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A derivation of the master equation from path entropy maximization
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The master equation and, more generally, Markov processes are routinely used as models for stochas-
tic processes. They are often justified on the basis of randomization and coarse-graining assump-
tions. Here instead, we derive nth-order Markov processes and the master equation as unique
solutions to an inverse problem. We find that when constraints are not enough to uniquely deter-
mine the stochastic model, an nth-order Markov process emerges as the unique maximum entropy
solution to this otherwise underdetermined problem. This gives a rigorous alternative for justify-
ing such models while providing a systematic recipe for generalizing widely accepted stochastic
models usually assumed to follow from the first principles. © 2012 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4743955]

. INTRODUCTION

Markov chains>? are often the starting point for mod-

eling condensed phase stochastic dynamics in biophysics®®
and beyond.” Markov chains are approximations of contin-
uous system dynamics. They are primarily justified on the
basis of coarse-graining approximations.'® Coarse-graining
reduces classical phase space—with phase points dynam-
ics governed by Liouville’s equations—to a discrete set of
states—with stochastic hopping between states determined by
stationary transition probabilities. Such coarse-graining meth-
ods have recently been used to show how Markov models can
describe the continuous dynamics of biomolecules evolving
in complex potential landscapes.'!~!3

A very different approach to stochastic dynamics is due
to Filyukov and Karpov'* and later Jaynes.!> Using this
approach, stochastic dynamical models can be inferred as
unique solutions to an inverse problem. A model is defined by
the probability for each stochastic path. Normally, the num-
ber of stochastic paths greatly outnumbers the constraints im-
posed from data. To find a unique solution to this underde-
termined problem we ask: which model not only satisfies the
limited experimental constraints but also maximizes the en-
tropy for the path probabilities? This is exactly equivalent to
finding a model for the path probabilities which satisfies the
experimental constraints while satisfying these logical consis-
tency axioms due to Shore and Johnson:'® (1) when A and B
are independent data then the model for P(A and B) must re-
duce to P(A)P(B) and the model for P(A or B) must reduce to
P(A) + P(B); and (2) furthermore, any prediction made from
the model must be independent of the coordinate system used
in the calculation.

This method of finding a stochastic model is mathemat-
ically similar to the maximum entropy principle for deter-
mining equilibrium probability distributions.’° In earlier
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work, Ge ef al.—which extended the work of Stock et al.?!
and Ghosh et al.>>—showed that the first order Markov chain
emerges as a natural consequence of path entropy maximiza-
tion. Here we generalize this work in many important ways.
(1) We do not limit ourselves to first order Markov processes;
(2) we consider the conditions for which the master equation
emerges as a solution to the procedure of path entropy max-
imization; (3) we consider how different types of constraints
affect the emergent model; and (4) we consider very general
(nonlinear) constraints.

To the best of our knowledge, this is the first time the
master equation and, more generally, nth-order Markov pro-
cesses are rigorously shown to follow from maximum en-
tropy principles. This provides an alternative justification for
the master equation—the basic tool of stochastic physics and
biology—which is distinct from standard chemical or mech-
anistic justifications provided by van Kampen,' Zwanzig,?
Gillespie,’* and others. The master equation assumes from the
onset a dynamics described by stationary transition probabil-
ities and time-varying state occupation probabilities. Here we
only assume data of a specific type are available and the ba-
sic logical consistency axioms required to justify maximum
entropy as an inference tool.'® Posing the master equation as
the solution of an inverse problem is significant because pos-
sible generalizations to the master equation are now derivable
within this formalism. These generalizations can then be jus-
tified on the firm axiomatic basis of provided by Shore and
Johnson.

Il. MARKOV MODEL OF nth ORDER:
DEFINITIONS AND NOTATIONS

In this section, we briefly introduce the mathematical no-
tation necessary for the remainder of the paper. Consider a
stochastic process in discrete time. Let the index i; denote the
state of the system at time ¢ along the path C from time O to T’
where C = {iy, iy, i2, ..., ir}. The probability distribution of

© 2012 American Institute of Physics
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path Cis

P(C) = p(, i1, ...,iT). (1)

An n-point joint probability is defined as follows

p(alv .. -aam;t)
= Z p(i()vi]v"'ail—ma
105115 eesltmm s J10 J2ees JT—t
ala~~-»am7j17j2a~~-7jT7t)' (2)

The explicit time index is required, as the result depends
on which indices are summed over. Conditional—also called
transition—probabilities are obtained by invoking Bayes’
theorem:

plio, ..., Q)

ol > i) = ; : .
p(’Ov R ltfl)

p(io, .. 3
We call p(ig, ..., ir—1 — i;) a transition probability. When
the transition probability depends only on the previous n-time

steps

plo,s o iimt = i) = pli—p, li—ng1 -+ -5 =1 = i131)
= .P(iz—n,--'-,l'.;;l‘) ’ (4)
p(ltfnv"'sltflvt_ 1)

the process is called an nth-order Markov process. When
the transition probability is time-independent, it is called a
time-homogeneous Markov process. When no specification
is given, a Markov process is assumed first order, time-
homogeneous.

lll. DERIVATION OF FIRST ORDER MARKOV
PROCESS WITH LINEAR CONSTRAINTS

Here we show how the first order Markov process is de-
rived from path entropy maximization. We begin with the def-
inition of path entropy

H=— > plo.ii....ip)log plig. i1, ... ir). (5)
{io,i1,...oit}

We consider N; and N, linear constraints on one and two-
point probabilities, respectively:

T
Fy =3 "eplin:t) — (T + DEG”

t=0 i

=0 (@=1,...,N),

T-1
FP =330 plin it + 1) = T4

t=0 iriz+l

=0, (y=1,...,Ny) (6)
and a normalization condition

> plio.ir.....ip)=1. @)

{iosit,s.eit)
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These constraints are imposed using Lagrange multipli-
ers. That is, the Lagrange multiplier terms are added to the
path entropy as follows:

- Z p(i07i17"'5iT)lng(i07ila-"7iT)

{ioi1,--it}

Ny
_Zﬂa
a=1

T

DO e plisit) — (T + DES

=0 i

T-1
oD Ik plinit + 1) = T4

1=0 irip

N>
+D v
y=1

+o+D | D ploin...in=1].  ®

{ioi1,.it}

Extremizing Eq. (8) with respect to p(iy, iy, ..., ir), we obtain

T
— log pGio, i1, ..., i7) — Z'BO‘ZSE,O[)
0

@ 1=
T—-1
+) v ) ) =0 ©
V4 =0

The Lagrange multipliers introduced in Eq. (8) are determined
by additional equations which come from taking the variation
of Eq. (8) with respect to these Lagrange multipliers. The so-
lution to Eq. (9) is expressed in terms of the Lagrange multi-
pliers as follows

pQo, i1, ...,0iT)
T T—-1
o ( AT Y Jf,Zil)
o =0 Y =0
= exp(p)v(ip)G(io, i1)G(1, i2) ... G(r—1, ir)v(iT), (10)

where the elements of the vector v, v(i), and the elements of
the transfer matrix G, G(i, j), are defined as follows

v(i) = exp (—Z ﬂaa,f‘”/z) :
G(i. j) = exp (—Z Bat /24y v, a3 ﬂaej-“)/Z) :
o Y o

Y

The m-point joint probability distribution, Eq. (2), is obtained
from Eq. (10) by summing over indices iy, . .
it as follows:

'7i17m9it+1,---,
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S Amyt) = Z
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'7amait+15 "'7iT)

= exp(p)[VIG' ™ (a1)G(a1, a2)G(az, a3) . . . G(@m—1, an)IG" V(@)

_ VG ](a1)G a1, a2)G(az, a3) . . . G(am—1, an)[G"'V](an)

12
viGTvy (12)

where [viG"](a) and [G"v](a) denote the ath components of the row and column vectors viG” and G"v, respectively. (Similarly,
[G"](a, b) denotes the (a, b) component of the matrix G" throughout the paper.) Therefore combining Egs. (4) and (12), we have

CXp(,O)[VTGl_m](al)G(al s (12) e G(amv am-ﬁ-l)[GT_tV](am+l)

plai, ...,y = Gpi13t) =

eXP(P)[VTGFm](al)G(al s a2) oo G(amfla ain)[GT7t+1V](am)

— G(am > Am+1 )[GT_IV] (am-H)

[GT="*1v](an)

This shows that a conditional probability of transition in
fact depends only on the last two states, those right before
and after the transition. Therefore, the process is indeed a first
order Markov one. Howeyver, it should be noted that the tran-
sition probability has explicit time dependence.

The first order Markov property was also derived in
Ref. 25 for the special case of constraining one-point and two-
point statistics which we now define. One-particle statistics
corresponds to F,* with

850{) = (Si,ot

(x=1,...,N), (14)

where the index « of the constraint now goes over each state
of the system, N being their total number of such states. This
constraint simply counts the number of times state « is visited
over the course of the trajectory. Likewise, two-point statistics
corresponds to imposing F, 1(”’) with

IS =6 (o =1,...,N), 15)

where we labelled the constraint by double indices (z, o) in-
stead of the single index y for notational convenience. This
again simply counts the number of transitions from state 7 to
o over the course of the trajectory.

IV. DERIVATION OF THE TIME-HOMOGENEOUS
MASTER EQUATION

Recall that a master equation requires time-dependent
state occupation probabilities and time-independent transition
probabilities. Under what conditions are such approximations
valid? To answer this question we apply the Perron-Frobenius
theorem?®2° to the G transfer matrix of Sec. Ill—a square
matrix which by construction is of size N x N and has positive
elements. According to the theorem, G satisfies the following
properties:

(1) It has a positive real eigenvalue r, called the Perron-
Frobenius eigenvalue, such that any other eigenvalue A
is strictly smaller than r in absolute value, |A| < r.

(2) There is a left eigenvector y! = (y,..., yy) for r with
positive components. That is, y'G = ry' and y; > 0 for

= plam —> amy1:1). (13)

all i. Similarly, there is a right eigenvector z with positive
components, such that Gz = rz and z; > 0 for all i.

(3) Left and right eigenvectors with eigenvalue r are non-
degenerate.

@) limy o & =2y

Now reconsider Eq. (13) where
G(ams am+1)[GT_tV](am+l)
[GT="*1v](an)

Since the vector v has only non-negative elements, both
GTv/rT and vIGT/rT have well-defined non-zero limits for
T — oo,

P @y —> Apy13t) = (16)

lim G'v —z(y'v); lim viGT _ ~vizyyl. (A7)
T»oorT_y’TﬁoorT_ vy

Therefore, taking the limit 7 — r — oo of Eq. (16) and using
Eq. (17), we find

G(a, b)z(b
pla — b) = G, b)z(b) (18)
rz(a)
That is, the transition probability is time-independent in this
limit. However, from Eq. (12), the m-point joint probabilities
are still explicitly time-dependent when T — ¢ is large
p(al, RN} am;t)

VG (a1)G (a1, 42)G (a2, @3) - . . G(am—1, Am)2(@m)

riviz

19)

and, in particular, this is true for the one-point occupation
probability

20
riviz @0

plast) =

Thus maximizing the path entropy under the linear con-
straint Eq. (6) up to two-point probabilities, which are im-
posed for infinite duration into the future (T — t — 00),
we obtain a time-homogeneous Markov process which is de-
scribed by (1) time-independent transition probabilities and
(2) time-dependent one-point occupation probabilities. From
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Egs. (18) and (20), we now obtain the evolution equation for
the time-homogeneous Markov process

plat+1) =Y pb;pb — a), @1)
b

which is the celebrated master equation.

Note the asymmetry in time: the transition probabilities
as well as the joint probabilities are time dependent when the
limit of # — oo is taken but 7 — ¢ is kept finite. This is sim-
ply due to the fact that the transition probability p(b — a) is
defined in a time-asymmetric manner.

The last limit to consider is the stationary case, when both
T — t and t are large. Then the m-point joint probability of
Eq. (12) reduces to

plag, ..., ay)

_y(aGlar, a2)G(az, a3) ... G(am—1, am)z(am)
a rm=lytz

(22

which is independent of time as are the state occupation prob-
ability or any conditional probability derived from Eq. (22).
This is to be expected, since we have time translation in-
variance in the stationary limit. Stationarity also trivially fol-
lows when the constraints themselves are stationary, which
are much stronger conditions than those in Eq. (6).

Equation (22) was also derived in the large T limit with
(m = T) in Ref. 31 though the stationary Markov process
was assumed from the onset therein. In contrast, in the cur-
rent work m is finite and can be as small as 1, even in the

J. Chem. Phys. 137, 074103 (2012)

large T limit, and stationarity is derived rather than being an
a priori assumption. Likewise, the first order Markov process
was derived in Ref. 25 from path entropy maximization for
the special case of pair statistics constraints, but neither condi-
tions for the time-homogeneous process nor stationarity were
discussed.*?

V. TIME-HOMOGENEOUS MARKOV PROCESSES
WITH AN ARBITRARY INITIAL CONDITION

We have discussed how data can come in the form of state
occupation probabilities (e.g., how long during the course of a
single molecule fluorescence experiment did a protein dwell
in a low fluorescent state) or transition probabilities. How-
ever, data may also be available in the form of conditions at
different points in time (e.g., the sample is pumped into a pho-
toexcited state at time ¢ = 0). Are our conclusions on time-
homogeneity from Sec. IV robust to initial, final, or other
such conditions? In this section, we briefly show when the
time-homogeneity of transition probability depends on such
conditions.

Consider an arbitrary condition imposed at time ©
pla;t = 1) = n(a). 23)

We then add the term )_,A(a)(p(a; ) — 7 (a)) with Lagrange
multipliers A(a) (a = 1,..., N) to the constrained entropy, Eq.
(8). As before, setting the variation with respect to p(ip, i, . . . ,
ir) to zero yields

T T-1
plio, i1, ..., ir) = exp (P + i) — B Zé‘i, +v Z Jmm)

=0 =0
= exp(p + Ali)v(io)G(io, i1)G (i1, i2) ... G(ir—1, ir)v(ir)
_ v(io)m (i.)Gio, iG>y, 12) ... GUr—1, iT)v(iT)
2o in VUOIT ()G Gos UG, o) - - - GljT-1, jrv(ir)’

(24)

where in the last line we used the normalization condition Eq. (7) to eliminate p and the initialization constraint Eq. (23) to

eliminate A. We now have

T<t—m-+1:

Y IVIGTI(@)m (@)[G' T (a, a1)G(a1, @) . . . G(am—1, am)[GT ~'VI(am)

plai, ..., ap;t) =

t—m+1l<t<t:

plag, ..., am;t)

2 VIGTID) (DG VI(D) ’

_ [VTGt_er]](al)G(als 612) oo G(arfﬂrm—la arfter)n(atfter)

2 VIGTIB) (B)IGT T vI(b)

XG(Ar—t4ms Qr—tymt1) - - - G(Apm—-1, am)[GTitV](am)a

r<rT:

Y VG (a)Glar, @) ... Gaw_1, am)

plai,...,an;t) =

> [VIGTI(B)m (B)IGT T VI(b)

x[G" (@, a)m(@)[G” " V](a). (25)
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Using the definition of the transition probability from
Eq. (4) we find

T<t:

pla Uy —> Apirst) = G(@m, ans)IG" " VI(an11)
15+-+-5>Um m+1> [GT_['HV](LIW,)

T>1:

plai, ..., ay = apy1st)

— G(ama am+1) Za [GT?Z](am-H ) a)n(a)[GTirv](a)
> B [GT (@, by ()G T VI(b)

(26)

We notice that the indices ay,..., a, - have dropped out
from the right-hand side of Eq. (26). We can therefore write

plai, ..., ay = ami1;t) = play — amsr13t),  (27)

showing that, once more, we have a first order Markov pro-
cess. Furthermore, the transition probability for # > t has ex-
actly the same form as Eq. (13), independent of the initial
condition . It is therefore time-homogeneous under the limit
of large T — t. The same is not true of ¢ < t, where the tran-
sition probability always depends on the specified condition
and time-homogeneity requires both large 7 — 7 and T — ¢. As
noted earlier, this time-asymmetry is a natural consequence of
the fact that the definition of the transition probability itself is
time-asymmetric.

VI. GENERAL DERIVATION OF nth-ORDER MARKOV
PROCESS FROM PATH ENTROPY MAXIMIZATION

In this section, we generalize the arguments of Sec. III in
two important ways: (1) we consider constraints on the data
up to n + 1-point probabilities

FOUpG;nh {pli — jsnh ...,

{pGo, ..., in—1 = in;0)) =0, (28)
and (2) we do not assume that the constraints F® are linear
functions of their arguments (as was the case for Eq. (6)).

Provided constraints are linear—as was the case in
Eq. (6)—the arguments in Sec. III are generalizable to nth-
order Markov processes. Indeed, the path probability would
be described by the multiplication of rank-(n + 1) tensors
rather than matrices, such as Eq. (12). The nth-order Markov
process would follow immediately, though the derivation of
the time-homogeneity of various transition probabilities, as in
Secs. IV and V, would require the difficult task of applying an
analogue of the Perron-Frobenius theorem for general tensors.

Since we want to derive the nth-order Markov process
for fully general constraints, as given by Eq. (28), we take
a different route. We first express the path probability p(i,
iz, ..., ir) in terms of the conditional probabilities:

plio, i1, ..., ir) = plio;0)p(io — i1; Dplio, i1 — i2;2)...

xplig, iy ..., ir—1 = ir;T). (29)
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Substituting this expression into Eq. (5), we get

H=— Y ploiy-...ir)

{iosi1,--it}

T—1
X (log pip; 0) + Zlog plio, . .

'ail - il+1;t + 1))
t=0

==Y p(i;0)log p(i; 0)

T-1
—Z Z plio, i1, ..., ip13t+ 1)
t=0 {io,i1,..., i,+1}
x log p(ig, .., = ii415t + 1), 30)

where, in getting from first to second line, we in-

voked the relation between joint and marginal probabilities;

p(io,...,im;m) = Zi,,,ﬂ _____ ir p(il,iz,...,iT).

Now reconsider the constraints given by Eq. (28) im-
posed from p(i; £) to p(io, . . ., i — 1 = iy; ). We will maximize
the entropy, Eq. (30), in two steps:

(1) We maximize the entropy with respect to {p(io, ..., i;
1} (k > n), for given values of {p(ip,..., ix; )} with
k<n.

(2) We then vary the entropy over the remaining variables,
{pGio, ..., i, D} (k < n).

By assumption, constraints on the data only matter in step
2. Furthermore, as we now show, step 1 (the unconstrained
maximization) is sufficient to show that the general path prob-
ability reduces to that of an nth-order Markov process.

In order to perform step 1, we first invoke the equality

—Y qilogg; <= gilogp; 31)

for arbitrary probability distributions p; and ¢;.>* It follows
from Eq. (31) that

—Zp(io,---,im—1—>j;t)10gp(i0,---,im—l — jit)
J

S_Zp(iOa ~--7im71_>j;t)10gp(im7na -~-vim71_>j;t)-
J

(32)
Multiplying both sides of Eq. (32) by p(i, .. -

summing over i, ..., i — 1, we find

== Y plio,....im-1.j:t)log plio, ...

i0yeesim—1,]

S_ Z p(i()’--~aim—]aj;t)10gp(im—na--~

i0yeesim—1,]

> im—l; t) and

aim—l_)j;t)

E) im—l_>j;t)7

(33)

where Eq. (4) was used. The above sets a bound on the last
term of the path entropy, Eq. (30). Therefore, for given values

of {p(ip, ..., ix; )} with k < n, we see that H is maximized for
plo, ooy im—t = J3t)
=P(l'm,n,...,l'm,1 _>j;t) (m >n)7 (34)
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the system now being described by a nth-order Markov model
where the probability p(i; ) is determined only by previous n
steps of history.

Now the transition probability Eq. (34) for nth-order
Markov process can be substituted into the path entropy for-
mula, Eq. (30). Step 2 can then be carried forward: the re-
sulting path entropy can be maximized with respect to the re-
maining variables p(io; t), p(io = i1; 1), ..., p(io, i1,..
— i,; ) under the constraints, Eq. (28).

In summary, we have just shown that nth-order Markov
processes follow under very general constraints provided by
Eq. (28). Markov models emerge from the entropy maximiza-
tion method—and these provide immediate and principled
generalizations of the ubiquitous master equation.

-,in—l

VII. DISCUSSION

Markov processes and master equations—the evolution
equation describing a first order time-homogeneous Markov
process—are standard stochastic modeling tools invoked
across disciplines. Such models are usually justified mecha-
nistically by coarse-graining arguments or by assuming quick
randomization in space of reactants and products (the “well-
stirred” approximation). Yet it is challenging to ascertain
a priori whether any of these conditions actually hold. Just
like maximum entropy has provided an alternative to er-
godic theory for the justification of the equilibrium probabil-
ity distribution,'” we believe that the path entropy techniques
of Filyukov and Karpov,'# and later Jaynes,'> provide a com-
pelling axiomatic basis for the Markov process and the mas-
ter equation. Here the Markov process emerges as a solution
to the following inverse problem: given measurable n-point
constraints on a trajectory, what is the least biased model for
a probability distribution of paths? By least biased, we mean
one that, for instance, does not impose correlations in a model
when such correlations are not otherwise warranted by the
data (technically these are the logical consistency axioms of
Shore and Johnson). The unique solution to this problem is
that which maximizes the entropy subject to constraints from
the data.

With this formalism, we justify generalizations of the
master equation on rigorous mathematical grounds. It is
tempting to conjecture whether the nth-order Markov process
can lead to a time-homogeneous process so long as the con-
straints are imposed for a time much longer than that of one
time step. The proof would require an analogue of the Perron-
Frobenius theorem for general tensors, an interesting subject
for further investigation.
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