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Molecular dynamics of polymer growth
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The irreversible polymerization of a monomer liquid has been studied by molecular-dynamics
simulation in two and three dimensions. The growth process is studied under good solvent
conditions in the dilute regime and up to semidilute and concentrated regimes. In the dilute regime
we observe a reaction limitation due to trapping of the growing centers, which is more pronounced
in the lower dimension. At higher concentrations the presence of other chains decreases the
monomer mobility and reaction rate. Conformational properties are studied by scaling analysis of
end-to-end and gyration radii. A crossover from swollen conformations towards screened
conformations is observed as growth proceeds. 1998 American Institute of Physics.
[S0021-960698)51231-1

I. INTRODUCTION packing the chains at the final densities one reaches a state
) ) . with severe overlap and straightforward equilibration using
Relaxation times of molecular systems easily exceeqne fyll Hamiltonian is prohibited. Instead, energy minimiza-
those covered by molecular dynami¢sID) simulations o, is often used to reach a state with reasonable potential
when the size of the molecules increases. In particular, f0gnergy hut this may affect the conformational statistics and
simple linear polymers, the relaxation of the end-to-end dIS?joes not guarantee a homogeneous system. It has been found

2 ; .
tRance st(;]ales agl W:th _tfhe polymetzr !{engtf:, ?thord'n? © that the packing is conveniently carried out using a modified,
~ouse theory. *early, I one wants 1o calculate con Igura'purely repulsive, Hamiltonian combined with isobaric simu-
tional properties of such systems from MD simulation, a

) : . . ' “lation with low coupling to a high-pressure bath startin
large number of simulations starting from different initial P9 gn-p g

- from a rarefied systerf:1®
structures have to be performed to sample a sufficient part o . .
Another approach is to start from a homogeneous distri-

the configuration space. It is then important to have a methog . ) ) )
. o ution of monomers and to introduce the bonded interactions
available that generates initial states from the expected equi-

~10 . . .
librium distribution. in a separate steép This can be thought of as an situ

An effective method will generate structures that satisfy,'[j,o'yme”zat'ot?]‘ tHe.reI,d I 'i |r.nport.z;:1 tto hz:ve a tpoly(rjr?etrlia-
at least two criteriafi) The chains have correct conforma- lon process that yields chains with a conformation distribu-

tional statistics andii) the polymer segments are homoge- tion that is expected at the concentration (_)f inter_est_. It has
neously distributed. A number of methods for generatingthe advantage that polymer systems of arbitrary dilution can

equilibrium polymer samples have been propdsttstart- easily be generated. Moreover, the method can also be ap-
ing from either one of the two criteria. plied to two-dimensional2D) systems, which is not straight-

The technique most widely used in generating amorforward with the first method, because of severe restrictions

phous polymer melt structures is to generate chains ifaused by repulsive interactions in two dimensions. This
vacuum satisfying the expected conformational statistics foBrowing process is the target of this study.

the melt and to pack these into a periodic box at the required  Apart from being of interest as a tool in the simulation of
density! The conformational statistics in the melt are simpli- Polymer solutions, the very process of polymer growth is an
fied by Flory’s hypothesi&® stating that the intrachain ex- interesting and challenging subject to simulation science.
cluded volume interactions in the melt just offset the inter-MD methods are becoming increasingly useful in studying
chain interactions. This allows one to generate singlelynamical processes involving chemical reactions, for ex-
polymer configurations in accordance with those in a meltample the phase separation in reactive binary mixttfrasd

by taking only local interactions into account, for examplecan be useful in understanding polymerization processes. For
using the rotational isomeric state motedr, similarly, by ~ example, a molecular scale simulation can reveal the impor-
equilibrating a single chain with a localized Hamiltonian tance of the trapping of growth centers, the evolution of mo-
(pivot Monte Carl@). The major problem in this approach is lecular weight distributions, conformational statistics during
how to pack the chains into a periodic box; that is, how togrowth and explain how the polymerization product is re-
account for the supposedly screened interactions. By simpliated to processing history. In this work we develop a simple
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dynamic model for addition polymerization of a model lig- the aggregation process. This is, for example, important if
uid, where monomers stick irreversibly and no termination ofshear forces are present. A Brownian dynamics simulation of
growing centers takes place, a situation similar to livingthe diffusion-controlled growth of two-dimensional rodlike

polymers. polymers under shear in which these effects are taken into

As we focus on simulating a polymerization process ancaccount has been reportédut neglecting excluded-volume
are also interested in intermediate states, our work differinteractions. The MD method used in this study has the ad-
from the previous studi€s® These are concerned with de- vantage that it is off-lattice and all motiortse., restructur-
veloping efficient algorithms that generate monodisperséng and diffusion are implicitly taken into account while
polymer melt structures. In most studies the chains are gerusing a force field that includes excluded-volume interac-
erated statically. In order to connect all the monomers, théions in a realistic manner.
reaction radius has to be large and the generated structure is The present study covers both two- and three-
generally one of high potential energy. Consequently, energglimensional3D) systems. Although chains in two and three
minimization has to be performed to relax the generatedlimensions share the properties of a connected object, their
structure. For example, Kharet al® developed a method topologies differ in many aspects. In two dimensions steric
connecting monomers on a lattice in such a way that théindrance is dramatic since a linear object behaves as a fron-
shortest possible chain is obtained. Chains that did not satier in a plane, whereas in three dimensions it is essentially
isfy the expectedexperimental end-to-end distance were the finite system volume that causes steric effects. Moreover
rejected. Gad connects~70% of the monomers statically one cannot speak of entanglements in two dimensions. In a
and uses simultaneous equilibration and growth with a largePolymer melt the interaction between two monomers in a
reaction radius to connect the remaining monomers. In thighain is screened by the presence of all the other chains, in
last stage the spring constant is reduced to prevent the diffPoth two and three dimensions. In two dimensions this
culty of very large bond forces. Kolinskit al.” developed a means that the volume of the coil is proportional to the chain
lattice Monte Carlo method for growth and equilibration of length; that is, the concentration inside the coil does not de-
polymer chains, which was generalized for a continuum byPend on the chain length, which is similar to the collapsed
Guptaet al® They also included rotation barriers and found State of a two-dimensional chain in solutii?:" In three
that due to the lack of internal rotations the method coulddimensions the melt conformations correspond to the theta-
only be applied to rather short chaiffewer than 25 seg- State of a chain in solution.
ments. Finally, Lin et al1° used a growth and equilibration The use of two-dimensional systems is motivated by an
method to polymerize dimethyl ether to form pc,|yethy|eneincreasing amount of experimental data on 2D polymeriza-
oxide. They also studied two different growth rates andtion processe&:** Diffusion and trapping phenomena are
found that the structure factor of the rapidly grown chainsfound important in the description of reaction kinetfés?
differs considerably from the one of the slowly grown chain,AS Simulating two-dimensional systems is generally less
in particular for small scattering vectors, indicating that thefime consuming than 3D systems, these systems have been
large scale structure is not uniquely represented. extensively studied?*"%"**Theoretically they have the ad-

In this study we simulate the polymerization process invantage that some problems can_be treated analytically, and
itself, without introducing any artificial changes in the that the differences in scaling regimes are more pronounced.
growth mechanism with the sole purpose of speeding up the N the following section we describe the simulation and
structure generation. We consider several reaction rates a/giowth model. Equilibrium properties of a single chain in
compare the results with kinetic rate equations. solution were investigated and are reported in Sec. lll. In

Lattice formulations have become a standard tool to>€C: IV we discuss the growth model and report the single
study irreversible growths~1"Here a “walker” travels on a chain propertles obtained from the growth s_;lmulatlons. Re-
lattice according to some given rule leaving a “polymer” as sults on S|mult§1ne0us growth of seyeral. chains towgrds con-
its trail. Clearly one can invent a variety of growth rules, centrated solutions and melts are given in Sec. V. Discussion

e.g., random walk, self-avoiding walk, kinetic growth walk of these three sections is presented in the last section together

etc., and each rule represents a different growth model. ThYIth the conclusions.
only moving part in these formulations is the walker; the
monomerdi.e., the lattice siteshave zero mobility and also Il. MODEL AND SIMULATION DETAILS
the structure generated is frozen and not changing during the Polymer growth is characterized by obeying universality
polymerization. As a consequence the “trapping problem,”laws, which indicates that details of the potential energies are
i.e., the walker being surrounded by its own trail, is inherentunimportant and that orders of magnitude just set the units of
to lattice formulations. It is then important to have a growthtime, density, and temperature. Although polymerization re-
rule that avoids such situations. actions are usually exothermic we believe that this is more
Another approach in a related field is that of diffusion an obstacle from a simulation point of view, than something
limited aggregatiort® Here particles perform Brownian mo- that determines the physical chemistry of the product. Thus
tion and stick irreversibly if they come close to each otherwhen simulating polymer growth by MD one has to concen-
thereby building a cluster. These models have the advantadeate on having a correct dynamics rather than simulating a
of being easily simulated on a lattice, but loose their simpliccertain polymerization. Also, the reaction time scale of a
ity when one wants to account for diffusidtranslation and realistic polymerization looks to be prohibitive for MD when
rotation of the cluster or restructuring of the cluster during having in mind that MD only covers time intervals of the
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order nano seconds, which means that one necessarily mustimplemented by occasionally binding/( P*)-pairs on a
ensure very fast kinetics with a low reaction barrier. high-energy collision. This includes allM,P*)-pairs that
The polymerization is performed by creating covalentare separated by less than an encounter distencds in
bonds between monomer units. Doing so we may introduceur model there is no difference between bonded and non-
forces into the MD which are no longer given by a specificbonded interactions far<r,,, we have set.=r, to have
Hamiltonian. As a rule for the kinetics in the open MD sys- high reaction rate and no introduction of discontinuities in
tem one should not introduce larger forces than the system ihe forces or energy on reaction. Each time intervala
already exposed to especially during a high energyeaction trial is performed by collecting all reactants of each
collision* There is, however, a simple method to performgrowing center in the system. Wit being the number of
fast kinetics and polymerization by MD without introducing free monomers within a distanag, from a growth center,
large forces and heat of reactions, which is used in theve bind a random monomer with a probabilitg/m,,y,
present study and described below. wherem,,,, is a preset value, which should always be larger
In a condensed melt of monomers or polymers the masthan m. From simulations of pure monomer liquid in three
units are confined in cages of nearest-neighbor mass unitimensions at the state point under investigation we know
from which they escape occasionally. Thus they perform vithat the probability of finding more than eight monomers
brations by colliding with their surroundings, determined inwithin a distancer ,, around a given monomer is negligible,
our case by the repulsive part of the Lennard-Jdhdspo-  hence we have seh,,,,=8, in both two and three dimen-
tential sions. The reaction probability defined in this way accounts
Aol 2= (aIr)®) +1, 0<r<r,, for the faqt that the reaction rate of the bimolecular r_eaction
. is proportional to the local free monomer concentration.
0, r=rp We can thus write the average decrease in free monomer
—2ll6, concentration as

ULJ(r)/GZ

wherer ,,
The polymerization step is effected by not allowing a (m) d[M]

reacting monomer to escape simply by binding it on return  [M(t+7,)]—[M(1)]= —[P*]—~7-r TRk

from a collision. In order to ensure a smooth and symmetric

bond pOtentian we reflect the LJ pOtential at its minimum Where[. . .] stands for number densi(yr Concentratio)‘]and

M'm [P*] is the concentration of growth centers in the system.
Up(N) =Us(rm=|r=ral), O<r<2r,. ) The average number of monomers around a growth center

within the distance ,, (m), can be expressed in terms of the
This bond potential is anharmonic and allows for a finitergdial distribution function of 1, P*)-pairs

extensibility of the bonds of 12,, with an equilibrium dis-
tance ofr,,. It does not involve parameters other than the LJ m)%[M]f e (1)dr
parameters. We note that this spring-model is much weaker MPx

and the equilibrium distance is much larger than of a typical 412

covalent bond. However, regarding the universal properties =[M f gup«(r)rd=dr, (4)
of polymers, the differences in spring-model only show up in F(d/2

prefactors and do not affect scaling properties. The loc
structure is kept simpléo higher order interactions, such as

()

a\Nhere we have integrated over the angled-imensions. In
the following we use the expression for the three-

lbon(:hor toLs[[(:]n tangl?sn order t? havr(]e a smafll perSIStenCSldimensional case. For short chains the distribution function
ength such that scaling properties show up for compara 6Mp (r) depends on the chain length but the integral con-

short chains. By using a bond potential similar to that of verges rapidly to a constant value as the chain length in-

nonbonded interaction we bring the time scale of V|brat|onalCreases We shall use this value in the following and assume

motion in correspondence with that for translational motion,t at the time dependence () stems from{M] only, and
and hence it allows us to use the same time step for a typicz#ot from the structure. '
LJ liquid in simulating polymers. Furthermore we ensure that By combining Eqs(4) and(3) we obtain an expression
while the establishing the covalent bonds changes in th‘faor the consumption rate of free monomers in terms of the
pressure are kept to a minimum, as a dimer has almost tr}?\odel parameters
same volume as two monomers in a liquid.

In the following we will distinguish between three types d[M] f{;“gMp*(r)4wr2dr
of particles: We will denote free monome(ar solvent mol-
ecules by M and bonded monomer®r beads by P. The
bead at the chain end which acts as growth center is indi-  |n our model growth centers cannot be destroyed:; that is,
cated byP*. A polymer chain ofn beads(or, n-men is  we do not allow two chains to combine by binding their

[M][P*]. ®)

dt TrMmax

denoted byP,,. growth centers, nor do we allow disproportionation, where
The reaction between growth centers and free monomefgvo growth centers saturate leaving two chains. As a conse-
to give bonded monomers quence the number of growth centers and thus of chains is
M+ P* P*—P, conserved during the simulation. We will also ignore all
kinds of transfer reactions, where the growth center is trans-
M+P*—-P,—P*—P,,1, n=12,..., ferred to other molecules. Furthermore, we assume the ini-
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tiation step to be sufficiently fast, or unimportant, such that f[)mgMp*(r)47rr2dr

all the growth centers are present from the very beginning. k= .

These are conditions similar to preparation of living

polymers?® Using this value fork we will compare the macroscopic
The kinetic equations for a sequence of reactions thagquations with our simulation results.

does not involve destruction of the reactive species are given The simulation starts from a pure monomer at liquid

(13

TrMmax

by?0:31 density ), taken as 0.66~2 and 0.8@ 2 in two and three
d[P,] Qimensions, rgspectively. In 'this sy;tem we perfo.rm an ini-
T KIM][P4] tiation step, simply t_)y changing the identity of a given, ran-
domly chosen, fractiorby=[P*]/p of the monomer liquid
d[Pny1] into growth centers. The growth simulation is then per-
T:_k[M]([PnH]_[Pn])’ n=12,....  formed by successive reaction and dynamic steps, as de-

(6)  scribed before.
" All simulations are performed in th&V T-ensemble A/

dmM] —k[M]E [P.] @) being the total number of particlessing the NoseHoover

dt = techniqué? with a thermostate friction of 0.025to keep the
temperature to a preset value, which was taken to be
1.0e/kg . Throughout this report we use the reduced uaijts
o, and 7=o(m/€)Y2 The masam is the same for all free
monomers and beads. The time step is 0/Q0&hich is
much smaller than the mean collision time.

We remark that in this model reaction and equilibration
take place simultaneously. Hence, the model involves two
time scales; the reaction time scale is set by the time between
two reaction trials,7,. Secondly, the equilibrium motion,
including diffusion of free monomers and polymer chains, is

where[P,] is the concentration of-mers, which is zero
initially except for[P1(0)]=[P*]. k denotes the reaction
rate coefficient for the bimolecular reaction, which we as-
sume independent af. Consequently it is assumed that the
reactants are ideally mixed and that diffusion is not impor-
tant.

From Eq.(6) it is clear that the total number of reactive
molecules is conserved;,_,[P,(t)]=[P*]. Using this in
the expression for the monomer consumpti&a. (7)], we

obtain set by the temperature, and internal motion of the chains
[M(1)] . mainly depends on the chain length. In an attempt to dis-
[MTo =exp(—k[P*]t) ®  criminate among the time scales we have varied the reaction

rate using the parametet. However, it is obvious that as

with initial condition [M(0)]=[M]o. In other words, the ,oymerization proceeds, eventually the relaxation of the
free monomer concentration decreases exponentially to Zergnains becomes the slowest process in the system.

as long as diffusion plays no role. To solve H) it is
useful to introduce the average number of boNds)

lll. RESULTS
_[M]o—[M(1)]
N(t)= [P*] © We are interested in the properties of the chains grown
by the proposed method using the system at equilibrium as a
[M]g . reference. To this end we start with calculating the equilib-
=[P*](1—exp(—k[P 1) (10 rium properties of our model, in particular the case of a

single chain in a solventSec. Ill A). Here we focus on the
t static properties as a function of chain length. Next we cal-
- kfo[M(T)]dT’ 1) culate the same properties from the growth simulations. We
investigate the effect of the reaction rate, by varying the time

which shows that the chain length increases linearly folinierval between successive reactions, (Sec. Il B). We

smallt, N(t)~k[M]ot, and then levels off asymptotically to proceed by extending the growth simulation to simultaneous
[M]o/[P*], the case where all monomer is consumed.  growth of several chains into the semi-dilute and concen-

Equation(6) can be solved fof Py(t)] by substituting  trated regime(Sec. Il Q. The simulated growth process is
(11) in differential form,dN=k[M]dt. This leaves a Pois- compared with the kinetic equations derived in the previous

son distribution ofn-mers, section.

[Py(1)] We recall that in our model all interactions are equal;

1* =exp(—N(1)) there is no net interaction between polymer segments and
[P*] solvent molecules and only excluded volugi/) is opera-

[P,..(t)] N®" tional. The EV severely restricts the volume available to the

n+1 .
" = exp(—N(t)), n=12,.... polymer, so that it spreads over a larger volume and the

[P*] ' (12 average size increases with respect to the unperturbed chain,

i.e., it swells. On the other hand, EV is also present in the

The reaction rate coefficieftcan be estimated by com- solvent; thus, whereas a polymer swells in the solvent, swell-
paring Eqgs.(5) and (7). If we assume that the integral over ing is less than the swelling of the same chain in a gas or
gmp=(r) is constant this yields vacuum. We emphasize that, although the solvent may com-
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press the chain as density increases, the solvent does n 100 ———r T ——
prevent the chain from swelling; as long as the solvent is
much smaller than the polymer its effect is essentially that of
an external pressure bath. This, of course, cannot hold if the
solvent itself is a polymer, i.e., in the case of a polymer melt. -
Indeed, Flory’s hypothesis states just this, that in the melt the 5
chains are not swollen, but behave like if there was no‘EV.

For sufficiently long chains diluted in a solvent the prob- 3 10
lem of estimating polymer sizes becomes particularly simple <
as it is known to obey a scaling relatfdn

X=byN?, (14)

where X stands for any variable characterizing the average

size of a chain withN+1 monomers andy is a model-

dependent prefactor with the unit of length; in particular we 1 L . N |

will focus on the end-to-end distane€=(R?)=(r2,) and 10 100

the radius of gyration X?=(S*)=[ L/(N+1)]3; (r5), N

Wher_erij is the distance betw_een beadnd). The exponent FIG. 1. Root-mean-square end-to-end distar{cesles and radii of gyra-

v is independent of the choice fot and characterizes the tion (squarepvs the number of bonds of two-dimensional chains in dilute

scaling regime of an infinitely long chain. In the presence ofsolution drawn on double logarithmic scale. Also shown are the scaling laws

EV the exponent is equal to &¢2) in d-dimensions, ac- Wwith v=1{ and fitted prefactors.

cording to the standard Flory-arguméft3In the absence of

EV the chain is equivalent to a random walk and the corre-

sponding exponent i$. This indeed shows that chains are the time spend by the computer (® the fortunate cage

swollen by EV interactions, and that this is more pronouncednore or less proportional to the number of particles, it in-

in the lower dimension. creases with an exponentd2. To give an indication, for
The Flory-argument relies on minimizing an approxi- N=99 (the longest chain we simulateth three dimensions

mated expression for the free energy of the chain, but resuli was necessary to simulate 15 000 particles over 106000

in surprisingly accurate values for. The values obtained (say,~0.2 us if we substitute the parameters for a typical

using more sophisticated methdtisnclude 0.588:0.001  methylene monomer

(using renormalization theofy) for d=3 and?$ (using Cou- We have calculated the root mean square end-to-end dis-

lomb gas renormalizatidfor conformal group invariand®  tance and radius of gyration of chains of length from 10 to

for d=2. These values have also been confirmed by com100 monomers. Results are shown on log—log format in Figs.
puter simulation® and will be used by us in this study. 1 and 2 for two- and three-dimensional systems. Also shown

are curves with the universal exponents for the EV regime,
0.588 ford=3 and 2 for d=2. The results are in good

A. Single chains at equilibrium

We calculated the size of a polymer chain diluted in a
solvent of like particles. In order to compare our results with
the scaling relatioril4), the chain has to be sufficiently long T T T T
and the concentration has to be sufficiently low. As the simu-
lation box has periodic boundaries we can exclude direct
interaction of the chain with any of its periodic images by
adding solvent. If we anticipate on the result that due to
equilibrium fluctuations chains expand at most twice their
average size, for which we substitute a sphere with radius o
gyration S, we have the conditioh./S>4, wherelL is the
box size in one direction. To exclude hydrodynamic interac-
tions as well, box sizes should be even larger than this. How-
ever, we will be concerned with static properties, for which i
hydrodynamic interactions are found to be of no
importance®®>°

To estimate the total simulation time that is required to
sample the conformational space by time evolution we have 1 L . i
to take into account that relaxation times scale with exponeni 10 100
dv to the chain lengtf® Thus, sampling the conformations N
of a N=100 chain requires-60 times longer runs than is _ _ )
required for aN=10 chain(in three dimensions This adds FIG. 2. Root-mean-square end-to-end dlstar(cersle_s) and_ radii of gyra-

. . K ; . tion (squarep vs the number of bonds! of three-dimensional chains in

to the increase in the total number of particles, which in-gjjyte solution drawn on double logarithmic scale. Also shown are the scal-
creases with the same exponésince N L% S4N), As  ing laws with »=0.588 and fitted prefactors.

10

X(c)
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agreement with the theoretical exponents. The chains ar " T " v 7 "
clearly swollen and even the shortest chadih«(9) studied is

in accordance with the scaling relation. _ ©10
Using the universal scaling exponents, we calculated thi 0.2 | gfz \\ <16 7

prefactorsby from Eq. (14), obtaining br=1.00 and bg / u?lé \:) 025

=0.380 in the limit for long chains in two dimensions. In  ~ | 4’30 A W ©50 |

three dimensions we obtaindzk=1.15 and bs=0.45. E a/ © % ATS

Note that the two factors involve only one model dependen % / <

parameter, as their ratio is another universal consfaan E 01+t A -

approximate value for this ratio can be found by substituting
the scaling relation for all segments in the definition of
the radius of gyration; this yieldsbg/bg)?=(2v+1)(2v -
+2) which equals 8.75d=2) and 6.91 §=3). This
should be compared with 6 for a random walk and 12 for a
rigid rod. We first note that the characteristic length of the 0-00 OC ' 0'5 ' 1'0 ' 1‘;“"—;0
chain is similar to the equilibrium bond lengthg~r,,. The ) ) o ) )
radii of gyration are somewhat higher than suggested by the r=R/X
approximation given above; this stems from the fact thafIG. 3. Distribution of the end-to-end vect®& vs the scaled end-to-end
internal segments are relatively more swollen than the chaidistancer = R/(R?)Y2 for several chain lengths studied. Also shown is the
itself. Using direct renormalization one obtains 7.51, respectheoretical curvef(r)=0.3°2"exp(-1.271***) (upper curvg and the
. . . . . conjecture of Domklower curve.
tively, 6.30 as the ratid? whereas the simulation gives us
6.91, respectively, 6.53. The results are in qualitative agree-
ment, but the convergence is rather slow. To account for thenderestimates the effective excluded volume. This may be
difference in swelling between inner segments we probablylue to the finite size of the chains; the reduced range of the
need much longer chains. excluded volume interaction cannot be neglected in this fig-
Further evidence for EV behavior is found from all other ure. The effective value of should be higher. Using exact
moments, by investigating the distribution of end-to-end dis-enumeration for chains withl<18 Domb conjecturéd ¢
tances. The distribution dR is predicted to scale according =6—2=0.427. The corresponding distribution is also
to>* shown in Fig. 3. Clearly the agreement f%r smalis im-
d B proved. However, it has been shown recefitiyat for suf-
X"P(R)=1(RIX), (19 ficiently long chaindN>200 the lower valug=0.275 is far
whereX=(R?)Y2 andf(r) is a scaling function with zeroth superior.
and second moment equal to 1. The asymptotic behavibr of ~ As discussed in Sec. Il, the radial distribution function of
for small and large values afcan be derived using field or monomers around a chain end is of interest to estimate the
renormalization theof{)=*? reaction rate coefficient from E¢13). The number of free
monomers around a chain end depends on the chain length,
(16) as neighboring polymer beads prevent monomers from get-
r<exp(—Cr?, r>1’ ting close to the chain end. The average number of mono-
mers within a distance,, from a chain end is shown for
different chain lengths in Fig. 4 for both the two- and three-
dimensional case. We can see that for any but the shortest
chains it approaches an asymptotic value of 045 2) and
3.4 (d=3). The large difference stems not only from the
expression for the whole range ofwith « replaced byo. d?mensionality but glso from the different densities. If we
Note that forf=0 ands=2, f(r) is a Gaussian distribution, d|v!de _the asym_ptotlc val_ues_ by the_m(_)nonjer (_:oncentr_atlon,
valid for random walks ¢=2). For chains with excluded which |s_essent|_ally the liquid densny_ in this dilute regime,
volume # must be larger than zero, d¢r)—0 for r—0. we obtain the integral ovegyp«(r) in Eg. (13). Using

— 2 — 2 3
Hence, 8§ measures the strength of EV interaction at smallmmax_8 we then findkr,=0.16" and 0.53" in two and

distances. For infinitely long chains it has been found tha{hregdnnensmns, Iresl'ptecgl\{[ﬁly.d.ﬁ . fficient for th
#=0.2752The parametep describes the tail of the dis- naty, we calculated the diiusion coetticient for: he

tribution and should be related to Indeed it has been found PY"® mon'omer quu'id, fqr comparison with the rezaf,gon time
that 5= 1/(1— v),** which is also consistent with the random SCal€- Using the Einstein relatidh=((r(t) —r(0)))~72dt
walk case we obtainD =0.250%/ 7 andD =0.08s>/ r for two and three

The vector distribution of the reduced distance R/X dimensions, respectively. Again, the diffusion is faster in two

is shown in Fig. 3 for different chain lengths in three dimen—d'mens'onS because of the low density.
sions. The data reduce reasonably well to a universal distri[-3 Single chai h
bution. Also shown is the theoretical prediction usiag - Single chains growt

=2.427 andd=0.275. The behavior for largeis in accor- We next investigated to what extend the proposed
dance with theory, whereas for short distances the theorgrowth mechanism reproduces the properties of a single

rf r<i1
f(r)ec

where 6, k, and § are universal constants. Note tH(R),
and consequently alstr), describe the full distribution of
the vectorR. The proportionality constant ar@are derived
from the unity moments of. Sinceé and « are predicted to
be close in magnitud, it is reasonable to use the second
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FIG. 4. Average number of monomarswithin a distance ,, from a chain
end vs chain length in twéright scalg¢ and three dimensiondeft scalg. FIG. 5. Growth curve of a single two-dimensional chain in a dilute solution.
The numbers reach asymptotic values indicated by the broken lines. Eachr, =17 a reaction trial is performed. Also shown are snapshots of the

growing chain indicating trapping of the growth center.

chain at equilibrium. The kinetics of the growth is param-
eterized by the time interval between two successive reaalways chosen so as to satidfy-4S. The simulations were
tions, 7, . By simple arguments we can speculate on its effectepeated up to 500 times starting from a random growth
on the polymer properties. center in an equilibrated monomer liquid to obtain a reason-
If 7. is small compared to, say, the time a monomerable ensemble average. At intervalsmfwe calculated the
needs to travel its own diameter, growth is more or lessiaumber of bondsN) and sizes R,S) of the chain.
static. That is, we perform a random walk on a frozen disor- A typical growth behavior of one chain in a two-
dered lattice, by stepping to free monomers only. If no freedimensional system is shown in Fig. 5. In this case 17
monomers are left, the walk stops unless a free monomeand what we see is a succession of successful and unsuccess-
moves into the capture radius of the growth center. In thdul reactions. Note that this is only a single experiment; it
absence of diffusion, this situation is similar to Rosenbluthcannot tell us whether a failed reaction happened by accident
sampling of self-avoiding walks on a lattié2In this sam- or is due to a limited number of reactants. However, the
pling method a walker has some knowledge about its locatepeated failures in this particular sample indicate that the
environment and a next step on such a walk jumps to emptghain end is trapped in a cage of polymer beads. This is
sites only. By stepping to unoccupied sites only, the Roseneonfirmed by the snapshots of the chain, shown in the same
bluth sampling favors steps, that eventually lead to compadigure.
walks, above excluded sites, whereagriori all directions On average over a number of simulations we obtained a
should be equally probabfé.We should note that in our smooth curve with decreasing slope, as shown in Fig. 6. Also
growth method we grow only with a probability/m,,,, shown is the curve based on E4O). As the concentration
wherem is the number of available directions ang,,, a  of growth centers is very small, only the term linear in time
fixed number. However, the unreacted chains are not rejectad important; clearly, the consumption of monomer is not the
but remain in the system; they are the starting point for theeason for the decreasing growth rate. Instead, the decrease is
next reaction. These chains are on average more contractélde to two effects. First, at some stage the reactive site be-
than othergsincemis smal). Hence, for smallr, we expect comes trapped. The trapping probability increases in time
to find an ensemble of configurations that is biased to lesbecause the polymer concentration around the chain end in-
swollen chains, with respect to the equilibrium distribution. creases, as was shown in Fig. 4 for a chain in equilibrium.
On the other hand, it, is sufficiently large, monomers Also, in our growth method the chain tends to grow into
can diffuse in and out the capture radius of the growth centecompact conformations, making trapping more likely.
in between two reactive collisions. Any bias introduced by  Second, if the chain end is trapped, growth can only
the growing method towards a certain distribution of con-proceed after the growth center has diffused back into the
figurations should become unimportant as the chain hasonomer phase or when the monomers have diffused to-
enough time to relax from the nonequilibrium state. How-wards the growth center. The diffusion of free monomers
ever, this relaxation time increases with the chain length. Fofrom the bulk to the trapped growth center is hindered by the
this reason the process becomes diffusion controlled even fgolymer beads in the coil, and this process will slow down as
the slowest reaction. the coil volume increases. At the same time the polymer
We simulated single chain growth for several reactionrelaxation slows down with increasing chain length. Hence,
intervals ranging fromr,=0.25 to 2% at the same state the time that is needed to recover from a trapped situation
point as our equilibrium simulations. The total volume wasincreases in time.
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FIG. 6. Growth curve of a three-dimensional chain grown in a dilute solu-FIG. 8. Polymer fraction in time for different number of growth centers as
tion. Results for three different reaction rates are showms:0.05r (solid), indicated in the figurétotal number of particlesv=10 000) from simula-
7,=0.57 (dashedl and 7, =257 (dot—dashed The upper straight solid line  tion (solid) and theory(dashedlin three dimensions. The reaction interval
corresponds t&=k[ M ]yt where the rate constaktis calculated from Eq.  is equal to 0.5r.

(13).

_~ tions, whereas for the slowest reactior € 257) we used

Average growth curves are shown for several reaction og simulations. Note that the reaction rates differ a factor of
intervals in Fig. 6 for growth in three dimensions. We seesno; in the slowest case, each simulation takes about 5 ns,
that for the fastest reaction, diffusion is important alreadyafter substituting the parameters for a typical methylene unit.
after a few reaction steps, whereas the slowest reaction folsjthough results suffer from statistical error due to the finite
lows the kinetics much longer. However, even the slowesgnsemble, they indicate that the rapidly grown chains are less
reaction is limited by diffusion on the MD time scale. syqojlen with respect to the equilibrium chains. This “effec-
Clearly the reaction rates should be much smaller to disgjye attraction” is due to the growth method and is similar to
criminate amongst the reaction and diffusion time scales. he Rosenbluth bias in sampling self-avoiding walks. The

The end-to-end distances and radii of gyration are showgq\est reaction is already in good correspondence with the
versus chain length for two different reaction rates in Fig. 7-equi|ibrium results.
Also shown are the scaling results using the prefactors ob-
tained from the equilibrium simulations. The results of the ) ,
fastest reaction £, =0.05r) are averaged over 500 simula- C- Multiple chains growth

We also studied the simultaneous growth of several

chains. Here, we start from a dilute system as before and

10 T

' ) ' ' ' AT follow growth to the stage where chains start to interact and
| ———-1,=0051 - ] further, until we reach the concentrated regime and, finally,
gL T =251 AT the polymer melt.
—-—-- equilibrium TMVT As before we start from a monomer liquidAf{
i oy e ’ =10 000) at the same thermodynamic point as before with a
6 F el - small fraction o=[P*]/p) of growth centers randomly
) | distributed in the liquid. Growth simulations were then per-
’é’, i 4 formed for various reaction rates each repeated 50-500

times, starting from different initial states.

The average growth behavior is shown in Fig. 8 for a
three-dimensional system using several concentrations of ini-
tiator, ¢o = 0.001-0.02. Also shown are the curves based on
Eq. (10) using the value for the reaction rate coefficient ob-
tained from Eq.(13), kr,=0.5%>. In these simulations we
appliedr, =0.57, hencek=1.060/ 7. According to Eq(10)
the chain length grows linearly in time and then levels off
exponentially to its asymptotic maximum. A fully converted
FIG. 7. Average faﬁi;;: ?;nQ%Laté?T'gVVtﬁ:eCsL‘?‘éfeigfoggf'ﬁ;:d ‘rj(ij\tlz”icnea system is not obtained on the MD time scale, as small clus-
filslzrt):rsglltjjrt\i/s:\flsr(; slow (-,3257-) and a fast ¢, =0.057) reactic?n. Also ters of reactants are left and the,y dl,ffuse only SIOWIy,tO the
shown is the scaling law withv=0.588 and the prefactors obtained from 9rowth centers. Although the kinetic model overestimates
equilibrium simulations. the polymer production the shape is very well represented.
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FIG. 9. Molecular weight distribution for different time as indicated in the FIG. 10. Root-mean-square end-to-end distanipper curve and radius of
figure in reduced units fotyy=0.1 and7,=0.57 from simulations(histo- gyration (lower curve vs chain length measured during the growth in three
gram and theory(solid line). dimensions drawn on double logarithmic scale. A crossover is observed

from excluded-volume behaviowE 0.588) to Gaussian behavior€ %).

Indeed, good agreement is found for all initiator concentrawe take the coil to be a sphere with radius of gyration and
tions using an effective, lower, value flr=0.950°/ 7. apply the scaling relatiofl4), we find

Apart from the average chain length, one is often inter-
ested in the dispersity, or shape of the molecular weight dis- Nop! 7= NI'(d/2+1) — NI'(d/2+1)
tribution. In Fig. 9 we show the distribution of chain sizes w25 m42hdNd
reduced on the mean, for different times during the grovvtl‘N
process. As expected the distribution becomes more peak
around its mean value as polymerization increases. This is a
consequence of the absence of termination processes; all I'(d/2+1) 74
chains keep on growing as long as there are reactants left. N=||———5>— pb
Also shown in Fig. 9 are curves predicted by EtR) using &
an effective value for the reaction rate constakt, in which the fraction inside the brackets equals 1/4 and
=0.95%/7. We see that the shape of the theoretical distri-1/\/32 for d=2 and 3, respectively.
bution is reasonably well reproduced. Near completion of the  From the simulation we estimate the crossover point by
reaction, diffusion controls the growth process as the fractiorextrapolating from the two scaling regimes. We define the
of reactants is very low. The predicted distributions arecrossover point by the point at which the two extrapolations
therefore too narrow with respect to the simulation results. cross. The crossover concentrations obtained this way are

We also followed the chain size during the growth. Theshown in Fig. 11, together with the estimate using 8d&).
end-to-end distance and radius of gyration of the chains dut-lere we used the two-dimensional system as in two dimen-
ing the polymerization are shown in Fig. 10 for the threesions the difference between a swollen and screened chain is
dimensional case. We observe two scaling regimes. In theore pronounced.
first stage the chains grow into swollen conformations, just The chains start to contract much before the predicted
as we saw for growth of a single chain. Then, as polymer<rossover points. This is not surprising as at the predicted
ization proceeds, chains start to interact and the swollen coreritical concentrations all chains already strongly interact,
formations are compressed by these interactions. Finally thihough not interpenetrate. Furthermore, our solution is poly-
interchain interactions more or less offset the intrachain indisperse and the chains are not spherical in shape. The latter
teractions, and we end up with random walk statistics and thevas revealed by calculating the eigenvalues of the inertia
corresponding scaling exponent 3. tensor, which shows that the chains are rather ellipsoidal

It would be interesting to know if we can predict the (Ama~0.95%) and thus sweep out a much larger volume.
concentration separating the regimes of detached and over- In order to get a better description we applied another
lapped chains. Clearly, this is not a sharp transition, butriterium that does not depend on these two effects. At the
rather an average concentration around which interchain inerossover point chains start to interact, and if all chains in-
teractions are getting important. A simple estimate stemseract with one another we could think of a percolating poly-
from the idea that at the crossover point the concentratiomer phase. This approach is somehow similar to the excimer
inside the swollen coil is equal to the overall concentraffon. fluorescence measurements which are used to reveal the
That is, the solution is densely packed with swollen coils. Iftransition?’ There one measures the fluorescence intensities

: (17)

ere ny stands for the maximum packing fraction dndi-
ensions. Using Flory’s approximation to
(2+d)/3d

400 : (18)
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FIG. 12. Total structure factor starting from a monomer liquid=ad and
evolving to a polymer melt. Each O:5 reaction trial was performed.

10 100 dimensional grid in the reciprocal space. The transformed
density was correlated and circular averaged to olék),
assuming spherical symmetry.

FIG. 11. Root-mean-square radius of gyration vs chain length of a two- ~ We first calculated the structure factor by taking all par-
dimensional polymer measured during a growth process wik0.05.  ticles into account. This total structure facts(k) is shown
Also shown are the two scaling laws € § and 3) and their crossing @ in Fig. 12 for different stages of the growth process, starting

1 PR T T | 1

~23. The second line &~ 53 corresponds to the percolation threshold and from a monomer quuid at=0 and ending with a polymer
the third line atN~ 70 corresponds to the crossover points according to Eq.

(19). melt att~50r. Interestingly, it does not change significantly
during the process; that is, the fluid structure is maintained
also in the melt. The strong intensity kt-27o ! repre-

due to excimer formation with respect to the monomer fluo-sents the first neighbors of the particle. As we have set the

rescence. This ratio starts to grow in the vicinity of the cross-equilibrium bond length to the Lennard-Jones minimum

over, as excimers are formed between chromophores on diff,,), the same wavelength also probes the bonded neigh-
ferent chains. bors. Also the behavior fdk— 0 is very much the same. In

We calculated the cluster distribution during the growthother words, the compressibility of the monomer liquid is
process and determined the instant at which there is for thgimilar to that of the melt. We should note, however, that we
first time only a single cluster of polymer beads in the sys-observe a drop in the pressure as growth proceeds. Appar-
tem. The critical distance within which two beads are said tceently, the effect is too small to affect the total structure fac-
be clustered is chosen to be equal to the position of the firdor.

minimum of the radial distribution functiorr,=1.75 for d We further calculated the structure factor taking only the

=2. The corresponding concentration is also shown in Figpolymer or solvent particles as scattering centers. The poly-

11 and agrees somewhat better with the simulated data. Stiliper structure factorSpp is shown in Fig. 13. Initially it is

the chains are already screened at the moment the systeunity, since the growth centers are randomly distributed in

percolates for the first time. the system. Then, bonds are created and the intensity in-

We conclude that both the percolation and the packedreases fok~2w/r,,. At the same time the intensity in-
blobs picture of the crossover state predict concentrationsreases for small values &f(k<0.1 radi). This smallk

that correspond to screened chains in our simulations. Thieehavior for short times shows that polymer beads are grown

crossover point that we find from our simulations corre-locally at the growth centers; that is, in the dilute regime the

sponds to a diluted system in which only a fraction of thepolymer material is clustered as small islands. Taking the
coils interact.
The structure of the growing system was investigated by

calculating the structure fact@(k) for different wave vec- S(K) ‘\\\\
torsk \
. Q‘\\\\\\\
NS(K)=(p(K)p( k), 19 M\
where p(k) is the Fourier-transform of the instantaneous ¢ ";\\\\\\\\Q\
densityp(r) , «,\\:\\
N ' 50
[)(k)zf exp(ik-r)p(r)drz_El explik-r)), (20) .
=

with r; the coordinate of particlgand.\V denotes the number k/2r (1/c)
of scattering centers. To obtain the structure factor, W‘:T'ZIG. 13. Structure factor of the polymer particles starting from a monomer

mapped thel density in COI’ltiI’IUOU.S space on a grid. The diSguid att=0 and evolving to a polymer melt. Each .5 reaction trial was
crete density was then Fourier-transformed to da  performed.
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1.0 suggests screening of interactions and hence Gaussian be-
havior, on sufficiently small length scales this simple picture
breaks down.

0.8

IV. CONCLUSIONS

In this work we have presented a simple model to simu-
late polymerization processes by means of molecular-
dynamics simulation. In the growth method, reaction, and
equilibration take place simultaneously. We applied the
growth method to a bead-spring model and find that it pro-
duces polymer melt samples in accordance with the expected
equilibrium distribution. That is, for sufficiently slow reac-
tions the chains grow as swollen chains in the diluted regime,
i ] with properties in accordance with the system in equilibrium.

0.0 . L . 1 . As concentration increases, the chains start to interact and

0 1 2 3 become screened, which results in Gaussian chain statistics.

kS/2n We have compared the simulation results with a kinetic
scheme. The latter is based on the assumption there is ideal

FIG. 14. Form factor of the polymer chains vs the wavelength reduced byyiving and no limitation due to diffusion. In the case of a
the radius of gyration in three dimensions for various stages of the process,. . . . .
t=1,2,..., 15 from top to bottom. The initial polymer fraction is 0.01 and smgle chain we found that it describes the first stage of the
each 0.5 a reaction trial was performed. Also shown is the Debye functionprocess quite well. However, growth centers can easily be-
for Gaussian chain@ashegl come trapped in a cage of polymer beads, especially in two
dimensions. In such cases diffusion of reactants towards the

o i rowth center controls the process, because the reaction rate
homogeneous distribution as a reference, this corresponds fast compared to diffusion. This means that the kinetic
a large density fluctuation and henggp(k—0) increases. model predicts too fast growth.

This strong intensity then decreases as growth proceeds and It was also found that if the reaction is fast, not only

thﬁ poI;(/jmer_ phasfe_ appr(_)achesda homogenleo_us dt')smb“t'oaiffusion processes become important, but the properties of
This reduction of intensity is due to correlation betweeny,o chains differed from those generated by a slow polymer-

beads on different chains. We could therefore relate th?zation. By examining the growth model we argued that this
maximum inSpp(k—0) to the onset of the crossover region is imilar to the Rosenbluth bias, which one finds, for ex-

in Fig. 11. Finally, we obtain almost the same structure fac'ample, in sampling the properties of a self-avoiding walk.

tor as found fqr the _solvent. .. However, even with the range of reaction rates accessible to
We hgve myesﬂgaﬁed the polymer structure factor INQhe MD time scale it is possible to choose a reaction rate that

more detail by discern interference due to correlation of scatrg sufficiently slow such that all memory of the growth

tering centers within a single chain and of scattering centerg .ihod is lost within two reactions and equilibrium proper-

on different molecules. The former is represented by thei.c 4re obtained.

form factor P(k)

0.6

P(k)

0.4

0.2

The growth simulations of multiple chains again showed

NN the effect of diffusion limitation. The predicted conversions
N2P(k)=< > > eXF(ik'(rj—r|))> were somewhat too high, but this can be accounted for by
1=01=0 choosing an effective rate constant. Using this effective
N sin(kr ;) value, we saw that also all other moments of the molecular
=< 2 2 —'> , (21)  weight distribution are in agreement with the predicted Pois-
=oi=o ki son distribution.

wherer ; is the distance between two beads on a single chain ~ Although in this work we have primarily been concerned
with N bonds. The last equation is valid in three dimensionswith studying the growth process in time, as pointed out in
by explicitly assuming spherical symmetry. Expanding Eg.the introduction, the technique may be used to generate
(21) for smallk shows that the form factor is proportional to polymer—solvent structures as starting configurations in MD
the radius of gyration timek?. We have shown the form simulations. An important question is what is the efficiency
factor for different timest(=1,2, ...,17) in Fig. 14 reduc- as compared to existing methods applying the same tech-
ing the scattering vector by the radius of gyration. Apartnique. Based on our investigations we can conclude that a
from the very beginning the form factor is seen to obey thefast growth(say,k~100°/7) yields chains that are on aver-
suggested scaling for all wavelengths. Also shown is thexge too contracted in the dilute regime. However, if one is
structure factor for a Gaussian chiin interested in melts this may not be a problem as the chains
have to contract to screened conformations anyway. A more

P(k)=2(exp(—x) +x-1/x*,  x=k*S" (22 relevant side effect is that using these fast reactions, diffu-
This so-called Debye expression is in reasonable agreemesibn limitation plays an important role; if the reaction is fast,
with the structure at smak, but overestimates the intensity large clusters of monomers are left unreacted, and the system
at highk. Thus, although the scaling of the radius of gyrationgrows very inhomogeneously. It was found that usiag
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