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In the context of dynamic Monte Carlo (MC) simulations on dense collections of polymer
chains confined to a cubic lattice, the nature of the dynamic entanglements giving rise to the
degree of polymerization n, dependence of the self-diffusion constant D~n~? is examined.
Consistent with our previous simulation results, which failed to find evidence for reptation as
the dominant mechanism of polymer melt motion [J. Chem. Phys. 86, 1567, 7164, 7174
(1987) ], long-lived dynamic entanglement contacts between pairs of segments belonging to
different chains are extremely rare and are mobile with respect to the laboratory fixed frame. It
is suggested that dynamic entanglements involve the dragging of one chain by another through
the melt for times on the order of the terminal relaxation time of the end-to-end vector.
Employing the physical description provided by the MC simulation, the general expression of
Hess [ Macromolecules 19, 1395 (1986) ] for the friction constant increment experienced by a
polymer due to the other polymers forms the basis of a phenomenological derivation of

D ~n~? for monodisperse melts that does not require the existence of reptation. Rather, such
behavior is dependent on the relatively benign assumptions that the long distance global
motions of the chains are uncorrelated, that the dynamic contacts can be truncated at the pair
level, and that the propagator describing the evolution between dynamic contacts contains a
free Rouse chain component. The mean distance between dynamic entanglements is predicted
to depend inversely on concentration, in agreement with experiment. Moreover, as the free
Rouse component is frozen out, for chains greater than an entanglement length n,, a molecular
weight independent glass transition is predicted. Extension to bidisperse melts predicts that the
probe diffusion coefficient D, depends on the matrix degree of polymerization, n,,, as n,, .
Finally, comparison is made between the theoretical expressions and MC results for mono- and

bidisperse melts.

I. INTRODUCTION

The development of a model adequate to describe the
diffusive and viscoelastic properties of concentrated solu-
tions and melts of long chain polymer molecules has been a
problem of long standing.'** The most striking experimental
results which must be explained by a successful model are
the way that the diffusion constant and viscosity of dense
polymeric systems scale with the molecular weight (or de-
gree of polymerization, n). The center-of-mass self-diffusion
constant D scales like

D~n—1, (1.1a)
D~n? (1.1b)

where n. is a critical degree of polymerization (although
recently other D~n ~“ have been reported®®). The scaling
behavior of the zero frequency shear viscosity 7 is

n<n,,

n>ng,

(1.2a)
n~n**, n>n,. (1.2b)

n~n', n<n,,

Observe that the crossover regions for viscosity and diffusion
are not the same with
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A key experimental observation towards the under-
standing of the behavior of polymer melts is the response of a
melt to a sudden deformation (shear). At very short times,
the melt behaves elastically like a rubber which is a cross-
linked collection of chains. At later times, the polymer melt
relaxes and behaves like a viscous fluid. This suggests that
the entanglements of the chains in the polymer melt behave
at short times much the same as the crosslinks in a rubber.
However, unlike the rubber where the crosslinks between
chains are chemical bonds and hence “infinitely” long lived,
the chains in the melt eventually slide past the physical en-
tanglements. The importance of chain entanglements has
been emphasized by Edwards.” This resulted in the reptation
model of deGennes,>*® and Doi and Edwards.® An alterna-
tive kinetic theory approach of Curtiss and Bird'® based on
anisotropic bead friction tensors should also be mentioned at
this point.

In the reptation model, the motions of a chain are con-
strained to a tube composed of the entanglement points
formed from the other chains in the melt. Hence the domi-
nant motion of a chain is a slithering motion down the tube
(whence the name reptation) past entanglement points. It is
assumed (at least in the original reptation model) that the
entanglements remain static for a time on the order of a re-

n,<n;.
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laxation time of the polymer end-to-end vector—thus reduc-
ing the many-body problem to a one-body problem. This
assumption that the chain mostly moves along its original
contour, with lateral motion being unimportant, allows for
the solution of the problem. Due to the convoluted path
(when viewed from the laboratory fixed frame) down which
the chain must diffuse, the diffusion constant scales as n~2.
Similarly, the terminal relaxation time of the end-to-end vec-
tor, 7., (frequently referred to as the tube disengagement
time), scales as n*. Combining Trep With the assumption of
rubber-like behavior at short times gives 7 ~7,,, ~n°. Thus
this simple model almost reproduces the experimental scal-
ing behavior of diffusion and viscosity-—one should note,
however, that it does not explain the different crossover re-
gimes for D and 7, Eq. (1.3).

The reptation model, with modifications to treat all of
the chains self-consistently,'!"!2 has been the accepted model
of polymer melt dynamics for the past 15 years. Most recent-
ly, Hess'? attempted a microscopic derivation of reptation
using a many-body approach. He assumed that the inter-
chain, repulsive excluded volume interactions result in
forces perpendicular to the chain contour and thereby lead
to chain motion along the chain contour, i.e., reptation (of
course this conclusion was inescapable given the assumed
interaction). The one small fly in the ointment was that none
of the computer simulations which treated all chains equiv-
alently obtained the detailed reptation model predictions.'*
However, all the simulations were for relatively short chains
and were not at high concentrations and hence tended to be
discounted as irrelevant.

With this in mind we recently completed a series'>™'8 of
dynamic Monte Carlo (MC) lattice simulations of dense
systems of chains up to n = 800, which by all the standard
criteria are entangled. Hence reptation should have been evi-
dent if, in fact, it were present. We saw no evidence of repta-
tion as the dominant mechanism of chain motion. In this
paper and the companion paper we will construct a new
model of the diffusive and viscoelastic behavior of polymer
melts incorporating what we have learned from the comput-
er simulations. Since we are treating the simulations as a set
of experiments, albeit computational experiments, in Sec. 11
we shall review the findings from these computer experi-
ments and the conclusions drawn from them. It is here that
the key physical assumptions of the model will be made and
justified. We shall introduce the idea of a dynamic entangle-
ment and make the important distinction between a dynamic
entanglement and a physical contact. In Sec. III, we shall fit
these physical assumptions into Hess’ many-body theory to
obtain a treatment for dense polymer diffusion. It will be
shown that the D~n~2 behavior, which has been widely
interpreted as experimental evidence for reptation, is a quite
general result obtainable under very weak assumptions and
is not tied to the reptation model. This will be followed by a
brief discussion. The treatment of the viscoelastic behavior
of polymer melts requires a more detailed model and hence is
separated from the general treatment of diffusion and ap-
pears in the companion paper.'® In this second paper we will
not only obtain the viscoelastic behavior of the melt em-
bodied in Eq. (1.2) but also show why the viscosity crosses

over to entangled behavior at a different molecular weight
than does the diffusion constant.

Il. RESULTS OF COMPUTATIONAL EXPERIMENTS

In order to simulate the behavior of dense collections of
long polymer chains for the long times necessary to enable
them to exhibit true diffusive behavior [where both the
mean-square single bead displacement g(f)~t and the
mean-square displacement of the center-of-mass, g, (¢)
~t] lattice dynamic Monte Carlo simulations were per-
formed. The diffusive regime begins when g_ . (¢) >2(S?),
where (S ) is the mean-square radius-of-gyration of a chain.
It is not possible, given the present state of computers, to
come even close to the diffusion limit for long chain dense
systems using molecular dynamics or off-lattice Monte
Carlo simulations. Even using lattice MC required months
of computing on a dedicated uVAX-II for a single set of
runs, with the total set of simulations requiring ~ 1} CPU
years on one and sometimes two dedicated computers.

The set of simulations on monodisperse homopolymeric
chains spanned a range of volume fraction of occupied lattice
sites, ¢, from zero to 0.75 and for chains of length up to
n = 216 for a diamond lattice'® and chain lengths ranging
from n = 64 to n = 800 for ¢ = 0.5 on a cubic lattice.'” The
MClattice moves were chosen to span the space of allowable
moves. Where possible, the properties of the chains were
studied and compared with analytic theories and off-lattice
simulations to demonstrate that the lattice produced negligi-
ble effects on the long time results. Furthermore, if
allowance is made for the difference in the local persistence
lengths, i.e., a diamond lattice chain of length # is dynami-
cally equivalent to a cubic lattice chain of length n/2, identi-
cal results are found for the two lattices. Hence we have
evidence that the long time dynamics we are interested in are
not lattice artifacts (the reader is urged to read our earlier
simulation papers'®'® for further evidence).

It was found that one could obtain a diffusion constant
and a terminal relaxation time that scaled properly with the
molecular weight, i.e., given by Eqgs. (1.1b) and (1.2b). It
was also found that there was no regime where g(f) ~#'*
contrary to the prediction of the reptation model. In this we
agreed with all previous simulations'* on shorter and less
dense systems of chains. It should be pointed out that espe-
cially for the ¢ = 0.5, n = 800 chains on the cubic lattice, by
all criteria we were in the entangled regime and should see
evidence of reptation if it exists.

A. Do chains reptate?

In order to definitively answer whether our simulated
systems of chains diffuse by reptation we analyzed the mo-
tion of the chains by a method similar to the primitive path
analysis of Doi and Edwards.” They replaced the actual
chain by an equivalent chain where all the local fluctuations
irrelevant to the diffusive motion are averaged out. We con-
structed such an equivalent chain by replacing each bead on
the original chain by a point on the equivalent chain which is
the center-of-mass of a subchain composed of n; beads. This
gives a smooth average path composed of the centers-of-
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mass of the overlapping subchains which should be very
close to Doi and Edwards primitive path if np is approxi-
mately equal to the entanglement length.

We construct such an equivalent chain at each time step
(and also for each chain in the system). We can then analyze
the motion of these equivalent chains. The equivalent chain
at some initial time (defined to be zero) defines a spatial
curve which can be used to generate a local curvilinear coor-
dinate system. We then project the primitive path at later
times back onto the zero time path and obtain the compo-
nents of the motion parallel and perpendicular to the zero
time path. The reptation model demands that for times long-
er than that required for the diffusion to the walls of the tube
but shorter than the tube renewal time (i.e., the terminal
relaxation time) the dominant motion of the central portion
of each chain must be along the primitive path. What was
observed in all cases was that after a short time preference for
transverse motion (which is not relevant to the long time
motion and has been explained elsewhere'®), the motion of
the equivalent path is essentially isotropic. Therefore, there
cannot be a tube confining the chain motions and reptation
cannot be the dominant diffusive mechanism.

Asa check that we were not somehow or other disallow-
ing reptation by our choice of lattice moves, we also simulat-
ed a system where a single mobile chain was surrounded by a
matrix of frozen chains.'® The frozen chain matrix was rigid-
ly pinned every 18 beads but was allowed to move between
the pins. Here the separation of time scales necessary for the
reptation model is rigorously true and reptation should be
observed. When we performed the equivalent path analysis
for the mobile chain in the frozen environment we did indeed
observe reptation, i.e., the dominant motion was along the
primitive path contour (although the chain kept trying to
leak out of the tube).

As a further check on the question of time scale separa-
tion, we performed a series of simulations'® for a probe chain
of degree of polymerization n, = 100 dissolved in a series of
matrix polymers of degree of polymerization #,, = 50, 100,
216, and 800, all at a total volume fraction ¢ = 0.5. In one
sense, since the diffusion constants differ by about two or-
ders of magnitude, there is the separation of time scales re-
quired by the reptation model between the probe chain and
the matrix for the case #,, = 100 and n, = 800. However,
although there is a global time scale difference between the
probe chain and the matrix, there is not a local time scale
difference since all chains are free to move in the same way.
The diffusion constant of the probe chain decreases by about
25% as the matrix chains increase from #,, = 50 to 800 con-
sistent with the experimental results on polystyrene.?**!
However, when the equivalent path analysis was performed
on the motion of the probe chain, the motion once again was
isotropic.

In all cases of monodisperse and bidisperse melts, we
also examined snapshot pictures of the evolution in time of
the equivalent path and significant transverse motion with
negligible motion along the primitive path was observed.
Hence, we are forced to conclude that in a melt or dense
solution when all chains are free to move the interchain en-
tanglements do not constrain the motion of the chain to be

along the primitive path. The chains do not diffuse by repta-
tion.

B. The nature and importance of dynamic
entanglements

In the reptation model the entanglement points serve to
define the tube down which each chain diffuses. If this is the
case, the mean distance between entanglements », must be
small compared to the length of the chain. Otherwise if the
distance between entanglements is large, the chain will easily
leak out of the tube. That is, if n, is large, loop entropy will
not be large enough to constrain the chain. However, the
behavior of the chains was similar to that of a Rouse
chain,?>?? albeit a renormalized Rouse chain; hence the na-
ture and effect of entanglements must be reexamined.

The first thing one must realize is that for an entangle-
ment to have an important effect on the long distance diffu-
sive behavior it is not enough for two chains to be in con-
tact—they must remain in contact for a time of the order of a
terminal relaxation time. Thus we will distinguish between
interchain static entanglements and dynamic entanglements
by their time evolution. Static entanglements are mostly in-
terchain contacts where the chains quickly, on the time scale
of the terminal relaxation time, diffuse apart (remember
that locally the diffusive motion of a chain is predominantly
transverse to its chain contour). Thus, most of the chain
entanglements are static entanglements. Occasionally two
chains are not only entangled and in contact but are also
randomly diffusing in the same direction. If they continue to
bein contact for a time of the order of the terminal relaxation
time, we refer to such an entanglement as a dynamic entan-
glement. When such a dynamic entanglement occurs, a
chain appears to drag another chain through the melt for a
period on the order of a terminal relaxation time. Of course
eventually these two chains will also diffuse apart; the only
difference is that this happens on a much longer time scale.
Even the simplest considerations would suggest that dy-
namic entanglements are much less common than static
entanglements and that the mean distance between dynamic
entanglements is large compared to the mean distance
between shorter lived contacts.

Before examining the differing effects on the diffusive
behavior of these two types of entanglements we will exam-
ine our computer experiments to verify that the above physi-
cally motivated conjectures are consistent with the simula-
tions. We employed the following procedure:

(i) The actual chain was replaced by a series of nonover-
lapping blobs each containing 7 ; monomers, where 7 is the
number of monomers down a chain over which the static
excluded volume effects are felt (the static excluded volume
screening length ). This is essentially a pearl necklace model
of the polymer.

(ii) We then searched for pairs of blobs (or pearls)
where each blob belongs to a different chain and whose
centers-of-mass are less than a distance r,,;,, apart at zero
time.

(iii) The fraction of such contacts that are still surviving
at a time ¢ later, n_ () are counted.
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(iv) The mean-square displacement of the center-of-
mass of the contact pair of blobs was computed with respect
to the laboratory frame, g,,,, (). The mean-square relative
displacement of the two blobs g, () was also computed.

In Fig. 1, we plot n_(¢) vs ¢ for an n = 216 homopoly-
meric melt on a cubic lattice>* with ¢ = 0.5, np = 18, and
Fmin = 5. The curve is well fit by a sum of three exponentials.
The majority (64% ) of the contacts decay within 1% of 7,
91% of the contacts have decayed within 9% of 7 , and the
remaining 9% of the contacts decay on the order of 74.
Thus, while the decomposition of the . (¢) vs  curve isby no
means unique, long-lived dynamic contacts, i.e., dynamic
entanglements, are rare events. The mean numbers of mon-
omers (i.e., beads) between dynamic entanglements n, is
about 133. This is an order of magnitude larger than the
static excluded volume screening length.

We next examined?* the motion of the dynamic entang-
lements. Plots of g,,,, (¢) and g, (¢) vs time are presented in
Fig. 2. For all times studied up to 7z, we found that g, (¢) is
just slightly less than twice g, (¢£). The difference in the
ratio of g.., (£)/8,, () from two probably arises from the
fact that the rare, long-lived entanglements move slower.

We are now in a position to examine the differing phys-
ical effects of these two types of entanglements on the diffu-
sive motion of the chains. These effects will then be built into
the many-body treatment of diffusion presented in the next
section. We use a standard separation of time scales argu-
ment. Those events which happen on a time scale fast com-
pared to the time scale of interest can be treated in a mean
field fashion. Thus the majority of the contacts which are
short lived when compared to the terminal relaxation time
can be averaged over. These contacts behave like scattering
events between a chain and a solvent (in this case the other
chains) but due to their short-lived nature have no topologi-
cal effect on the chain. Hence the effect of these short-lived
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FIG. 1. Log-log plot of the number of dynamic contacts that surviveuptoa
time ¢, n, (¢) vs ¢ for a n = 216 homopolymeric cubic lattice melt with ¢

=0.5, ny = 18, and r,,;, = 5. See the text for further details.
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FIG. 2. The upper curve denoted by the circles is a log-log plot of the rela-
tive mean-square displacement of a pair of blobs belonging to different
chains that are in contact at t = 0, g, (¢), vs time. The lower curve denoted

by the squares is a log-log plot of g, (¢), the relative displacement of the

center-of-mass of the pair of blobs with respect to the laboratory vs time,
n=216,¢4=0.5,n, =18, and r;,, =5.

contacts can be subsumed into a phenomenological, molecu-
lar weight independent monomer (i.e., bead) friction con-
stant. Thus, a melt of short chains experiences only the fric-
tional effect of the short-lived contacts and behaves like a
collection of Rouse chains, in agreement with experiment.’
For a concentrated solution of chains, the frictional contri-
bution of the short-lived chain—chain collisions and of the
solvent collisions are lumped together into a single, phenom-
enological monomer friction constant.

The long-lived dynamic entanglements, being on the
same time scale as the phenomena of interest, must be han-
dled explicitly. However, here we are helped by the fact that
dynamic entanglements are rare events—or said another
way, the mean distance between dynamic entanglements
(n,) is large. Thus, even though we are dealing with a very
dense system, by using the time scale separation to include
the effect of the majority of contacts (the short-lived ones) in
the monomer friction constant, we can treat the system as a
dilute solution of dynamic contacts. Since we are really in a
(renormalized) dilute solution limit we can safely truncate
the many-body treatment at the pair contribution level. This
is not to say that the effect of dynamic entanglements is small
in the perturbation sense, since it certainly is not, but rather
that true three-body interactions are so rare as to be com-
pletely negligible. Furthermore, between the dynamic en-
tanglements, the chain can be treated as a dilute solution
Rouse chain with a renormalized friction constant.

Thus, although our many-body treatment of chain dif-
fusion to be presented in the next section will look formally
identical to Hess’ treatment'® it will be physically quite dif-
ferent. Hess treated all interchain contacts explicitly in order
that the contacts should constrain the chains to reptate.
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Having been forced by our computer simulations to abandon
the reptation model, we are only treating a very small num-
ber of the contacts, the long-lived ones, explicitly. Thus,
Hess, when he truncates at the pair level, can only really
treat physically dilute systems, while we can handle physi-
cally dense systems using the same truncation.

lil. MANY-BODY TREATMENT OF DIFFUSION

As discussed above, our treatment of diffusion in poly-
mer melts closely follows Hess’ analysis.'* Therefore we will
not go through a full derivation of the equations. Rather we
shall point out the physical assumptions in Hess’ derivation
and where, towards the end of the derivation, our assump-
tions differ from his. The reader who wants to see the math-
ematical steps should refer to Hess’ paper (a copy of which
he/she might wish to keep handy).

Starting from a Kubo expression for the diffusion con-
stant in terms of the center-of-mass velocity autocorrelation
function,

D=%J.w dt (v(£)v(0)) G3.1)
0

(or equivalently, defining the diffusion constant using the
long time limit of the mean-square displacement of the cen-
ter-of-mass) Hess obtains using a Mori-type projection op-
erator technique,

D=kyT/n [;0 + r dt A§(t)].
0

Here &, is a generalized, concentration dependent Rouse—
Zimm monomer friction coefficient and A{ is a dynamic
friction term per monomer due to the interaction between
different polymer chains. In our approach, the effects of the
short-lived contacts are to be included in &, leaving only the
dynamic entanglement effects to be treated in AS. The dy-
namic friction function is given by

3.2)

1

33
nk, T (-3

A1) = 3 (F(2)-F(0)),

where the correlation function is a Mori projected force
autocorrelation function.

In order to obtain a tractable expression for the dynamic
friction constant, Hess assumes that only short-ranged inter-
actions occur between the polymer chains thus completely
screening out the hydrodynamic interactions® (this as-
sumption holds for melts) and further characterizes the in-
teractions as steric in nature (excluded volume interac-
tions). He then identifies the dynamic evolution of the
friction constant with the dynamic evolution of the contacts
between chains. He assumes a small number of contacts;
hence he restricts himself to the semidilute regime. This
leads to the treatment of the global motion of the chains as
uncorrelated and to the truncation of the interactions at the
pair level, i.e., no consideration of correlated three-body in-
teractions is made. Since, as discussed in the previous sec-
tion, we are treating only the long-lived contacts (which
have a lifetime on the order of the terminal relaxation time)
explicitly, we can also make use of Hess’ semidilute approxi-
mation despite the fact that we are treating a dense system.

Hess then explicitly introduces the propagator of the
dynamic friction term that describes the time evolution of
pairs of contacts between chains, R(¢) (which he also refers
to as the response function). Since one is interested only in
the diffusional behavior of the polymers, one need only con-
sider the long wavelength limit of the propagator [recall that
the short wavelength behavior, i.e., the short time and dis-
tance contacts between chains, is subsumed into the effective
renormalized Rouse~Zimm friction constant of Eq. (3.2)].
In this long wavelength limit, the propagator is dominated
by the hydrodynamic pole and is given by

R(g,t) = exp( — D 4q*t), (3.4)

where ¢ is the magnitude of the wave vector and D is an
effective diffusion constant.

Itis in the identification of D, that we finally part com-
pany with Hess’ treatment of diffusion. He has assumed that
the forces are transverse to the chain axis and then arrives at
reptation-like diffusion. He decomposes the motion into
components parallel and perpendicular to the chain axis.
Since the propagator is for long, but not very long, times (see
below), Hess recognizes that he cannot just replace D by
D, which would then be identified with the self-diffusion
constant, but that he must weakly couple the perpendicular
and parallel modes. He does this by factoring the propagator
into the product of a parallel and a perpendicular propagator
which is equivalent to setting Dy = D, + D,. If he did not
do this, he would obtain the solution that the diffusion con-
stant was identically zero for large, but finite n.

From our simulation results, we know that we need a
propagator for times on the order of the terminal relaxation
time. For such times we have observed in our simulations
that the behavior of the chains is essentially Rouse like (see,
e.g., Fig. 15 of Ref. 16 and the discussion therein). However
there is also coupling between the center-of-mass coordinate
and the internal (Rouse-like) coordinates. We can accom-
modate this physics by setting

Dy =(1-pB)D, +BD, (3.5)
where D, is the renormalized Rouse diffusion constant and
B, which is small, gives the coupling between the center-of-
mass motion and the internal coordinates.

Using Egs. (3.5) and (3.4) in Hess’ formulation we ob-
tain

D= D,
1+ ¢(e,n)Dy/[(1 —B)Dy,+ 8D’

where ¥(c,n) is related to the free energy change per chain
per dynamic entanglement which in turn must be propor-
tional to the number of dynamic entanglements per chain.
Thus, the mean number of monomers between entangle-
ments, n,, is defined by

3.6)

¢=n/ne. (37)

As shown in the Appendix, n, is inversely proportional to c;
with ¢ being the concentration of polymer segments/unit
volume. Using the expression for the Rouse diffusion con-
stant
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p,— kT _do.
ng, n
where £ is the renormalized monomer friction constant and

Eq. (3.7) in Eq. (3.6),
D =D,2(1 - /{1 —28+n/n,

(3.8)

+ [1+200 =2B)n/n, +n*/n2}'?}).  (3.9)
In the limit that S0, it follows from Eq. (3.9) that
—— Do (3.10a)
1+ n/n,
dy
_ . 3.10b
n+n*/n, ¢ )

It is also apparent from Eq. (3.9) that for all 8 #1, in the
limit of large n/n,,

D=Dy1 —B)n,/n=dy,(1 —B)n,/n’ (3.11)
Moreover, for all Bif n/n, = 0, we have
D =D, (3.12)

that is, the free Rouse value of D is recovered.
The above behavior is confirmed in Fig. 3 where we plot
D /D, vs n/n, calculated from Eq. (3.9) for 8 =0.0, 0.5,
and 0.9 in the curves going from top to bottom. In all cases
the large n/n, regime is consistent with »~2 behavior. The
crossover region from constant behavior to the D /D,
= (1 — B)n_/nlimit is fairly smooth, but the magnitude of
the slope increases with increasing 8. In fact, for 8 = 0.9, the
slope of the 1<D /D,<3 crossover regime is — 1.52. This
apparently increased slope as a function of 7 is in fact a rem-
nant of the glass transition that occurs at n/n, = 1 when
B=1
Rewriting Eq. (3.9) by multiplying the numerator and
denominator by —(1—28 +n/n,) + [1+2(1
—Byn/n, + n*/n2]"'? gives

100 T T — Ty
' ]
- -
i |
107 =
[ ]
(=]
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n
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10-3 L 1 14||I|| ke . |lll|l L - Lot bk
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FIG. 3. Log-log plot of D /D, vs n/n, calculated from Eq. (3.9) for § =0,
0.5, and 0.9 in the curves going from top to bottom.

D=Dy{~ [(1—28) +n/n,]

+ [1+2(1 —28)n/n, + n*/n2]1"?}/28. (3.13)
In the limit that #—1 Eq. (3.13) becomes

D=Dy(1 —n/n,) if n<n, (3.14a)

(3.14b)

Thus, Eq. (3.14) predicts a glass transition, i.e., D = 0 when
B =1and n>n,.The origin of the glass transition is as fol-
lows: Setting =1 is equivalent to using D _; = D in the
expression for the propagator in Eq. (3.4). We interpret this
as the limit where even for the short-time propagator the
system is so tightly coupled that the motion requires the full
diffusion constant rather than a *“free”” Rouse diffusion con-
stant or free Rouse propagator. When the system is this
tightly coupled, and each chain pulls another chain, which
pulls another chain, etc., the physical model has broken
down and the D = O solution signifies that the tightly cou-
pled system is not a melt at all but a glass. Equations (3.14a)
and (3.14b), when plotted on a log-log plot, would give a
line whose slope is infinite in magnitude. This is the origin of
the increased slope in the curve having 8= 0.9 in Fig. 3
when n/n, is on the order of unity.

Equation (3.14b) implies that the glass transition tem-
perature should be molecular weight independent for suffi-
ciently long polymers. Furthermore, if we assume that
B =pB(c,T), then polymers which are substantially below
the entanglement molecular weight should not undergo a
glass transition due to the effect of entanglement trapping.
This is consistent for example with experimental measure-
ments on the viscoelastic behavior of polystyrene (PS)
whose entanglement molecular weight is about 18 000.%° PS
of nominal molecular weight 4000 has a glass transition tem-
perature T'; = 64 °C, which is substantially below the glass
transition temperature of high molecular polystyrene whose
T, is 100 °C.”" This is qualitatively interpreted as follows:
high molecular weight samples with n > n,, undergo a glass
transition temperature because of the shut down of a global
mode—the disengagement of dynamic entanglements.
Thus, T, for high molecular weight samples is molecular
weight independent. Low molecular weight polymer liquids
are conjectured to undergo a glass transition because of the
shut down of local configurational changing fluctuations,
such as was seen in our diamond lattice Monte Carlo simula-
tions.'?

=0 if n>n,.

A. Polymer probe diffusion in a polymer matrix of
different molecular weight

We shall now briefly discuss how one can modify the
diffusion theory given above to accommodate the case when
a probe polymer of degree of polymerization n,, is diffusing
in a melt of polymers with a degree of polymerization n,, . It
is assumed throughout that the concentration of probe poly-
mers is small enough that a probe polymer only interacts
with matrix polymers—it never encounters another probe
polymer. Generalization to a finite volume fraction is
straightforward.

The theory goes through exactly the same as before ex-
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cept that the dynamic friction term A§ describes the dynam-
ic evolution of a contact between a probe polymer and a
matrix polymer. Hence the propagator R (¢) is that appro-
priate to the time evolution of a dynamic entanglement
between a probe polymer and a matrix polymer. Thus, when
we take the long wavelength (hydrodynamic) limit of the
propagator in Eq. (3.4), we must use an effective diffusion
constant for the probe-matrix pair. Consistent with the dis-
cussion of the physics contained in D in the preceding sub-
section, we can accomplish this by setting

D = (1—PB)[¥Do, + (1 —¥)Dy,, ]

Here p(m) refers to a probe (matrix) polymer chain and
again D, is the renormalized Rouse diffusion constant and D
is the center-of-mass diffusion constant. Of course in the
long time asymptotic region, a mutual diffusion constant is
just the average of the diffusion constants. However, we do
not really know how to take the averages in the intermediate
time regime when the propagator is of interest; hence we
leave ¥ and 7’ as adjustable constants to be fit by experiment.
Obviously when the probe and matrix polymer chains are
identical, Eq. (3.15) reduces to the previous result, Eq.
(3.5)

Using Eq. (3.15) in the Hess formalism, we obtain for
the diffusion constant of the probe polymer

] , (3.16a)

D, ~nZ/(n,n,). (3.19a)

Klein'!'®® has argued that not all the constraints relax inde-
pendently, and in the nonindependent constraint release

+B8[vD,+(1—-9)D,]. (3.15)
1
D =go_[ — (B—=BY +n,/n,) +{(B—BY +n,/n,)?+ 4By B}/?
F4 np ZBY’
-
wherein
B=(1-Br+A-pin,/n,]
D
+B(l —"}/) Dm np/nm, (316b) (nicr) model
Oom

and D,, is given by Eq. (3.9) on setting n = n,,. D,,, is the
self-diffusion coefficient the matrix would have in the ab-
sence of entanglements.

Several limiting cases of the above functional form are
readily obtained. Consider first the limit that n,/n, =0
(that is, the probe chain is so short that there are no dynamic
entanglements). It immediately follows from Eq. (3.16a)
that

Dp = ﬁ;

nP
That is, the unentangled Rouse limit of the self-diffusion
coefficient is recovered. Physically, this makes sense. If the
probe chain is sufficiently short that there are no dynamic
entanglements, it should diffuse through uninterrupted by
such constraints.

Another physically interesting limit of Eq. (3.16a) is
obtained if 8 #1 and n,/n.>1 and n,/n, <1, that is, an
entangled probe chain in a matrix of long entangled chains.
After a bit of arithmetic, Eqs. (3.16a) and (3.16b) give

n,/n, <1, (3.17)

n,

+ 1 -B(1-9p)

e ] (3.18a)

n n

P
Observe that when n, = n,,, Eq. (3.11) is recovered. That
is, D, ~n,; % In the limit that n,, goes to infinity,

p,=%|a_py
nP

ne
D,=(1-By—;
n
P
That is, D, is reduced from the n,, = n, result by a factor of

Y.

dp. (3.18b)

Equation (3.18a) predicts a much weaker matrix mo-
lecular weight dependence, D, ~n,,', than the constraint
release models invoked to make reptation theory self-consis-
tent. Graessley*®™ has derived an expression for the contri-
bution of self-diffusion due to reptation of the entanglements
that form the tube which is of the form

Dye ~n}?/ (n,n3%). (3.19b)
Thus, the diffusion constant of a reptating chain including
constraint release is of the form

D= %‘1 n./n* + Dy

(3.20)
with D, given by Egs. (3.19a) or (3.19b).

The most extensive experimental test of the above func-
tional forms Egs. (3.19) and (3.20) has been done by Green
and Kramer?® on the probe diffusion coefficient in bidisperse
polystyrene melts. The probes spanned the range of molecu-
lar weight from 55 000-2 000 000 and the matrices ranged in
molecular weight from 2100 to 20 000 000. Antonietti, Cou-
tandin, and Sillescu® have also performed a series of diffu-
sion constant measurements over a less extensive molecular
weight range, which is in agreement with the Green and
Kramer results where the two sets of measurements overlap.
Green and Kramer find a matrix molecular weight depend-
ence consistent with both Graessley and Klein [Eq. (3.19a)
and Eq. (3.19b) ], although they prefer the former expres-
sion. However, McKenna®® has pointed out that the use of
either Eqs. (3.19a) or (3.19b) is inconsistent with the ex-
perimentally observed D when n,, = n,,, i.e., D~n~2 Thus,
the experimental situation is not entirely clear. On the other
hand, we point out that Eq. (3.18a) reduces to the n,, =n,
result and gives D~n~2

In Fig. 4, we plot D, /D, calculated via Eqgs. (3.16a)
and (3.16b) vs n,,/n, for n,/n, =1, 5, 10, and 50 in the
curves going from top to bottom. In all cases 8 = 0; thus D,
explicitly equals

D

P

(3.21)

_ do Y+ (1 —yn,/n, ]
n,ly+ (1 —-yn,/n, +n,/n, ’

Increasing n,, is seen to increase the breadth of the transition
ton, ? behavior—otherwise stated, a larger absolute value
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FIG. 4. Log-log plot of D, /D,, calculated via Eq. (3.16) vs n,,/n, for
n,/n, = 1,5, 10, and 50 in the curves going from top to bottom. § =0,
y=0.5.

n,, is required before the n,, — o limit is reached. Observe,
too, that in the limit that n,, goes to zero, all the curves
coalesce to the same value of D,/D,,; we consider this point
next.

It immediately follows from Eq. (3.21) that in the limit
n,/n,>1 and n, <n,, that D, = D,; i.e., the chain is no
longer in an entangled environment, and thus the free Rouse
result with a molecular weight independent friction constant
appropriate to the matrix must be recovered. Thus all the
curves shown in Fig. 4 coalesce to the value unity in the limit
n,/n,<£1.

Consider next the case when n,,>n,, n,>n,, and n,
>n,,. That is, the case of a very long polymer in an entan-
gled matrix. Provided that 8 # 1, it follows from Eq. (3.16a)
and (3.16b) that

1
D =D
P 4 (i, /n1/{(1 =) (1 =B}

nd, =P =Bin (3.22b)
n,n,,

(3.22a)

Thus, the apparent monomeric friction constant is augment-
ed by a factor n,,/[n, (1 — ¥) (1 — B) ]. The probe self-dif-
fusion coefficient increment D,/D} is now independent of
n,, and behaves as if it were in a medium of friction constant
Sonn,/[n, (1 —y)(1—pB)]. Observe however, that the
Stokes~Einstein limit is not reached since 7,, ~n_*. Rather
Eq. (3.22a) predicts that the viscosity relevant to the diffus-
ing chain is the Rouse value 7,,, ~n,,. However, caution
must be employed here. Remember §, itself contains the
high frequency contribution of the matrix collisions with the
probe. So in fact Egs. (3.22a) and (3.22b) are valid only
over an intermediate regime of molecular weights, and pro-

vide an {,~n,,. As n,>n,,, §, should be replaced by the
Stokes-Einstein value 67, a with a being the effective radi-
us of a monomeric bead. Moreover, neglect of hydrodynam-
ic interactions will no longer be valid. Including both these
effects in the limit that n, > n,, > n, we should have

D,~n; *n; 17, (3.23a)

P
thereby recovering a result previously derived by de Gennes
in his classic book.?

In Figs. 5A-5C, we present a log-log plot of D,,/D,, vs
n,,/n, calculated via Eqs. (3.16a) and (3.16b) for chains
having n,/n, = 1, 10, and 50, respectively. In each figure,
£ =0,0.5, and 0.9 in the curves going from top to bottom,
respectively, and ¥ = 9" = 0.5. As required, all the curves
coalesce to unity as n,,/n, —0. Furthermore, the apparent
slope in the vicinity of n,,/n, = 1 increases as §— 1. More
explicitly, in the limit that 8- 1, Egs. (3.16a) and (3.16b)
require the following. [ Remember that when n,, = n,, the
self-diffusion coefficient of the matrix, D,,, goes to zero, see
Eqgs. (3.14a) and (3.14b).] If n,, <n,, we have

D, =Dop/2}/’{ — [(1 —y’)(-:-:i’—_ " ) —-y’+np/ne]

m ne

2
flo-rf-2)-r-2)
nm nE ne

n n 172
+47’(1—1”)(—”——”)] }
nm ne

where we have used Eq. (3.14a) for D,,,. Thus, if D,, #0(n,,
<n,), then D, #0 independent of n,. However, if D,, =0
(n,,>n,), then

D,=Dg,(1—n,/¥'n,) if n,/n,<v, (3.242)
=0 if n,/n,>7. (3.24b)

Thus, the following behavior for D, is predicted for diffusion
of a probe in a glass: If n,/y'n, < 1, then the effects of dy-
namic entanglements are insufficient to produce a glass tran-
sition for the probe. However, if n,/n, exceeds ¢’ (a number
between zero and unity), then the probe is predicted to have
a zero self-diffusion coefficient. Thus, in agreement with real
experiments, relatively small molecular weight probes can
readily diffuse through an entangled polymer glass, yet larg-
er molecular weight species are predicted to have D, = 0.
The glass transition for the probe occurs at lower values of n,,
than for the matrix, since the effective propagator between
the dynamic entanglements D s ~yD,, whenf = 1and D,
=0.

(3.23b)

B. Comparison with simulations

We have fit Eq. (3.10b) for the self-diffusion constant to
our cubic lattice simulation for a homopolymeric melt.'” The
fit to the data (three data points with n = 64, 100, and 216)
was very good with the average error being 1.4%. This was
well within the average statistical error of the simulation
which is 1.8%. We obtained best fit values of d, = 0.16 and
n, = 125. Recall that the dynamic entanglement length we
obtained by counting the long-lived contacts was 133. When
the value of the diffusion constant for n = 800 was calculat-
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FIG. 5. A-C. Log-log plot of D, /D, vs n,,,/n, calculated via Egs. (3.16a)
and (3.16b) for a probe chain having n,/n, = 1, 10, and 50, respectively. In

each figure, curves going from top to bottom are, =0, 0.5, and 0.9 and
y=v =05

ed using these parameters (the » = 800 system was not in
the data set used to obtain the parameters) we obtained
D=2.71x10-> This is in good agreement with the ex-
trapolated upper bound for the diffusion constant of
2.8 1077 (the lower bound is 1.2 X 10~ ). This suggests
that the extrapolated upper bound is closer to the correct
simulation diffusion constant for » = 800 than is the lower
bound.
For the case of a probe polymer diffusing in a matrix
with a different degree of polymerization'® (n, = 100; n,,
= 50, 100, 216, and 800), we used Eq. (3.21). If we just used
the parameters from the homopolymeric fit, and the asymp-
totic form for D.;—the average of the two diffusion con-
stants, i.e., ¥ = 0.5—we obtain a fit to the simulation with an
average error of 7.2%. This compares well to the statistical
error of the simulation of 4.6%. If we treat the mixing pa-
rameter ¥ as being adjustable and still use the homopoly-
meric results for d, and n,, we obtain a ¥ = 0.677 and an
average error in D, of 5.0%, essentially the statistical error.
In order to test the sensitivity, we also fit the simulations
using the homopolymeric result for d, = 0.16, the asympto-
tic mixing coefficient of ¥ = 0.5 and let the entanglement
distance n, be a free parameter. This results in a quite re-
spectable fit with an average error of 6.4% and a value for n,
of 129. Thus we obtain a value for the entanglement distance
that is, for all practical purposes, the same as that for the
homopolymeric melt. It is also clear, insofar as we can judge
from the present data, that the theory is not overly sensitive
to the mixing parameter ¥, and it appears that one can safely
use the asymptotic value of 1/2.

IV. CONCLUSIONS

In this paper we have shown, using an adaptation of
Hess’ general many-body theory of polymer diffusion in
dense systems, that one can obtain the experimental scaling
behavior with molecular weight of the diffusion constant of a
polymer melt [Eq. (1.1)], using only a few very general
physical assumptions. The necessary physical assumptions
are:

(i) The long distance global motions of the various
chains are uncorrelated.

(ii) The important chain—chain interactions which lead
to the D~n—? behavior in the entangled regimes are the
long-lived entanglements; i.e., those interchain contacts
whose lifetimes are of the order of a terminal relaxation time.
From our computer simulations we have observed that only
a small number of chain—chain contacts lead to such long-
lived dynamic entanglements, ~ 10%. Hence, the distance
between dynamic entanglements is large, n, ~ 130, and the
dense polymer system can be treated as a dilute system of
dynamic entanglements. This leads to a sensible truncation
of the many-body treatment at the pair level with the effects
of short time contacts being subsumed into the single body
renormalized monomer friction constant.

(iii) The propagator for the time development of dy-
namic contacts is essentially a free renormalized Rouse pro-
pagator. Hence, the theory essentially takes the form of a
lowest order perturbation expansion about a renormalized
Rouse theory. This is consistent with our simulations which
showed that the behavior of the chains is largely Rouse-like.
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The natural simple physical picture which emerges from
this work as well as our simulations is that the scaling behav-
ior D ~n~2for the diffusion of entangled chains is caused by
long time dynamic contacts between pairs of chains as one
chain pulis another through the melt. We can picture a dy-
namic entanglement (perhaps somewhat over simplistical-
ly) as a loop formed by one chain about the other, that re-
sults in one chain randomly dragging the other. Of course, in
time the random motion of the chains causes the pair to
separate. From our simulation results, dynamic contacts are
destroyed mainly from the chains just randomly diffusing
apart, i.e., the chains move in different directions, rather
than by the slithering of chains past each other as in the
reptation model. However, on average, the chains having
broken one dynamic entanglement are also forming other
dynamic entanglements at the same time (albeit in different
places on the chain). Thus, one can picture a chain’s diffu-
sive progress through the melt as a continuing overlapping
series of forming dynamic entanglements, dragging another
chain for a while, and then breaking off the entanglement by
moving apart. The entanglement distance of n, = 125 we
obtained by fitting the self-diffusion constant [Eq. (3.9)] to
our simulation results [or n, = 129 by fitting Eq. (3.16)]
should be looked upon as a statistically averaged distance
between entanglements, and thus is not directly comparable
with n, (the mean distance between entanglements that live
on the order of the terminal relaxation time). However, it is
still gratifying that the two numbers should be so close (well
within the errors). This is at least evidence (permissive but
by no means compulsive) for the internal consistency of the
picture.

Lastly, we turn to the fact that D~#~? has frequently
been claimed as experimental evidence for the essential cor-
rectness of the reptation model of polymer motion. Clearly
from the very general nature of the physical assumptions
which were necessary to derive the scaling behavior of the
diffusion constant, there are a very large class of physical
models of polymer motion which will reproduce this scaling
behavior. We shall in fact present a member of this class in
our companion paper which treats the viscoelastic behavior
of polymer melts. Of course, this model is consistent with the
picture given above. At best the experimental diffusion scal-
ing behavior can be used as permissive evidence for a model
(in that it is not immediately discarded) but cannot in any
way be used to say that the essential correctness of any model
of polymer motion is experimentally confirmed. Rather, a
D ~n"2is merely indicative that some kind of constrained
motion of the polymer has become operative.
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APPENDIX: DERIVATION OF THE CONCENTRATION
DEPENDENCE OF n,,

¥(c,n) of Eq. (3.6) is given by
Y =3nlAF /ckyT, (A1)

wherec = nN /Vwith N the number of polymer moleculesin
the system of volume V. As shown by Hess in the single
contact approximation,'® the free energy density which
arises from interactions between pairs of chains, AF, is

AF =k Tuy/2VN*n*(8(R;)), (A2)

with R;; the distance between a segment i/ on chain 1 and a
segment j on chain 2. In writing Eq. (A2) we are explicitly
neglecting end effects. v, is the effective volume excluded
between a pair of segments which in the dilute limit is con-
centration independent. The brackets denote the ensemble
average. Remembering that with respect to the dynamic
contacts we are in the dilute solution limit, we have

(BR,) =V [ dR;6(R,) (A3a)

=y (A3b)
In writing Eq. (A3), we truncate at the level of two body
terms. Observe that kz Tvy/V is the ensemble average of a
Mayer f function. Thus, we have

AF = ky Tc*vy/2. (A4)
Substituting Eq. (A4) into Eq. (A1) gives

¥ =cogn/3
and defining n, by

Y =n/n,
gives

n, = 3/v.c.

Thus, in agreement with measurements of the plateau
modulus,* n, is inversely proportional to the concentration
of polymer segments/unit volume.
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