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We study the dynamics of quantum excitations inside macromolecules which can undergo conformational
transitions. In the first part of the paper, we use the path integral formalism to rigorously derive a set of coupled
equations of motion which simultaneously describe the molecular and quantum transport dynamics, and obey the
fluctuation/dissipation relationship. We also introduce an algorithm which yields the most probable molecular
and quantum transport pathways in rare, thermally-activated reactions. In the second part of the paper, we apply
this formalism to simulate the propagation of a quantum charge during the collapse of a polymer from an initial
stretched conformation to a final globular state. We find that the charge dynamics is quenched when the chain
reaches a molten globule state. Using random matrix theory we show that this transition is due to an increase of
quantum localization driven by dynamical disorder.

I. INTRODUCTION

Understanding the mechanisms involved in the transport
of charged and neutral quantum excitations inside macro-
molecules is a key step towards realizing nano-scale organic
devices with functional (opto-)electronical properties, notably
molecular wires and antennas. This perspective has motivated
a huge activity devoted to investigating the conductance of
inorganic1–6, organic7 and biological8–11 polymers.

Unlike quantum wires made of solid-state nano rib-
bons12–15, flexible molecular wires in solution can undergo
conformational transitions. This feature raises the problem
of understanding the implications of the conformational dy-
namics on the quantum transport properties of the molecule.
Recent experimental and theoretical studies have shown that
even small thermal fluctuations of the DNA backbone can sig-
nificantly alter its conductivity9,11. These effects should be
greatly amplified in more flexible polymers, which can un-
dergo cooperative transitions and major re-arrangements of
the three-dimensional structure.

Investigating the quantum charge transport dynamics dur-
ing a coil-globule transition of a flexible chain provides an
ideal framework to probe the conformation/conductance rela-
tionship and assess the role of quenched and dynamical disor-
der. In particular, studying such a process involves the explo-
ration of the crossover from a regime in which the quantum
transport dynamics is effectively one-dimensional to one in
which quantum excitations can diffuse in three dimensions. In
addition, understanding under which conditions a molecular
wire can display different conducting behavior in the swollen
and collapsed phases may lead to designing nano-scale molec-
ular switches, which can be activated by means of chemically-
or thermally- induced unfolding.

From a theoretical and microscopic standpoint, the study of
quantum transport in molecular systems requires a formalism
in which the electronic excitations are explicitly taken into
account and the atomic nuclei are coupled to a solvent. In
the existing approaches9,16–18, the equations of motion which
describe the time-evolution of the charge density and atomic
coordinates are postulated phenomenologically. For example,
in Ref.11 the DNA conductivity was computed by assuming
that the atomic nuclei obey Newton’s equation with a clas-

sical inter-atomic force field. In addition, charged groups
in the DNA backbone and counter ions in the solvent were
coupled electrostatically with the quantum charge. Such an
approach neglects all non-Coulombic interactions between
quantum and classical degrees of freedom. For example, the
molecule may lower the total energy by assuming configura-
tions in which the ionization energy of the quantum charges
is increased. This interaction has in principle implications on
the molecular dynamics.

In view of these considerations, it would be valuable if
the equations describing the dynamics of electronic excita-
tions and nuclear coordinates were rigorously derived starting
from the general theoretical framework of open quantum sys-
tems19. On the one hand, this would guarantee that all the cor-
relations between the quantum and classical degrees of free-
dom are consistently taken into account. On the other hand,
it would ensure the fluctuation-dissipation relationship is re-
spected, hence that the correct thermodynamics is recovered
in the long-time limit.

In the first part of this paper, we use the Feynman-Vernon
path integral formalism to provide such a derivation and de-
velop a rigorous microscopic theory for the dynamics of
quantum excitations in molecular systems in solution. The
same path integral formalism is also used to derive an algo-
rithm which efficiently yields the most probable molecular
and quantum transport pathways in rare thermally-activated
reactions.

In the second part of this paper, we use our quantum and
stochastic equations of motion to investigate the propagation
of a quantum charge inside a homo-polymer undergoing a
coil-globule transition. We find that the charge dynamics is
strongly suppressed due to a quantum localization driven by
the dynamical disorder. Interestingly, this effect sets in only
when the polymer reaches a compact conformation.

The paper is organized as follows. In section II we de-
fine define the quantum Hamiltonian for system. In section,
III we construct the path integral representation of the time-
dependent probability to simultaneously observe the molecule
at a given conformation and the charge at a given molecu-
lar site. This path integral is then analyzed in section IV, in
saddle-point approximation, and in section V we derive the
set of equations of motion for the system and an algorithm
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to predict the most probable pathways in thermally activated
transitions. Section VI is devoted to the study of the collapse
of the chain. Results, conclusions and outlooks are summa-
rized in section VII.

II. A MICROSCOPIC MODEL FOR QUANTUM
TRANSPORT IN MACROMOLECULES

Quantum transport processes in dynamical molecular sys-
tems depend on the time-dependent structure of the electronic
ground-state and excited states. Clearly, an approach in which
these wave-functions and the nuclear coordinates are self-
consistently calculated ab-initio would be extremely compu-
tationally expensive.

A commonly efficient strategy to reduce this computational
complexity consists in coarse-graining of the electronic prob-
lem into an effective configuration-dependent tight-binding
Hamiltonian. In particular, in the so-called Fragment Or-
bital approach16, one first identifies a set of molecular sites
(so-called fragments) where the charge (i.e. a hole) can be
found. For example, in DNA these sites can be identified with
with individual Watson-Crick bases or with base-pairs. Then,
the highest occupied molecular orbitals for each fragment —
herby denoted with φi (i = 1, . . .Ns)— are computed in den-
sity functional theory and Born-Oppenheimer approximation,
neglecting the effect of the rest of the molecule.

The hopping of the charge between different molecular
fragments is controlled by the standard tight-binding Hamil-
tonian:

ĤMC =
Ns

∑
l,m=1

flm â†
l âm, (1)

where flm ≡ Tlm− elδlm. The parameters Tlm and el are ob-
tained from the fragment orbitals |φl〉 and |φm〉:

Tlm ≡ 〈φl |ĤKS|φm〉, (2)
el ≡ 〈φl |ĤKS|φl〉, (3)

where ĤKS is the Kohn-Shawn Hamiltonian. The hopping pa-
rameters Tlm and the on-site energies el can be taken to be
real-valued.

In addition, if the molecule is connected to electrodes, the
Hamiltonian ĤMC must include also the coupling with the
donor and the acceptor:

ĤMC → ĤMC +(TD1â†
1âD +h.c.)+(TNsAâ†

AaNs +h.c)

−eDâ†
DâD− eAâ†

AâA (4)

In the Born-Oppenheimer approximation, the fragment or-
bitals in Eq.s (2) and (3) depend parametrically on the coor-
dinates of the atomic nuclei, which evolve in time under the
effect of the inter-atomic forces, and of the interactions with
quantum charge and with the solvent.

A consistent way to describe this dynamics is to consider
the fully quantum Hamiltonian:

Ĥ = ĤMC + ĤM + ĤB + ĤMB. (5)

In this equation, ĤMC is the tight-binding Hamiltonian defined
in Eq. (1), while the Hamiltonian ĤM controls the conforma-
tional dynamics of the molecule in the absence of quantum
excitations,

ĤM ≡
Np

∑
α=1

p̂2
α

2M
+V̂ (Q), (6)

where Q = (q1, . . . ,qNp) is the set of all Np atomic coordinates
and V (Q) is the molecular potential energy which includes the
interaction between the different atoms and possibly a term to
account for the electrostatic and hydro-phobic/philic interac-
tion with the solvent.

The part of the Hamiltonian ĤB + ĤMB describes the cou-
pling of the molecule with a thermal heat-bath, modeled with
an infinite set of harmonic-oscillators:

ĤB =
Np

∑
α=1

∞

∑
j=1

(
π̂2

j

2µ j
+

1
2

µ jω
2
j x̂

2
j

)
(7)

ĤMB =
Np

∑
α=1

∞

∑
j=1

(
−c j x̂ jq̂α +

c2
j

2µ jω
2
j
q̂2

α

)
. (8)

X = (x1,x2, . . .) and Π = (π1,π2, . . .) are the harmonic oscil-
lator coordinates and momenta, µ j and ω j denote their masses
and frequencies and c j are the couplings between atomic and
heat-bath variables. The last term in Eq. (8) is a standard
counter-term introduced to compensate the renormalization of
the molecular potential energy which occurs when the heat-
bath variables are traced out (see e.g. discussion in Ref.25).

The Hamiltonian (5) describes a close system at the fully
quantum level. In the next sections, we shall use the path
integral formalism to trace out the heat-bath variables and take
the classical limit for the nuclear degrees of freedom.

III. PATH INTEGRAL REPRESENTATION OF THE
QUANTUM-DIFFUSIVE DYNAMICS OF THE SYSTEM

In this section we derive a the path integral representation
of the time-evolution of the system described by the Hamilto-
nian (5).

Let us assume that the molecule is prepared in some config-
uration Q0 and that a hole is initially created at some monomer
site k0. We are interested in computing the conditional proba-
bility Pt(k f ,Q f |k0,Q0) that after a time interval t the molecule
is found in conformation Q f and the charge at the site k f . Such
a probability is described by the following time-dependent re-
duced quantum density matrix:

Pt(k f ,Q f , |k0,Q0) =
Tr[|k f ,Q f 〉〈k f Q f |ρ̂(t)]

Tr ρ̂(t)

=
Tr[|k f ,Q f 〉〈Q f ,k f |e−

i
~ Ĥt

ρ̂(0) e
i
~ Ĥt ]

Tr ρ̂(0)
, (9)

where ρ̂(0) = |Q0k0〉〈Q0k0| e
− 1

KBT ĤB is the initial density ma-
trix, which assumes factorization with a thermal distribution
for the heat-bath variables.
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The goal of this section is to represent the conditional prob-
ability (9) as a path integral. This can be done relying on the
so-called Feynman-Vernon formalism for open quantum sys-
tems, which has been extensively applied to study quantum
brownian motion25.

The path integral representation of the density matrix can be
constructed in a way which is conceptually similar to that used
to represent the standard Feynman propagator. The main dif-
ference is that it requires to perform the Trotter decomposition
of two real-time evolution operators (forward and backwards
in time) and an one imaginary time evolution (initial thermal
distribution of the heat-bath variables).

It is convenient to adopt a field-theoretic language to repre-
sent the dynamics of the quantum charge, while using the po-
sition representation to describe the evolution of the atoms in
the molecule and of the harmonic oscillators in the heat-bath.
In practice, this corresponds to introducing the following reso-
lution of the identity at each slide in the Trotter decomposition
of the real- and imaginary- time evolution operators entering
Eq. (9):

1 =
∫

dQ
∫

dX
∫ ( Ns

∏
k=1

dφkdφ∗k
2πi

)
e−∑

Ns
l=1 φlφ

∗
l |Q,X ,Φ〉,

(10)

where Φ = (φ1, . . .φNs) are the eigenvalues of the bosonic co-
herent states constructed from creation and annihilation oper-
ators in Eq. (1).

An advantage of adopting a field-theoretic representation
for the quantum charge dynamics is that the statistical weight
of the coherent field configurations in the path integral can be
written as the exponent of an action, i.e.

∫
DφDφ∗e

i
~ S[φ∗,φ].

This property is very useful to develop the saddle-point ap-
proximation, and is not satisfied if the dynamics of a tight-
binding Hamiltonian is represented using the discrete position
eigenstates.

The conditional probability (9) in path integral form reads:

Pt(k f ,Q f |k0,Q0) =
∫

dX̄
∫

dX1

∫
dX2

∫ X2

X1

DX̃e−SE [X̃ ]

∫ X̄

X1

DX ′
∫ X̄

X2

DX ′′
∫ Q f

Q0

DQ′
∫

Dφ
′
Dφ

′∗
φ
′
k f
(t)φ

′∗
k0
(0)

e−∑m φ
′∗
m (0)φ

′
m(0) e

i
~

(
SMC [Q

′
,φ
′
,φ
′∗]+SMB[Q′,X ′]

)
∫ Q f

Q0

DQ′′
∫

Dφ
′′Dφ

′′∗
φ
′′∗
k f
(t)φ

′′
k0
(0)

e−∑m φ
′′∗
m (t)φ

′′
m(t) e−

i
~

(
SMC [Q

′′
,φ
′′
,φ
′′∗]+SMB[Q

′′
,X
′′
]
)
, (11)

In this equation φ
′
l(t),φ

′′
l (t) are the complex bosonic fields as-

sociated to the charge coherent states propagating forward and
backwards in time respectively and the action functionals ap-

pearing at the exponents read

SMC [Q,φ,φ∗] =
∫ t

0
dt ′
[

MQ̇(t ′)2

2
−V [Q(t ′)]

+ ∑
l,m

φ
∗
l (t
′)

(
i~

∂

∂t ′
δlm− flm[Q(t ′)]

)
φm(t ′).

(12)

SMB[X ,Q] =
∫ t

0
dt ′∑

j

(
µ j ẋ j(t ′)2

2
− 1

2
µ jω

2
jx j(t ′)2

)

+ ∑
α

∑
j

(
c jx j(t ′)qα(t ′)−

c2
j

2µ jω
2
j
qα(t ′)2]

)
,

(13)

SE [X ] =
∫

β

0
dτ

[
∑

j

(
µ j ẋ j(τ)

2

2
+

1
2

µ jω
2
jx

2
j(τ)

)]
.

(14)

The path integrals over the harmonic oscillator variables are
Gaussian and can be carried out analytically. One obtains

Pt(k f ,Q f |k0,Q0) =
∫ Q f

Q0

DQ
′
∫

Dφ
′
Dφ

′∗
φ
′
k f
(t)φ

′∗
k0
(0)

e−∑m φ
′∗
m (0)φ

′
m(0)+

i
~ S[Q

′
,φ
′
,φ
′∗]

∫ Q f

Q0

DQ′′
∫

Dφ
′′Dφ

′′∗

·φ′′∗k f
(0)φ

′′
k0
(t) · e−∑m φ

′′∗
m (t)φ

′′
m(t)− i

~ SMC [Q
′′
,φ
′′
,φ
′′∗] e−ΦFV [Q′,Q′′].

(15)

ΦFV [Q′,Q] is the so-called Feynman-Vernon influence
functional25, which describes the fluctuation and dissipation
induced by the coupling with the heat-bath and reads:

ΦFV [Q′,Q′′] =
1
~

∫ t

0
dt ′

∫ t ′

0
dt ′′
[
Q′(t ′)−Q′′(t ′)

]
[
L(t ′− t ′′)Q′(t ′′)−L∗(t ′− t ′′)Q′′(t ′′)

]
+i

µ̄
2~

∫ t

0
dt ′
[
Q′2(t ′)−Q′′2(t ′)

]
,

(
µ̄ = ∑

j

c2
j

m jω
2
j

)
.

(16)

L(t) is a two-point correlation function which encodes the
physics of the coupling of the molecular coordinates with the
heat-bath and reads:

L(t) = ∑
j

c2
j

µ jω j

[
coth

(
ωk~

2kBT

)
cos(ω jt)− i sin(ω jt)

]
. (17)

Note that the strength of the fluctuation and dissipation in-
duced by the solvent and the time scales at which memory
effects die out can be tuned by changing the parameters in the
harmonic bath Hamiltonian (8). In particular, here we con-
sider the so-called ohmic bath limit ( see e.g. Ref.25), in which
the L(t) reduces to

L(t)→ Lohm(t) =
2kBT Mγ

~
δ(t)+

i Mγ

2
d
dt

δ(t), (18)
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and γ is interpreted as the friction coefficient. In section V we
shall show that this choice leads to the natural generalization
of the classical over-damped Langevin dynamics.

IV. SADDLE-POINT APPROXIMATION OF THE PATH
INTEGRAL

The path integral (15) provides an exact representation of
the conditional probability given in Eq. (9) and cannot be
solved without relying on some approximation. To this end,
we observe that for any time t there exists an obvious sum
rule:

∑
k f

∫
dQ f Pt(k f ,Q f |k0,Q0) = 1. (19)

The idea is then to use the path integral representation (15) to
implement this condition, and analyze it in saddle-point ap-
proximation.

We begin by changing variables for the molecular coordi-
nates:

y(t)≡ Q
′
(t)−Q

′′
(t) r(t) =

1
2
(Q
′
(t)+Q

′′
(t)) (20)

Next, we use the path integral (15) to re-write the sum-rule
(19) as

1 = ∑
k f

∫
Q0

Dr
∫ 0

0
dy

∫
Dφ

′
Dφ

′∗
φ
′
k(t)φ

′∗
k0
(0)

e−∑m φ
′∗
m (0)φ

′
m(0)+

i
~ SMC [r+y/2,φ

′
,φ
′∗]

∫
Dφ
′′Dφ

′′∗

·φ′′∗k f
(0)φ

′′
k0
(t) · e−∑m φ

′′∗
m (t)φ

′′
m(t)− i

~ SMC [r−y/2,φ
′′
,φ
′′∗] e−Φ

′
FV [r,y]

(21)

where the new expression for the Feynman-Vernon functional
reads

Φ
′
FV [r,y] =

∫ t

0
dt ′
(

MγKBT
~2 y2(t ′)+

iMγ

~
ṙ · y
)
. (22)

We now introduce a set of tensor fields ρ
′
lm(t),ρ

′′
lm(t), σ

′
lm(t)

and σ
′′
lm(t) into the path integral by means the functional iden-

tities

1 =
∫

Dσ
′
Dρ

′
e

i
~ ∑l,m

∫ t
0 dt ′σ

′
lm

(
ρ′lm−φ∗

′
l φ
′
m

)
,

1 =
∫

Dσ
′′
Dρ

′′
e−

i
~ ∑l,m

∫ t
0 dt ′σ

′′
lm

(
ρ
′′
lm−φ∗

′′
l φ
′′
m

)
.

(23)

The new expression for the sum-rule (19) is then

1 =
∫

Dρ
′
Dρ

′′
Dσ

′
Dσ

′
e

i
~
∫ t

0 dt ′∑l,m(σ
′
lmρ
′
lm−σ

′
lmρ
′′
lm)

∫
Q0

Dr
∫

Dy e
i
~W [r,y,ρ

′
,ρ
′′
]e−Φ

′
FV [r,y]

(
∑
k f

Qk f [σ
′
] Mk f [σ

′′
]

)
,(24)

where the functionals Qk f and Mk f read

Qk f [σ
′
] =

∫
Dφ

′
Dφ

′∗
φ
′
k f
(t)φ

′∗
k0
(0)e−∑m φ

′∗
m (0)φ

′
m(0)

e
i
~ SMF [φ

′
,φ
′∗,σ

′
], (25)

Mk f [σ
′′
] =

∫
Dφ

′′
Dφ

′′∗
φ
′′∗
k f
(0)φ

′′
k0
(t)e−∑m φ

′′∗
m (t)φ

′′
m(t)

e−
i
~ SMF [φ

′′
,φ
′′∗,σ

′′
], (26)

while the functional W and SCM are defined as

W [x,y,ρ
′
,ρ
′′
] =

∫ t

0
dt ′
{

M ṙẏ−V
(

r+
y
2

)
+V

(
r− y

2

)
− ∑

l,m

[
flm

(
r+

y
2

)
ρ
′
lm− flm

(
r− y

2

)
ρ
′′
lm

]}
,

(27)

SMF [φ,φ
∗,σ] = ∑

l,m

∫ t

0
dt ′φ∗l (t

′)

[
i~

∂

∂t ′
δlm−σlm(t ′)

]
φm(t ′).

(28)

The path integral (24) is still and exact representation of the
sum-rule. The saddle-point approximation is implemented by
imposing the stationarity of the exponents with respect to the
tensor fields σ

′
lm, σ

′′
lm, ρ

′
lm and ρ

′′
lm and with respect to the

molecular paths y and r. In particular:

• Imposing the stationarity with respect to the r path leads
to the equation

Mÿ = 2Mγẏ−2
∂

∂r

[
V
(

r+
y
2

)
−V

(
r− y

2

)]
−∑

l,m

∂

∂r

[
flm

(
r+

y
2

)
ρ
′
lm− flm

(
r− y

2

)
ρ
′′
lm

]
.

(29)

• Imposing the stationarity with respect to the density ten-
sor fields ρ

′
lm and ρ

′′
lm leads to the equations

σ
′
lm = flm

[
r+

y
2

]
, (30)

σ
′′
lm = flm

[
r− y

2

]
. (31)

• Imposing the stationarity with respect to the conjugate
fields σ

′
lm(t

′) and σ
′′
lm(t

′) leads to the equations

ρ
′
lm(t

′) =
1

∑k′Mk′ [σ
′′
] Qk′ [σ

′
]

∑
k f

Mk f [σ
′′
]
∫

Dφ
′
Dφ

′∗

φ
′
k f
(t) φ

∗′
l (t
′)φ
′
m(t
′) φ

′∗
k0
(0) e

i
~ SCM [φ

′
,φ
′∗,σ′],

(32)

ρ
′′
lm(t

′) =
1

∑k′Mk′ [σ
′′
]Qk′ [σ

′
]
∑
k f

Qk f [σ
′
]
∫

Dφ
′′
Dφ

′′∗

φ
′′∗
k f
(t) φ

∗′′
l (t ′)φ

′′
m(t
′) φ

′′
k0
(0) e−

i
~ SCM [φ

′′
,φ
′′∗,σ′′].

(33)
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The set of saddle-point equations of motion (29)-(32) are
simultaneously satisfied if, for any t ′ ∈ [0, t] one imposes

y(t ′) = 0, (34)

σ
′
lm(t

′) = σ
′′
lm(t

′) = flm[r(t ′)], (35)

ρ
′
lm(t

′) = ρ
′′
lm(t

′)≡ ρlm(t ′). (36)

Hence, backwards and forward evolution coincide, at the
saddle-point level.

Using Eq. (32) we note that ρlm can be re-written as:

ρlm(t ′) = 〈Ψ[σ]| â†
l âm |Ψ[σ]〉 (37)

(38)

where the quantum state |Ψ[σ]〉 is defined as:

|Ψ[σ]〉 ≡ Te−
i
~
∫ t′

0 dτ Ĥe f f [σ]|k0〉, (39)

and the time-dependent Hamiltonian Ĥe f f [σ] is defined as

Ĥe f f [σ] = ∑
l,m

σlm(t) â†
l âm. (40)

Hence, the field ρlm is identified with the (reduced) density
matrix, evaluated on the state obtained by evolving for a
time t ′ the initial quantum state |k0〉, according to the time-
dependent Hamiltonian Ĥe f f [σ].

V. QUANTUM AND STOCHASTIC EQUATIONS OF
MOTION

In this section, we use the path integral representation of the
conditional probability (9) and the saddle-point relationships
(34)-(36) to derive a set of equations which describe the evo-
lution of the quantum charge and the classical atomic nuclei,
for a molecule in solution.

Our strategy consists in estimating the path integral over the
charge density field ρ and its conjugate σ field in the lowest-
order saddle-point approximation developed in the previous
section. On the other hand, the integral over the molecular
coordinates y is evaluated at the one-loop level, i.e. includ-
ing the effects of leading-order fluctuations around the saddle-
point solution y(t) = 0. This guarantees that the dynamics of
the molecular coordinates r is stochastic, even at the classical
level.

To implement this program, we impose that the density ma-
trix field ρ

′
lm = ρ

′′
lm ≡ ρlm and its conjugate field σ

′
lm = σ

′′
lm ≡

σlm obey the saddle-point relationship (35), (36) and we focus
on the remaining part of the path integral, which concerns the
molecular degrees of freedom, Dr and Dy,

Pt(Q f |Q0; [ρ])≡
∫ Q f

Q0

Dr
∫

Dy e
i
~

(
W [r,y,ρ]+i~Φ

′
FV [r,y]

)
, (41)

where we have used Eq. (35) to eliminate σlm.

Retaining only the lowest orders in the expansion of the
y(t ′) path around the saddle-point solution y(t) = 0 the func-
tional at the exponent reads

W [r,y,ρ]+ i~ Φ
′
FV [r,y] =

= −
∫ t

0
dt ′
[

y(t ′) ·
(
Mr̈(t ′)+Mγṙ(t ′)

+
∂

∂r
V [r(t ′),ρ(t ′)]

)
+

i kBT Mγ

~
y2(t

′
)

]
, (42)

where

V [r,ρ] =V (r)+∑
lm

ρlm flm(r) =V (r)+Tr[ f̂ (r)ρ̂] (43)

Since we have kept only terms which are at most quadratic
in y(t ′), the path integral over this variable can be evaluated
analytically by completing the square. The resulting (unnor-
malized) expression for the path integral (41) is

Pt(Q f |Q0; [ρ]) =
∫ Q f

Q0

Dr e−
∫ t
0 dt
′{Mr̈(t′)+Mγṙ(t′)+ ∂

∂r V [r,ρ̄]}2

4kBT Mγ .

(44)

We emphasize that the action in the exponent generalizes the
well-known Onsager-Machlup functional31 which appears in
the path integral representation of the classical Langevin dy-
namics (a brief review is given in the appendix).

In macro-molecular systems in solution inertial effects are
damped at a time scale 10−13 s, which much smaller than the
time scale associated to local conformational changes. If the
acceleration term Mr̈ at the exponent is neglected the path in-
tegral (44) becomes

Pt(Q f |Q0; [ρ]) =
∫ Q f

Q0

Dr e−
Mγ

4kBT
∫ t

0 dt
′{

ṙ(t ′)+ 1
Mγ

∂

∂r V [r,ρ̄]
}2

(45)

which is completely equivalent to the stochastic path integral
defined in Eq. (A11) for classical over-damped Langevin dy-
namics .

Hence, we conclude that the evolution of the system can
be described by the following set of quantum and stochastic
differential equations:

d
dt rα =− 1

Mγ

∂

∂rα

(
V (r)+Tr[ρ̂ f̂ (r)]

)
+ηα(t)

d
dt ρ̂ =− i

~ [ f̂ (r), ρ̂],

(46)

and we have condensed the Eq.s (37), (40), (35) and (36) into
a single Van-Neumann Equation, where [ρ̂(t)]lm = ρlm(t) and
[ f̂ ]lm(r) = flm(r). ηα(t) is the usual white delta-correlated
Gaussian noise of the Langevin dynamics,

〈ηα(t) ·ηβ(0)〉= 6
kBT
Mγ

δ
αβ

δ(t). (47)

The set of equations (46) represents main result of this pa-
per, as far as the formalism is concerned. Some comment on
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these equations are in order. First of all, we emphasize that
the Langevin equation for the molecular coordinates contains
the force term

Fα(Q)≡ Tr
[

ρ̂,− ∂

∂rα
f̂ (r)

]
. (48)

This term is of fully quantum origin, as it follows directly
from the the Hamiltonian (5). It expresses the influence of
the charge distribution on the molecular motion: the atoms
are driven towards configurations for which the energy of the
charge is lower. This type of non-Coulombic charge-nuclei
interaction is not included in the standard phenomenological
approaches which have been used to simulate the dynamics of
molecular wires11,17,26.

If the molecule contains charged atomic groups (e.g. like in
DNA), one needs also to include their Coulombic interaction
with the propagating quantum charge. This can be rigorously
done by extending the potential energy function V̂ (Q) in the
original Hamiltonain (6) to:

V̂ (Q)→ V̂ (Q;{âl , â
†
l }l=1,...,Ns)

≡V (Q)+
1
2

Np

∑
α=1

Ns

∑
l=1

qα e
|rl− rα|

â†
l âl , (49)

where e is the charge of the hole and qα is the (partial) charge
of the α-th atom. At the level of the Langevin equation (46),
this coupling produces an additional Coulomb force term in
the form:

Fα
c (r,ρlm) =−∑

l

∫
drα

eαe ρll

(rl− rα)2 ûlα, (50)

where ûlα = (rα− rl)/|rα− rl |.
The equations of motion (46) can be integrated by simulta-

neously evolving the molecular positions and the initial quan-
tum state, and then computing the corresponding density ma-
trix field:

rα(t +∆t) = rα(t)− ∆t
Mγ

∂

∂rα

(
V [r(t)]+Tr[ρ̂ f̂ (r)]

)
+
√

2 kBT ∆t
Mγ

ξα(t)

|Ψ(t +∆t)〉= e−
i∆t
~ Ĥe f f [r(t)]|Ψ(t)〉,

ρlm(t +∆t) = 〈Ψ(t +∆t)|l〉〈m|Ψ(t +∆t)〉,

(51)

where ξa(t) is a stochastic variable sampled from a Gaussian
distribution with zero average and unitary variance.

The solution of the set of equations (46) through the al-
gorithm (51) yields the real-time evolution of the atomic nu-
clei and of the charge density, starting from an initial con-
dition. Like any approach based on the time integration of
the equations of motion, this method is expected to be com-
putationally inefficient to investigate rare thermally-activated
reactions. The main difficulty arises from the fact that, on
average, the first reactive event occurs on a time scale which
scales exponentially with the height of barrier. Hence, very
long trajectories have to be generated in order to investigate
the dynamics of the reaction.

In order to overcome these difficulties, the Dominant Re-
action Pathways (DRP) method was recently developed20–24.
This approach uses the path integral representation of the
classical Langevin dynamics to derive a variational princi-
ple which yields the most probable reaction pathways con-
necting given initial and final configurations. To date, the
DRP algorithm has been successfully applied to investigate a
number of reactions which are extremely hard to simulate us-
ing standard MD algorithms, including conformational transi-
tions of peptides from ab-initio simulations28, protein folding
within realistic atomistic classical models27, as well as chemi-
cal reactions29 or particle-surface interactions30. Recently, the
formalism has been extended to include quantum corrections
to the motion of light nuclei30.

The Feynman-Vernon functional integral formulation of the
dynamics developed in the previous sections offers the proper
framework to extend the DRP method to the case in which the
molecule contains quantum excitations. The starting observa-
tion is that the solutions of the saddle-point equations (34)-
(36) and the molecular path minimizing the effective action in
the exponent of Eq. (44) yield the most probable coupled evo-
lution of the charge density and of the molecular coordinates
during transitions.

Assuming that the initial and final molecular configurations
and the initial position of the charge are held fixed, the saddle-
point equations can be solved self-consistently by means of
the following iterative algorithm:

1. A reaction pathway r(t) connecting the initial config-
uration Q0 and the final configuration Q f is computed
by minimizing the Onsager-Machlup action at the ex-
ponent of Eq. (45), neglecting the coupling with the
density matrix ρlm(t ′). This can be efficiently done by
using the algorithms described in Ref.s27,28.

2. The deterministic evolution of the density field ρlm(t ′)
is computed from Eq.s (39) and (40), where the tight-
binding coefficients in He f f are evaluated along the path
r(t) obtained in the previous step.

3. The density matrix obtained in the previous step is
plugged in Eq. (45), and an improved estimate of the
molecular reaction path r(t) is obtained by numeri-
cal relaxation of the generalized Onsager-Machlup ac-
tion (45).

The process is iterated until convergence.

VI. CHARGE LOCALIZATION IN A COLLAPSING
CHAIN

Having developed the appropriate formalism, we are now
ready to analyze the quantum transport dynamics during the
collapse of a homo-polymeric chain.

According to the standard scaling theory34, the existence of
an Anderson metal-insulator transition (MIT) in the thermo-
dynamic limit and at zero temperature critically depends on
the number of spatial dimensions. In particular, in the one-
dimensional Anderson model, an arbitrarily small amount of
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disorder is sufficient to stop electric conduction. In three-
dimensions, a mobility edge is developed and the system re-
mains in the metallic regime for sufficiently small disorder. If
such idealized conditions were good approximations for re-
alistic molecular wires in solution, then one might argue that
the collapse into a molten globule of a polymer may lead to
an increase of the conductance.

On the other hand, physical molecular wires in solution are
complex mesoscopic systems subject to dynamical disorder
and finite temperature effects. As a consequence, their con-
ductance depends on a number of specific physical conditions,
such as e.g. the chain length, heat-bath temperature, noise
memory function, and so on.

Nevertheless, this systems may still display different con-
ducting properties, depending if the polymer is in a coil con-
figuration (where the transport dynamics is effectively one-
dimensional) or in a compact phase ( where the charge can
diffuse in three-dimensions).

This discussion raises two main questions: does the dynam-
ical disorder driven by the conformational fluctuations of the
chain induce a strong charge localization already in the coil
state? Is such a localization enhanced or reduced when the
system reaches a compact configuration?

To address these questions, we use the framework devel-
oped in the previous sections to simulate the charge migration
in a simple coarse-grained model for a polymeric collapse.

A. Definition of the Model

We consider a chain composed by Np = 36 beads, each
one representative of an individual monomer. These particles
are linked by harmonic springs and can interact at distance
through Van-der-Waals potential, which simulates the effec-
tive hydrophobic attraction and the steric repulsion:

V (Q) =
1
2 ∑

α

ks(|rα+1− rα|−a)2

+
1
2 ∑

α 6=β

4ε

[(
σ

|rα− rβ|

)12

−
(

σ

|rα− rβ|

)6
]

(52)

The hole can propagate by hopping across Ns sites, which
are identified with the chain’s monomers, hence Ns = Np. The
chain is not coupled to electrodes.

In the present illustrative toy model, the couplings in the
effective configuration-dependent tight-binding Hamiltonian
(1) are not evaluated microscopically from electronic struc-
ture calculations. Instead, their dependence on the monomer
coordinatesis is defined phenomenologically as follows:

Ti j(Q) = T0 e
−
|ri−r j |2

2a2
t , ei(Q) = ε0. (53)

Note that the charge can hop between monomers which are
specially close, even if they are far in the chain sequence.

The numerical value of the constants entering Eq.s (52) and
(53) are listed in table I. We consider a heat bath of tempera-
ture T = 300 K and, while the mass and the friction coefficient

TABLE I: Parameter of the Hamiltonian for the toy-model molecular
wire

ks a ε σ

[kJ mol−1 nm−2] [nm] [kJ mol−1] [nm]
1000 0.38 4 0.4

T0 ε0 aT

[kJ mol−1] [kJ mol−1] [nm]
2 - 200 0.3

are chosen in such a way that Mγ = 2000 amu ps−1. This set
of parameters was chosen to ensure that the end-to-end propa-
gation of the quantum charge across the wire and the collapse
of the molecule occur at comparable time scales.

B. Quantum Transport and Conformational Dynamics

The potential energy function of this model is characterized
by a low degree of frustration. As a result, the collapse of the
chain from an initial stretched coil configuration to a compact
globular state occurs in just few ns. Such a time interval can be
simulated directly by integrating the equation of motion (46).

Let us consider a polymer which is initially prepared in the
fully stretched configuration shown in Fig. 1, with a quan-
tum charge localized at the first monomer |Ψ(t = 0)〉 = |1〉.
Then, the evolution of the system is predicted by means of the
algorithm (51).

The elementary time-step in the integration of the Langevin
equation for this simple coarse-grained model can be cho-
sen to be ∆tMD = 10 fs, while the time-step in the quantum
evolution of the charge wave-function has to be chosen much
smaller, e.g. ∆tQ = 1/10∆tMD. With such a choice of parame-
ters, simulating few ns of dynamics takes only a few minutes
on a standard laptop computer and the normalization of the
charge wave-function remains constant within 1% accuracy
over the entire simulated time interval.

Let us begin by discussing the charge migration dynam-
ics in a static wire, i.e. assuming that the molecule remains
’frozen’ in the initial fully stretched configuration. This con-
figuration corresponds to a complete absence of disorder. In
Fig. 1 we report the calculated evolution of the charge density
in few ns of dynamics. We note that the propagation of the
charge occurs through an attenuating traveling density wave,
which reaches the end of the wire in about 3 ns. The sec-
ondary peaks are due to the fact that, at any instant, the charge
has finite probability not to perform the transition. In the long
time limit, the primary peak looses intensity, which signals
that the charge is delocalized, with a consequent increase of
the entropy.

Fig. 2 shows that the quantum transport dynamics is rad-
ically changed if the polymer is allowed to move under the
effect of the internal forces and of the fluctuations induced by
the solvent, which introduce dynamical disorder in the tight-
binding Hamiltonian. We can clearly see that the migration of
the charge is strongly hindered and that the initial density peak
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FIG. 1: Time evolution of the charge density distribution in a frozen
fully stretched polymer. The pictures in the upper-right corner repre-
sent the polymer conformation, the color of the backbone is propor-
tional to the charge density.
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FIG. 2: Time evolution of the charge density distribution in collaps-
ing polymer. The pictures in the upper-right corner represent the
polymer conformation, the color of the backbone is proportional to
the charge density.

is completely dispersed after about one ns and hardly propa-
gates into the second half of the chain. Hence, the charge
transmission properties of the system are strongly affected by
the configurational dynamics.

These results raise the question if the disorder-driven
charge localization takes place already in the coil state, or
only when the chain reaches the compact state. This question
can be addressed in the context of random matrix theory35,36.
This theory predicts that the level spacing distribution of a real
orthogonal Hamiltonian with delocalized eigenstates should

obey the so-called Wigner-Dyson distribution1,

PWD(s) =
πs
2

e−
π s2

4 . (54)

In particular, we note that PWD(s) vanishes for s→ 0. This
feature is called level repulsion and is a characteristic signa-
ture of delocalized eigenstates (i.e. of the metallic regime).

By contrast, the localization of the wave-functions reduces
the overlap between adjacent modes, hence suppressing the
level repulsion. In particular, in the extreme case in which
there is no overlap between neighboring eigenvectors, the
level-spacing distribution follows a Poisson distribution:

PP(s) = e−s. (55)

We have computed the level spacing distribution by simu-
lating 48 independent 3 ns-long evolutions starting from the
same stretched coil configuration, with the charge initially lo-
calized at the left terminus of the chain. The level spacing
distribution at different instants during the transition was then
obtained by explicitally diagonalizing the quantum Hamilto-
nian (1).

The results are summarized in Fig. 3. In the early time
of the collapse the spectrum is well explained by a Wigner-
Dyson statistics, hence the system displays good conducting
properties even in the presence of disorder. On the other hand,
after about 1 ns, revel repellence has completely disappeared
and the spectrum is well described by a Poisson distribution,
hence the system behaves like an insulator.

Note that the observed behavior contrasts with what would
be expected from scaling arguments, implying that the meso-
scopic character of this system and thermal effects play an
important role.

The recent developments in single-molecule and ensem-
ble manipulation techniques may allow to look for this ef-
fect. For example, using a conducting atomic force mi-
croscopy it is in principle possible to simultaneously measure
the conductivity38,39 and the end-point distance40,41 of single
polymers. Alternatively, by simultaneously applying laser-
induced temperature jumps42 and electron pulse radiolysis43

on an ensemble of neutral collapsed polymers it is possible
to drive them into non-equilibrium swollen and electrically
charged states. Then, the evolution of the conductivity in
these systems during the subsequent thermal relaxation pro-
cess may be monitored using time-resolved microwave con-
ductivity techniques4.

VII. CONCLUSIONS

In this paper, we have presented a formalism to quanti-
tatively investigate the dynamics of quantum excitations in-
side macromolecules which move under the effect of the in-
tramolecular forces and of the collisions with the solvent

1 Note that, as usual, this distribution is normalized in such a way to enforce
a unit average level spacing.
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FIG. 3: Level spacing distribution for the tight-binding Hamiltonian,
evaluated after after 0.1 ns (upper panel) and after 1 ns (lower panel)..

molecules. The resulting set of coupled stochastic and quan-
tum equations of motion (46) contains a non-Coulombic force
term which is not present in the approaches where equations
of motion are postulated phenomenologically. Such a term
has a quantum origin and explicitly couples the density ma-
trix of the quantum particle to the molecular coordinates. The
numerical simulations performed in a simple coarse-grained
model have shown that this force can give significant contri-
bution, of the same order of standard (i.e. Van-der-Waals)
non-bonded interactions.

We have also used the path integral formalism for open
quantum systems to derive an algorithm which yields the most
probable pathways in the evolution of this system, from a
given initial to a given final molecular conformation. This
formalism may provide a computationally efficient method to
investigate the non-equilibrium quantum transport dynamics
during rare thermally-activated conformational transitions.

We have applied this formalism to study the migration of a
quantum charge, during the coil-globule transition of a poly-
mer. These calculations have shown that the dynamics of the
quantum charge is strongly quenched during the collapse. By
analyzing the statics of the eigenvalues spectrum, we have
concluded that the disorder-driven increase of localization sets
in only when the system reaches a compact conformation.

The formalism developed in this work does not only con-

cern molecular quantum wires, but can be applied to all
molecular systems in solution which can support the propa-
gation of quantum excitations. In particular, in the future it
would be interesting to use it to investigate the transfer of neu-
tral atomic excitations between amino-acids in peptide chains.
This would provide a solid theoretical ground to bridge the
gap between molecular simulations and experimentally ob-
servable circular dichroism and Förster Resonance Energy
Transfer spectra in protein folding.

Appendix A: Path Integral representation of the classical
dynamics of a molecule in a thermal bath

The main goal of this work is to derive a path-integral based
framework to study the evolution of quantum excitations in
conformationally evolving molecular systems.

For comparison purposes, it is instructive to review the cor-
responding path integral formulation of the classical Langevin
dynamics which is often used to study the conformational dy-
namics in the absence of quantum excitations. The so-called
over-damped Langevin equation reads44:

q̇α =− 1
Mγ

∂

∂qα

V (Q)+η(t), (α = 1, . . . ,Np) (A1)

where γ is the friction coefficient, V (Q) is the potential energy
function entering in Eq. (6) and η(t) is delta-correlated Gaus-
sian noise, satisfying the fluctuation-dissipation relationship:

〈ηα(t ′) ·ηβ(t)〉= 6kBT
Mγ

δ
αβ

δ(t− t ′) (α,β = 1, . . . ,Np).(A2)

Note that in the original Langevin Eq. there is a mass term
Mq̈. However, for macro-molecular systems this term is
damped at a time scale 10−13 s, which much smaller than the
time scale associated to local conformational changes.

The stochastic differential Eq. (A1) generates a time-
dependent probability distribution P(Q, t) which obeys the
well-known Smoluchowski Eq.:

∂

∂t
P(Q, t) =

kBT
Mγ

∇

[
∇P(Q, t)+

1
kBT

∇V (Q)P(Q, t)
]
. (A3)

By performing the formal substitution

P(Q, t) = e−
1

2kBT V (Q)
Ψ(Q, t), (A4)

the Smoluchowski Eq. (A3) can be recast in the form of an
imaginary time Schrödinger Eq.:

− ∂

∂t
Ψ(Q, t) = Ĥe f f Ψ(Q, t), (A5)

where

Ĥe f f = − kBT
Mγ

∇̂2 +V̂e f f (Q), (A6)

is an effective Hamiltonian operator and

Ve f f (Q) =
1

4kBT Mγ

(
(∇V (Q))2−2kBT ∇

2V (Q)
)
. (A7)
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The conditional probability P(Q f , t|Q0) to find the system
at the configuration Q f at time t, provided it was prepared
in the configuration Q0 at time t = 0 is the Green’s function
of the Smoluchowski Eq., and can be related to the imaginary
time propagator of the effective "quantum" Hamiltonian (A6):

Pt(Q f |Q0) = e−
1

2kBT (V (Q)−V (Q0)) 〈Q f |e−tHe f f |Q0〉. (A8)

Using such a connection, it is immediate to obtain an expres-
sion of the conditional probability (A8) in the form of a Feyn-
man path integral

Pt(Q f |Q0) = e−
V (Q f )−V (Q0)

2kBT

∫ Q f

Q0

Dr e−Se f f [r], (A9)

where

Se f f [r] =
∫ t

0
dt ′
(

Mγ
ṙ2

4kBT
+Ve f f [r]

)
(A10)

is called the effective action.
The conditional probability Pt(Q f |Q0) is sometimes written

also in the following equivalent form:

Pt(Q f |Q0) =
∫ Q f

Q0

Dr e−SOM [r],

(A11)

where SOM[r] is the so-called the Onsager-Machlup func-
tional,

SOM[r] =
∫ t

0
dt ′

Mγ

4kBT

(
ṙ+

1
Mγ

∇V (r)
)2

, (A12)

Proving the equivalence between the expressions (A9) and
(A11) is not straightforward, since it involves elements of
stochastic calculus 45,46.
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