaxation time increases with the chain length.
this reason the process becomes diffusion controlled even
the slowest reaction.

We simulated single chain growth for several react
intervals ranging fromt r50.25 to 25t at the same state
point as our equilibrium simulations. The total volume w

FIG. 4. Average number of monomersm within a distancer m from a chain
end vs chain length in two~right scale! and three dimensions~left scale!.
The numbers reach asymptotic values indicated by the broken lines.
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always chosen so as to satisfyL.4S. The simulations were
repeated up to 500 times starting from a random grow
center in an equilibrated monomer liquid to obtain a reas
able ensemble average. At intervals oft r we calculated the
number of bonds (N) and sizes (R,S) of the chain.

A typical growth behavior of one chain in a two
dimensional system is shown in Fig. 5. In this caset r51t
and what we see is a succession of successful and unsuc
ful reactions. Note that this is only a single experiment;
cannot tell us whether a failed reaction happened by accid
or is due to a limited number of reactants. However,
repeated failures in this particular sample indicate that
chain end is trapped in a cage of polymer beads. This
confirmed by the snapshots of the chain, shown in the sa
figure.

On average over a number of simulations we obtaine
smooth curve with decreasing slope, as shown in Fig. 6. A
shown is the curve based on Eq.~10!. As the concentration
of growth centers is very small, only the term linear in tim
is important; clearly, the consumption of monomer is not t
reason for the decreasing growth rate. Instead, the decrea
due to two effects. First, at some stage the reactive site
comes trapped. The trapping probability increases in ti
because the polymer concentration around the chain end
creases, as was shown in Fig. 4 for a chain in equilibriu
Also, in our growth method the chain tends to grow in
compact conformations, making trapping more likely.

Second, if the chain end is trapped, growth can o
proceed after the growth center has diffused back into
monomer phase or when the monomers have diffused
wards the growth center. The diffusion of free monome
from the bulk to the trapped growth center is hindered by
polymer beads in the coil, and this process will slow down
the coil volume increases. At the same time the polym
relaxation slows down with increasing chain length. Hen
the time that is needed to recover from a trapped situa
increases in time.

FIG. 5. Growth curve of a single two-dimensional chain in a dilute soluti
Eacht r51t a reaction trial is performed. Also shown are snapshots of
growing chain indicating trapping of the growth center.
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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Average growth curves are shown for several react
intervals in Fig. 6 for growth in three dimensions. We s
that for the fastest reaction, diffusion is important alrea
after a few reaction steps, whereas the slowest reaction
lows the kinetics much longer. However, even the slow
reaction is limited by diffusion on the MD time scale
Clearly the reaction rates should be much smaller to
criminate amongst the reaction and diffusion time scales

The end-to-end distances and radii of gyration are sho
versus chain length for two different reaction rates in Fig.
Also shown are the scaling results using the prefactors
tained from the equilibrium simulations. The results of t
fastest reaction (t r50.05t) are averaged over 500 simula

FIG. 6. Growth curve of a three-dimensional chain grown in a dilute so
tion. Results for three different reaction rates are shown:t r50.05t ~solid!,
t r50.5t ~dashed! andt r525t ~dot–dashed!. The upper straight solid line
corresponds toN5k@M #0t where the rate constantk is calculated from Eq.
~13!.

FIG. 7. Average radius of gyration~lower curves! and end-to-end distanc
~upper curves! vs chain length of a three-dimensional chain grown in
dilute solution for a slow (t r525t) and a fast (t r50.05t) reaction. Also
shown is the scaling law withn50.588 and the prefactors obtained fro
equilibrium simulations.
Downloaded 04 Nov 2008 to 130.89.112.87. Redistribution subject to AIP
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tions, whereas for the slowest reaction (t r525t) we used
100 simulations. Note that the reaction rates differ a facto
500; in the slowest case, each simulation takes about 5
after substituting the parameters for a typical methylene u
Although results suffer from statistical error due to the fin
ensemble, they indicate that the rapidly grown chains are
swollen with respect to the equilibrium chains. This ‘‘effe
tive attraction’’ is due to the growth method and is similar
the Rosenbluth bias in sampling self-avoiding walks. T
slowest reaction is already in good correspondence with
equilibrium results.

C. Multiple chains growth

We also studied the simultaneous growth of seve
chains. Here, we start from a dilute system as before
follow growth to the stage where chains start to interact a
further, until we reach the concentrated regime and, fina
the polymer melt.

As before we start from a monomer liquid (N
510 000) at the same thermodynamic point as before wi
small fraction (f05@P* #/r) of growth centers randomly
distributed in the liquid. Growth simulations were then pe
formed for various reaction rates each repeated 50–
times, starting from different initial states.

The average growth behavior is shown in Fig. 8 for
three-dimensional system using several concentrations of
tiator,f0 5 0.001–0.02. Also shown are the curves based
Eq. ~10! using the value for the reaction rate coefficient o
tained from Eq.~13!, kt r50.53s3. In these simulations we
appliedt r50.5t, hencek51.06s3/t. According to Eq.~10!
the chain length grows linearly in time and then levels
exponentially to its asymptotic maximum. A fully converte
system is not obtained on the MD time scale, as small c
ters of reactants are left and they diffuse only slowly to t
growth centers. Although the kinetic model overestima
the polymer production the shape is very well represen

-FIG. 8. Polymer fraction in time for different number of growth centers
indicated in the figure~total number of particlesN510 000) from simula-
tion ~solid! and theory~dashed! in three dimensions. The reaction intervalt r

is equal to 0.5t.
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Indeed, good agreement is found for all initiator concent
tions using an effective, lower, value fork'0.95s3/t.

Apart from the average chain length, one is often int
ested in the dispersity, or shape of the molecular weight
tribution. In Fig. 9 we show the distribution of chain siz
reduced on the mean, for different times during the grow
process. As expected the distribution becomes more pe
around its mean value as polymerization increases. This
consequence of the absence of termination processes
chains keep on growing as long as there are reactants
Also shown in Fig. 9 are curves predicted by Eq.~12! using
an effective value for the reaction rate constant,k
50.95s3/t. We see that the shape of the theoretical dis
bution is reasonably well reproduced. Near completion of
reaction, diffusion controls the growth process as the frac
of reactants is very low. The predicted distributions a
therefore too narrow with respect to the simulation result

We also followed the chain size during the growth. T
end-to-end distance and radius of gyration of the chains
ing the polymerization are shown in Fig. 10 for the thr
dimensional case. We observe two scaling regimes. In
first stage the chains grow into swollen conformations, j
as we saw for growth of a single chain. Then, as polym
ization proceeds, chains start to interact and the swollen c
formations are compressed by these interactions. Finally
interchain interactions more or less offset the intrachain
teractions, and we end up with random walk statistics and
corresponding scaling exponentn5 1

2.
It would be interesting to know if we can predict th

concentration separating the regimes of detached and o
lapped chains. Clearly, this is not a sharp transition,
rather an average concentration around which interchain
teractions are getting important. A simple estimate ste
from the idea that at the crossover point the concentra
inside the swollen coil is equal to the overall concentration20

That is, the solution is densely packed with swollen coils

FIG. 9. Molecular weight distribution for different time as indicated in t
figure in reduced units forf050.1 andt r50.5t from simulations~histo-
gram! and theory~solid line!.
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we take the coil to be a sphere with radius of gyration a
apply the scaling relation~14!, we find

Nf0r/hd5
NG~d/211!

pd/2Sd
5

NG~d/211!

pd/2bS
dNnd

, ~17!

wherehd stands for the maximum packing fraction ind di-
mensions. Using Flory’s approximation ton

N5S S G~d/211!hd

pd/2 D rbS
df0D ~21d!/3d

, ~18!

in which the fraction inside the brackets equals 1/4 a
1/A32 for d52 and 3, respectively.

From the simulation we estimate the crossover point
extrapolating from the two scaling regimes. We define
crossover point by the point at which the two extrapolatio
cross. The crossover concentrations obtained this way
shown in Fig. 11, together with the estimate using Eq.~18!.
Here we used the two-dimensional system as in two dim
sions the difference between a swollen and screened cha
more pronounced.

The chains start to contract much before the predic
crossover points. This is not surprising as at the predic
critical concentrations all chains already strongly intera
though not interpenetrate. Furthermore, our solution is po
disperse and the chains are not spherical in shape. The l
was revealed by calculating the eigenvalues of the ine
tensor, which shows that the chains are rather ellipso
(lmax'0.9S2) and thus sweep out a much larger volume.

In order to get a better description we applied anot
criterium that does not depend on these two effects. At
crossover point chains start to interact, and if all chains
teract with one another we could think of a percolating po
mer phase. This approach is somehow similar to the exci
fluorescence measurements which are used to revea
transition.47 There one measures the fluorescence intens

FIG. 10. Root-mean-square end-to-end distance~upper curve! and radius of
gyration~lower curve! vs chain length measured during the growth in thr
dimensions drawn on double logarithmic scale. A crossover is obse

from excluded-volume behavior (n50.588) to Gaussian behavior (n5
1
2).
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due to excimer formation with respect to the monomer flu
rescence. This ratio starts to grow in the vicinity of the cro
over, as excimers are formed between chromophores on
ferent chains.

We calculated the cluster distribution during the grow
process and determined the instant at which there is for
first time only a single cluster of polymer beads in the s
tem. The critical distance within which two beads are said
be clustered is chosen to be equal to the position of the
minimum of the radial distribution function,r 51.75 for d
52. The corresponding concentration is also shown in F
11 and agrees somewhat better with the simulated data.
the chains are already screened at the moment the sy
percolates for the first time.

We conclude that both the percolation and the pac
blobs picture of the crossover state predict concentrat
that correspond to screened chains in our simulations.
crossover point that we find from our simulations cor
sponds to a diluted system in which only a fraction of t
coils interact.

The structure of the growing system was investigated
calculating the structure factorS(k) for different wave vec-
tors k

NS~k!5^r̂~k!r̂~2k!&, ~19!

where r̂(k) is the Fourier-transform of the instantaneo
densityr(r)

r̂~k!5E exp~ ik•r!r~r!dr5(
j 51

N

exp~ ik•r j !, ~20!

with r j the coordinate of particlej andN denotes the numbe
of scattering centers. To obtain the structure factor,
mapped the density in continuous space on a grid. The
crete density was then Fourier-transformed to ad-

FIG. 11. Root-mean-square radius of gyration vs chain length of a t
dimensional polymer measured during a growth process withf050.05.

Also shown are the two scaling laws (n5
3
4 and

1
2) and their crossing atN

'23. The second line atN'53 corresponds to the percolation threshold a
the third line atN'70 corresponds to the crossover points according to
~18!.
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dimensional grid in the reciprocal space. The transform
density was correlated and circular averaged to obtainS(k),
assuming spherical symmetry.

We first calculated the structure factor by taking all pa
ticles into account. This total structure factorS(k) is shown
in Fig. 12 for different stages of the growth process, start
from a monomer liquid att50 and ending with a polyme
melt att'50t. Interestingly, it does not change significant
during the process; that is, the fluid structure is maintain
also in the melt. The strong intensity atk;2ps21 repre-
sents the first neighbors of the particle. As we have set
equilibrium bond length to the Lennard-Jones minimu
(r m), the same wavelength also probes the bonded ne
bors. Also the behavior fork→0 is very much the same. In
other words, the compressibility of the monomer liquid
similar to that of the melt. We should note, however, that
observe a drop in the pressure as growth proceeds. Ap
ently, the effect is too small to affect the total structure fa
tor.

We further calculated the structure factor taking only t
polymer or solvent particles as scattering centers. The p
mer structure factor,SPP is shown in Fig. 13. Initially it is
unity, since the growth centers are randomly distributed
the system. Then, bonds are created and the intensity
creases fork;2p/r m . At the same time the intensity in
creases for small values ofk (k&0.1 rad/s). This smallk
behavior for short times shows that polymer beads are gro
locally at the growth centers; that is, in the dilute regime t
polymer material is clustered as small islands. Taking

-

.

FIG. 12. Total structure factor starting from a monomer liquid att50 and
evolving to a polymer melt. Each 0.5t a reaction trial was performed.

FIG. 13. Structure factor of the polymer particles starting from a monom
liquid at t50 and evolving to a polymer melt. Each 0.5t a reaction trial was
performed.
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homogeneous distribution as a reference, this correspon
a large density fluctuation and henceSPP(k→0) increases.
This strong intensity then decreases as growth proceeds
the polymer phase approaches a homogeneous distribu
This reduction of intensity is due to correlation betwe
beads on different chains. We could therefore relate
maximum inSPP(k→0) to the onset of the crossover regio
in Fig. 11. Finally, we obtain almost the same structure f
tor as found for the solvent.

We have investigated the polymer structure factor i
more detail by discern interference due to correlation of s
tering centers within a single chain and of scattering cen
on different molecules. The former is represented by
form factorP(k)

N2P~k!5K (
j 50

N

(
l 50

N

exp~ ik•~r j2r l !!L
5K (

j 50

N

(
l 50

N
sin~kr jl !

kr jl
L , ~21!

wherer j l is the distance between two beads on a single ch
with N bonds. The last equation is valid in three dimensio
by explicitly assuming spherical symmetry. Expanding E
~21! for smallk shows that the form factor is proportional
the radius of gyration timesk2. We have shown the form
factor for different times (t51,2, . . . ,15t) in Fig. 14 reduc-
ing the scattering vector by the radius of gyration. Ap
from the very beginning the form factor is seen to obey
suggested scaling for all wavelengths. Also shown is
structure factor for a Gaussian chain33

P~k!52~exp~2x!1x21!/x2, x5k2S2. ~22!

This so-called Debye expression is in reasonable agreem
with the structure at smallk, but overestimates the intensit
at highk. Thus, although the scaling of the radius of gyrati

FIG. 14. Form factor of the polymer chains vs the wavelength reduced
the radius of gyration in three dimensions for various stages of the proc
t51,2, . . . ,15t from top to bottom. The initial polymer fraction is 0.01 an
each 0.5t a reaction trial was performed. Also shown is the Debye funct
for Gaussian chains~dashed!.
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suggests screening of interactions and hence Gaussian
havior, on sufficiently small length scales this simple pictu
breaks down.

IV. CONCLUSIONS

In this work we have presented a simple model to sim
late polymerization processes by means of molecu
dynamics simulation. In the growth method, reaction, a
equilibration take place simultaneously. We applied t
growth method to a bead-spring model and find that it p
duces polymer melt samples in accordance with the expe
equilibrium distribution. That is, for sufficiently slow reac
tions the chains grow as swollen chains in the diluted regim
with properties in accordance with the system in equilibriu
As concentration increases, the chains start to interact
become screened, which results in Gaussian chain statis

We have compared the simulation results with a kine
scheme. The latter is based on the assumption there is
mixing and no limitation due to diffusion. In the case of
single chain we found that it describes the first stage of
process quite well. However, growth centers can easily
come trapped in a cage of polymer beads, especially in
dimensions. In such cases diffusion of reactants towards
growth center controls the process, because the reaction
is fast compared to diffusion. This means that the kine
model predicts too fast growth.

It was also found that if the reaction is fast, not on
diffusion processes become important, but the propertie
the chains differed from those generated by a slow polym
ization. By examining the growth model we argued that t
is similar to the Rosenbluth bias, which one finds, for e
ample, in sampling the properties of a self-avoiding wa
However, even with the range of reaction rates accessibl
the MD time scale it is possible to choose a reaction rate
is sufficiently slow such that all memory of the grow
method is lost within two reactions and equilibrium prope
ties are obtained.

The growth simulations of multiple chains again show
the effect of diffusion limitation. The predicted conversio
were somewhat too high, but this can be accounted for
choosing an effective rate constant. Using this effect
value, we saw that also all other moments of the molecu
weight distribution are in agreement with the predicted Po
son distribution.

Although in this work we have primarily been concern
with studying the growth process in time, as pointed out
the introduction, the technique may be used to gene
polymer–solvent structures as starting configurations in M
simulations. An important question is what is the efficien
as compared to existing methods applying the same te
nique. Based on our investigations we can conclude th
fast growth~say,k'10s3/t) yields chains that are on ave
age too contracted in the dilute regime. However, if one
interested in melts this may not be a problem as the ch
have to contract to screened conformations anyway. A m
relevant side effect is that using these fast reactions, di
sion limitation plays an important role; if the reaction is fa
large clusters of monomers are left unreacted, and the sys
grows very inhomogeneously. It was found that usingk
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'1s3/t a reasonably homogeneous system is obtained
conformation statistics that satisfy the equilibrium distrib
tion.
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