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Quantum mechanical/molecular mechanical (QM/MM) free energy calculation presents a signifi-
cant challenge due to an excessive number of QM calculations. A useful approach for reducing the
computational cost is that based on the mean field approximation to the QM subsystem. Here, we de-
scribe such a mean-field QM/MM theory for electronically polarizable systems by starting from the
Hartree product ansatz for the total system and invoking a variational principle of free energy. The
MM part is then recast to a classical polarizable model by introducing the charge response kernel.
Numerical test shows that the potential of mean force (PMF) thus obtained agrees quantitatively with
that obtained from a direct QM/MM calculation, indicating the utility of self-consistent mean-field
approximation. Next, we apply the obtained method to prototypical reactions in several qualitatively
different solvents and make a systematic comparison of polarization effects. The results show that
in aqueous solution the PMF does not depend very much on the water models employed, while in
nonaqueous solutions the PMF is significantly affected by explicit polarization. For example, the free
energy barrier for a phosphoryl dissociation reaction in acetone and cyclohexane is found to increase
by more than 10 kcal/mol when switching the solvent model from an empirical to explicitly polariz-
able one. The reason for this is discussed based on the parametrization of empirical nonpolarizable
models. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3699234]

I. INTRODUCTION

Molecular dynamics (MD) simulation provides a pow-
erful tool for studying complex molecular systems in solu-
tion and biological systems. The method of MD simulation
ranges widely from purely classical ones based on empiri-
cal force fields to purely quantum ones involving all elec-
trons (i.e., ab initio MD). The combined quantum mechan-
ical/molecular mechanical (QM/MM) methods1–3 bridge the
gap between those extremes by describing only the chemi-
cally relevant part quantum mechanically while the remaining
part with classical force fields. Such a QM/MM simulation is
typically performed with empirical nonpolarizable MM mod-
els, e.g., the TIP3P model4 for water and OPLS-AA (Ref. 5)
for organic solvents. Those models are usually parametrized
so as to reproduce bulk properties of solvent and have been
employed successfully in numerous studies. However, since
electronic polarization is implicit in those models, there is no
guarantee that they can also describe electrostatic interactions
equally well, e.g., in the vicinity of solvated ions. Our goal
in this paper is thus to explore to what extent explicit MM
polarization is needed for accurately modeling a system of in-
terest, particularly focusing on chemical reactions in solution
(see Ref. 6 for recent reviews on polarizable simulations).

The kinetics of solution-phase reactions can be char-
acterized most fundamentally by free energy of reaction
and activation. Several QM/MM calculations have been per-
formed for free energy with explicit polarization included.7–14

Acevedo and Jorgensen studied the Menshutkin reaction by

a)Electronic mail: yamamoto@kuchem.kyoto-u.ac.jp.

performing semiempirical QM/MM calculation with a polar-
izable OPLS model.11 They observed that for nonpolar apro-
tic solvents (e.g., cyclohexane), the free energy barrier ob-
tained with nonpolarizable models deviates significantly from
experimental results, while inclusion of explicit polarization
improves the agreement by more than 10 kcal/mol. Similar
improvement has been observed for the binding of charged
ligands to solvated proteins7, 15 and pKa shifts of ionizable
groups between proteins and aqueous solution.16, 17 In con-
trast, there are also studies that report essentially no or only
minor effects of explicit polarization.9, 12 For example, Lu and
Zhang9 performed ab initio QM/MM free energy calculation
for the Finkelstein reaction in aqueous solution and observed
only a relatively minor change in the free energy barrier
(∼1.3 kcal/mol) compared to the nonpolarizable result. The
above observations suggest that the effects of explicit polar-
ization are rather dependent on the solute and solvent under
study.

On the computational side, the QM/MM free energy
calculation presents a significant challenge in itself. This is
because free energy calculation involves extensive statistical
sampling of the total system, typically requiring a large
number of QM calculations greater than 105. As such, it is
common to employ a fast QM method such as semiempirical
Hamiltonian. To employ more accurate ab initio methods, it
is necessary to introduce some tricks or approximations for
reducing the number of QM calculations. One such approach
is a variety of mean field approximation for the electrostatic
coupling between the QM and MM subsystems. Warshel
and co-workers18 demonstrated that QM/MM free energy
calculation can be accelerated significantly by performing a

0021-9606/2012/136(13)/134107/17/$30.00 © 2012 American Institute of Physics136, 134107-1
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partial statistical average of the MM subsystem to calculate
the QM energy. The average solvent electrostatic potential
(ASEP) method developed by Aguilar and co-workers19–22

takes a complete average of the MM subsystem and performs
geometry optimization in solution19 based on the free energy
gradient method.23–25 The ASEP method is thus analogous
to the continuum solvation models26, 27 and the reference
interaction site model (RISM) self-consistent field (SCF)
method28–30 in which the average solvent potential is included
into the QM Hamiltonian. It is also noteworthy that the mean
field of the environment is used as the zeroth-order part of the
QM/MM minimum free energy path method developed by
Yang and co-workers.31–33 In a previous paper,34 we thus ex-
plored a theoretical basis for the mean-field QM/MM method
by starting from a variational principle of free energy and
presented a simple analytical expression for the free energy
gradient.35 The main advantage here is that it can reduce
the number of QM calculations significantly (typically on
the order of 100), while allowing an extensive sampling
of the MM subsystem. In this sense, the mean-field QM/MM
approach can be regarded as intermediate between a direct
QM/MM calculation and more traditional approaches (e.g.,
the continuum and RISM-SCF methods).

The purpose of this paper is two-fold: First, in Sec. II we
present a mean-field QM/MM theory for electronically polar-
izable systems by extending the previous formalism for non-
polarizable MM systems.34 This is performed by first making
the Hartree product ansatz for the total system (as often em-
ployed in fragment based QM approaches)36–43 and invoking
a variational principle of free energy. We then recast the MM
wave function to a classical polarizable model by introducing
the charge response kernel.44, 45 The accuracy of the obtained
method is examined by comparison with a direct QM/MM
calculation. In Sec. IV, we apply the method to three pro-
totypical reactions in solution (SN2 reactions of types I and
II and a phosphoryl dissociation reaction). We consider six
different solvents for this purpose, namely, polar protic sol-
vents (water and methanol), polar aprotic solvents (acetoni-
trile, acetone, and N, N-dimethylformamide) and a nonpolar
aprotic solvent (cyclohexane). Through extensive comparison
among the calculated PMF, we demonstrate that the use of ex-
plicitly polarizable models is crucial for accurately evaluating
the PMF in organic solvents, while the empirical nonpolar-
izable models (such as TIP3P) (Ref. 4) are rather sufficient
for reactions in aqueous solution. We also calculate the PMF
with continuum models for comparison and show that the
obtained PMF is rather insensitive to the dielectric constant
of solvents. The main conclusions obtained are summarized
in Sec. V.

II. THEORY

A. QM/MM free energy for electronically
polarizable systems

In this section, we define the QM/MM free energy for
electronically polarizable systems (without mean field ap-
proximation). Our goal here is to calculate the Helmholtz free
energy of a system consisting of one solute molecule (with

fixed geometry) immersed in N solvent molecules, that is,

A(R) = − 1

β
ln

∫
drN exp[−βEtot(R, r)], (1)

where R and rN = (r1, . . . , rN ) denote the Cartesian co-
ordinates of solute and solvent molecules, respectively,
Etot(R, rN ) is the total energy of the system, and β = 1/(kBT)
is reciprocal temperature. The above A(R) provides a free en-
ergy surface (or PMF) as a function of solute geometry R. We
start from a fragment based description of the total system, in
which the solute and solvent molecules are given individual
molecular wave functions, � and {ψ i} (i = 1, . . . , N). The
molecules are assumed to interact through electrostatic (ES)
and van der Waals (vdW) interactions. The total energy in
Eq. (1) is defined here as

Etot(R, r) = min
�

min
{ψi }

E[�, {ψi}], (2)

where the following energy function:

E[�, {ψi}] = 〈�|Ĥ 0|�〉 +
∑

i

〈ψi |ĥ0
i |ψi〉 +

∑
i

Q · Di · qi

+ 1

2

∑
i �=j

qi · Dij · qj + UvdW (3)

is minimized with respect to � and {ψ i} for each configura-
tion (R, rN ). Here, Ĥ 0 and ĥ0

i represent the gas-phase elec-
tronic Hamiltonian of the solute and solvent molecules, re-
spectively, and UvdW denotes the vdW interactions in the total
system (typically modeled with the Lennard-Jones (LJ) po-
tential). The third and fourth terms in Eq. (3) are the solute-
solvent and solvent-solvent ES interactions, where Q = {Qγ }
and qi = {qia} denote collectively partial charges of the solute
and ith solvent molecule, respectively. The Di and Dij matri-
ces in Eq. (3) provide a short-hand notation for the reciprocal
distances between solute and solvent atoms given by

[Di]γ,a = 1

|Rγ − ria| , [Dij ]a,b = 1

|ria − rjb| , (4)

where index γ runs over the solute atoms and indices a and b
run over the ith and jth solvent molecules, respectively. With
this notation the third and fourth terms in Eq. (3) read as

Q · Di · qi =
∑

γ

(i)∑
a

Qγ qia

|Rγ − ria| ,

qi · Dij · qj =
(i)∑
a

(j )∑
b

qiaqjb

|ria − rjb| . (5)

Hereafter, we assume that the partial charges are obtained
with the ESP fitting protocol,46 which allows us to write Q
and qi in the form of expectation values28, 29

Q = 〈�|Q̂|�〉, qi = 〈ψi |q̂i |ψi〉, (6)

where Q̂ and q̂i are one-electron operators that generate ESP
derived partial charges. Now inserting the above expressions
for Q and qi into Eq. (3) and performing energy minimization
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with respect to � and {ψ i}, we obtain

[Ĥ 0 + Q̂ · V]|�〉 = EQM|�〉, (7a)

[
ĥ0

i + q̂i · vi

]|ψi〉 = εi |ψi〉, (7b)

where V and vi are ESP values acting on the solute and ith
solvent molecule, namely,

V =
∑

i

Diqi , (8a)

vi =
∑
j (�=i)

Dij qj + DT
i Q. (8b)

Note that Eq. (7) represents coupled equations for � and
{ψ i}, because V and {vi} depend on Q = 〈�|Q̂|�〉 and
qi = 〈ψi |q̂i |ψi〉 via Eq. (6). By solving the above coupled
equations, we obtain the optimal molecular wave functions
for each solute and solvent configuration, i.e., |�(R, r)〉 and
|ψi(R, r)〉.

Before proceeding, it is interesting to note that the total
energy in Eq. (2) can be written as

Etot(R, r) = 〈�tot|Ĥ|�tot〉, (9)

where � tot is the Hartree product wave function for the total
system

|�tot〉 = |�(R, r)〉
∏

i

|ψi(R, r)〉, (10)

and Ĥ is the total Hamiltonian given by

Ĥ = Ĥ 0 +
∑

i

ĥ0
i +

∑
i

Q̂ · Di · q̂i

+ 1

2

∑
i �=j

q̂i · Dij · q̂j + UvdW. (11)

The above Hartree product approximation is commonly em-
ployed in a variety of fragment based approaches43 (e.g., the
X-Pol method)38 for describing electronic polarization in con-
densed phases.

B. Mean field approximation to QM/MM free energy

The evaluation of A(R) in Eq. (1) is expensive because
one needs to calculate the solute wave function �(R, r) for a
large number of solvent configurations r. To avoid this, we in-
troduce mean field approximation for the QM wave function.
Specifically, we consider an approximate solute wave func-
tion �̃ that depends only on the solute coordinates R, and
consider a total wave function given by

|�̃tot〉 = |�̃(R)〉
∏

i

|ψi〉. (12)

Here, we suppose that �̃(R) represents some average or
coarse-grained approximation to the original �(R, r). The
corresponding total energy may be defined as

Ẽtot(R, rN ; �̃) ≡ min
{ψi }

〈�̃tot|Ĥ|�̃tot〉 = min
{ψi }

E[�̃, {ψi}],
(13)

by minimizing with respect to {ψ i}. One can then define an
approximate QM/MM free energy as

Ã(R; �̃) = − 1

β
ln

∫
drN exp{−βẼtot(R, r; �̃)}. (14)

To proceed, we utilize the inequality

Etot(R, r) ≤ Ẽtot(R, r; �̃), (15)

which holds true for any �̃ because Ẽtot(R, r; �̃) is mini-
mized only for the solvent wave functions, while Etot(R, r)
is minimized both for the solute and solvent wave functions.
The above relation suggests

A(R) ≤ Ã(R; �̃), (16)

which states that Ã(R; �̃) gives an upper bound on the orig-
inal A(R) irrespective of the choice of �̃. This means that
the best �̃ is obtained by minimizing Ã(R; �̃) with respect to
�̃. We write the minimal value of Ã(R; �̃) thus obtained as
AMF(R), i.e.,

AMF(R) = min
�̃

Ã(R; �̃). (17)

By performing the variational procedure,47 we obtain the
equation for �̃ as

[Ĥ 0 + Q̂ · V̄]|�̃〉 = EQM|�̃〉, (18)

where V̄ = {V̄α} is the statistical average of the solvent ESP,

V̄ = 〈V〉 =
〈∑

i

Diqi

〉
, (19)

with the ensemble average defined by

〈· · · 〉 =
∫

drN exp[−βEMM](· · · )∫
drN exp[−βEMM]

. (20)

The EMM in Eq. (20) is the sum of solute-solvent and solvent-
solvent interactions in the presence of solute charge Q̃,

EMM(R, r; Q̃) =
∑

i

〈ψi |ĥ0
i |ψi〉 +

∑
i

Q̃ · Di · qi

+ 1

2

∑
i �=j

qi · Dij · qj + UvdW, (21)

where Q̃ and qi are, respectively, partial charges obtained
from �̃ and ψ i,

Q̃ = 〈�̃|Q̂|�̃〉, qi = 〈ψi |q̂i |ψi〉. (22)

The solvent wave functions {ψ i} are defined such that they
minimize E[�̃, {ψi}] in Eq. (13) or equivalently the right-
hand side of Eq. (21). The resulting equation for ψ i is[

ĥ0
i + q̂i · vi

]|ψi〉 = εi |ψi〉, (23)

where vi is the ESP acting on the ith solvent molecule

vi =
∑
j (�=i)

Dij qj + DT
i Q̃. (24)

Since repeated evaluation of {ψ i} is expensive, we further
introduce the charge response kernel (CRK) model for the
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solvent.44, 45, 48 This model performs second-order expansion
of εi in Eq. (23) with respect to vi , which gives

EMM(R, r; Q̃) �
∑

i

ε0
i −

∑
i

1

2
vi · K0

i · vi +
∑

i

Q̃ · Di · qi

+ 1

2

∑
i �=j

qi · Dij · qj + UvdW (25)

(see Appendix A for the derivation). In this model the solvent
charge qi is obtained by the linear response approximation

qi � q0
i + K0

i vi , (26)

where q0
i is the solvent charge in the gas phase and K0

i is
the charge response matrix.44, 45, 48 The qi and vi are obtained
by solving Eqs. (24) and (26) for each given (R, r, Q̃). The
corresponding total energy is

Ẽtot(R, r) = 〈�̃|Ĥ 0|�̃〉 + EMM(R, r; Q̃), (27)

where EMM is given by Eq. (25). Substituting the above total
energy into Eq. (14), we obtain the mean field approximation
to QM/MM free energy

AMF(R) = 〈�̃|Ĥ 0|�̃〉 + �μ(R, Q̃), (28)

where �μ is the solvation free energy of the solute with fixed
R and Q̃, namely,

�μ(R, Q̃) = − 1

β
ln

∫
drN exp{−βEMM(R, r; Q̃)}. (29)

Obviously, the above expression for AMF(R) is quite analo-
gous to those employed in traditional solvation models.26, 27, 30

The essential difference here is that we perform explicit sam-
pling of solvent in order to obtain the mean field of solvent,
〈V〉 = {〈Vα〉}. Since the solvation free energy �μ is calcu-
lated explicitly with an atomistic model, the above approach
may be regarded as intermediate between a direct QM/MM
calculation and more traditional solvation models.26, 27, 30

III. COMPUTATIONAL DETAILS

A. Calculation of the PMF profile

In this section, we describe the details for calculating the
AMF(R) for solution-phase reactions. Specifically, we calcu-
late the profile of AMF(R) (or PMF) by integrating the free
energy gradient ∇AMF(R) along a given reaction coordinate,
ξ (R). The free energy gradient in the mean field approxima-
tion is given by

∂

∂R
AMF(R) = ∂EQM(R, V̄)

∂R

∣∣∣∣
V̄

+
〈∑

i

Q̃ · ∂Di

∂R
· qi + ∂UvdW

∂R

〉
Q̃

, (30)

where R is an arbitrary element of R (see Appendix B for the
derivation). Using the gradient in Eq. (30), we perform ge-
ometry optimization on the free energy surface AMF(R) with
geometric constraint ξ (R) = ξ ′. We then obtain the PMF by

integrating the free energy gradient as

AMF(R(ξ )) =
∫ ξ

ξ0

dξ ′ ∂AMF(R)

∂R

∣∣∣∣
R=R(ξ ′)

· dR(ξ ′)
dξ ′ + const,

(31)
where R(ξ ′) denotes the optimized geometry at ξ ′. In practice,
we discretize the reaction coordinate into a set of grid points
{ξ k} and evaluate the integral as follows:

AMF(R(ξK )) − AMF(R(ξ0))

�
∑

k=1,K

1

2
[∇AMF(R(ξk)) + ∇AMF(R(ξk−1))]

· [R(ξk) − R(ξk−1)
]
. (32)

In this paper the grid spacing is set to 0.2 Å, which is
found to be sufficiently small for the present application
(see Sec. IV).49

For the free energy gradient in Eq. (30) to be valid, one
needs to ensure that the solute wave function �̃ is determined
self-consistently via Eq. (18). This requirement is common
to essentially all the solvation models.26, 27, 30 In principle, the
self-consistency can be achieved by repeating the QM cal-
culation of the solute and statistical sampling of solvent as
follows:

1. Prepare an initial guess of the solute wave function �̃.
2. Calculate the solute partial charge Q̃α = 〈�̃|Q̂α|�̃〉 and

perform statistical sampling of the solvent in the pres-
ence of Q̃ = {Q̃α}.

3. Calculate the solute wave function �̃ in the presence of
the mean solvent ESP, 〈V〉 = {〈Vα〉}.

4. Repeat steps 2 and 3 until Q̃ and 〈V〉 converge.

Once the self-consistency is achieved for given R, one
evaluates the free energy gradient by Eq. (30) and advance ge-
ometry optimization one step further on the free energy sur-
face AMF(R). However, this approach is very expensive be-
cause of the repeated statistical sampling of solvent for each
R. As such, a more efficient approach has been proposed
(called the sequential sampling and optimization method).32

The latter approach is obtained by modifying steps 3 and 4 as
follows:

3. Perform full geometry optimization of R in the presence
of an approximate average solvent potential obtained
from the previous MD run, subject to the geometric con-
straint ξ (R) = ξ ′.

4. Repeat steps 2 and 3 until R, Q̃, and 〈V〉 converge.

This approach has been utilized previously to accelerate
the geometry optimization on free energy surface19, 32, 34 and
it is also utilized in the present paper.

In the application presented in Sec. IV, we choose the
reaction coordinate as

ξ = r(Cl − C) − r(C − Cl′) (33)

for the Finkelstein reaction (Sec. IV A) and

ξ = r(Cl − C) − r(N − C) (34)

for the Menshutkin reaction (Sec. IV B). For a phospho-
ryl dissociation reaction discussed in Sec. IV C, we do not
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utilize a distinguished reaction coordinate but rather calculate
the reaction path approximately using the string method50 (see
Sec. IV C for details).

The QM calculation was performed using a modified
version of the GAMESS program51 with the ESP charge
operator Q̂α and its derivative implemented.28, 29 The ESP
grid points were generated using the Spackman scheme52

with the number of grid points being ∼3000. We performed
coupled-cluster with single, double, and perturbative triple ex-
citations (CCSD(T)) and MP2 calculations53, 54 with the 6-
311++G(3df,3p) basis and density functional theory (DFT)
and Hartree-Fock (HF) calculations with the 6-31+G(d,p) ba-
sis, unless otherwise noted. When MP2 method is used for the
QM part, we calculated the solute partial charge as

QMP2
γ = Zγ − tr[PMP2bγ ], (35)

where Zγ is nuclear charge, PMP2 is the sum of SCF density
and its MP2 correction (known as MP2 response density), and
bγ is the electron part of the ESP charge operator in the atomic
orbital basis. We calculated QM/MM free energy at the MP2
level by generalizing Eq. (28) as

AMF(R) = EMP2
QM (R, V̄) − Q̃MP2 · V̄ + �μ(R, Q̃MP2), (36)

where EMP2
QM denotes MP2 energy calculated in the presence of

V̄, and Q̃MP2 is the partial charge obtained with Eq. (35).

B. Protocol of CRK-MD simulation

The MD calculations were performed with the NVT
condition at 298 K with the box size determined from sepa-
rate NPT runs at 1 atm. The Ewald summation was used for
calculating the Coulomb interactions. The system consisted
of one solute molecule and 252 solvent molecules for all
the systems considered. We set the mass of O and H atoms
of water molecules to 10 amu in order to use a time step to
3 fs (Ref. 55). Note that varying the mass of solvent atoms
does not affect the thermodynamic properties of interest.
We performed the solute-solvent iterations in the mean-field
calculation typically 4–6 times until convergence. The itera-
tions were terminated when the residual free energy gradient
converged to within 5 × 10−4 (in atomic units). In each
iteration, we performed a MD sampling of 600 ps to calculate
the mean solvent ESP, followed by QM optimization in the
presence of the average solvent field.34 The above procedure
was performed for each grid point of ξ ′, and the PMF was
obtained by integrating the free energy gradient as Eq. (32).
Several independent calculations show that statistical error of
the free energy barrier is on the order of 0.1 kcal/mol, indicat-
ing that the obtained PMF is statistically well converged (see
Sec. IV and the supplementary material).116 The calculation
of a single PMF took several hours to several days depending
on the type of solvent using 8 nodes of dual-cpu Xeon
2.5 GHz in parallel. For the reactions studied below, most of
computer time was spent on the classical MD sampling of
solvent rather than the QM calculation of the solute molecule.
All the MD calculations were performed with a modified
version of the DLPOLY program.56

The solvent was described both with polarizable and
nonpolarizable models. In the nonpolarizable case, we used
the TIP3P model for water,4 the OPLS-AA model5 for
methanol, acetone, and N,N-dimethylformamide (DMF), the
Böhm model57 for acetonitrile, and the OPLS-UA model for
cyclohexane.58 In the polarizable case, we used the CRK
model44, 45 obtained by attaching the ESP derived charges
q0

i and the CRK matrix K0
i on each solvent molecule. The

q0
i was calculated at the B3LYP/aug-cc-pVTZ level, and

the K0
i was obtained by numerically differentiating the partial

charge with respect to the external ESP values [cf. Eq. (A3)].
The geometries and LJ parameters of solvent were taken
from the corresponding nonpolarizable models. In all the
calculations, the solvent molecules were treated as rigid
bodies. Regarding the solute molecule, the LJ parameters
for the Finkelstein and Menshutkin reactions were taken
from the AMBER94 force field,59 except for the Cl parameter
taken from Gao and Xia,60 whereas the LJ parameters for
the phosphoryl dissociation reaction were taken from the
OPLS-AA model.5 The validity of the present CRK model is
further discussed in Appendix A.

In the CRK-MD calculation, all the electrostatic interac-
tions (including the solute-solvent ones) were attenuated at
short distances as follows:45, 61

[Di,j ]a,b = 1∣∣Ria − Rjb

∣∣f
(∣∣Ria − Rjb

∣∣
sia,jb

)
, (37)

where f (v) is a Thole-type damping function61

f (v) =
{

v4 − 2v3 + 2v, v ≤ 1

1, v > 1,
(38)

and the sia, jb in Eq. (37) is a characteristic distance given by

sia,jb = A(αiaαjb)1/6, (39)

where α is the atomic polarizability and A is an adjustable
parameter45 set to 2.7 for water and 2.6 for organic solvents.
The above damping function accounts for the charge distri-
bution of individual atoms and is necessary for avoiding the
so-called “polarization catastrophe.” The values of α (in Å3)
are chosen as follows:61–63 αC = 1.405, αH = 0.514, αN

= 1.105, αO = 0.862, αP = 3.63, αCl− = 3.25, αCH2 = 1.405
for the united CH2 atom of cyclohexane. In nonpolarizable
simulations, all the Coulomb interactions were treated with-
out attenuation [i.e., f (v) ≡ 1]. Other details of the CRK-MD
(including the extrapolation of partial charges) are identical to
those described in Ref. 48.

IV. RESULTS AND DISCUSSION

A. Finkelstein reaction

The first reaction that we study is the Type-I SN2
(Finkelstein) reaction

Cl− + CH3Cl −→ ClCH3 + Cl−, (40)

which exhibits charge displacement from the attacking chlo-
ride ion to the leaving one as the reaction proceeds. Since
the reactants have a more localized charge distribution than
the transition state, a polar solvent stabilizes the former more
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FIG. 1. Potential energy profile of the Finkelstein reaction (Cl− + CH3Cl
→ ClCH3 + Cl−) in the gas phase. Zero of energy is set at the infinitely
separated reactants. The basis sets are 6-311++G(3df,3p) for CCSD(T) and
MP2 and 6-31+G(d,p) for B3LYP, BHHLYP, and HF methods. For compar-
ison, the energy profile at the HF/6-31G(d) level is also shown.

strongly than the latter, making the free energy barrier higher
in polar solvents. Indeed, it is known that the Finkelstein reac-
tion proceeds by orders of magnitude slower in polar solvents
than in the gas phase.64 Because of this, the Finkelstein reac-
tion has been studied extensively using a variety of theoretical
methods.9, 32, 65–74

We first present in Fig. 1 the potential energy profile in
the gas phase calculated at various QM levels. The energy
profile was calculated by optimizing all the internal coordi-
nates other than the reaction coordinate. The CCSD(T), MP2,
and Becke’s half-and-half Lee-Yang-Parr (BHHLYP) meth-
ods provide similar results with a complexation energy of
11 kcal/mol and a barrier height of 3–4 kcal/mol (as measured
from the infinitely separated reactants), while the B3LYP
method somewhat underestimates the reaction barrier. Inter-
estingly, the HF/6-31G(d) method gives an energy profile
close to the CCSD(T) result due essentially to error cancel-
lation. This fact was utilized in the earlier work of Jorgensen
and co-workers65, 66 in order to perform accurate ab initio cal-
culation of PMF with minimal computational efforts.

Figure 2 displays the PMF in aqueous solution obtained
from the mean-field QM/MM calculation. Here, the QM level
is HF/6-31G(d) and the solvent is described with the TIP3P
model. The PMF exhibits a free energy barrier of 25 kcal/mol,
which is significantly higher than the potential energy bar-
rier in the gas phase (3–4 kcal/mol). This difference arises
from a large energy cost for desolvating the reactants (par-
ticularly the chloride ion) upon formation of the transition
state. We note that the PMF thus obtained is statistically well
converged, with the statistical error being comparable to the
width of the plotted curve. We also note that the PMF is well
converged with respect to the grid spacing in Eq. (32); see the
supplementary material116 for more details.

To check the accuracy of the mean field approximation,
we performed a direct QM/MM calculation without mean
field approximation. Specifically, we calculated the free
energy gradient as

∂A(R)

∂R
=

〈
∂Etot(R, r)

∂R

〉
, (41)

by running a direct QM/MM trajectory for 90 ps. Here,
the solute geometry was fixed at one of the optimized
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FIG. 2. Potential of mean force (PMF) of the Finkelstein reaction Cl−
+ CH3Cl → ClCH3 + Cl− in aqueous solution. The result obtained with
the mean-field QM/MM method is compared to those obtained from direct
QM/MM calculations (see text for details). The QM calculation is performed
at the HF/6-31G(d) level. The water is represented by the TIP3P model. The
circles depict raw data points obtained by integrating the free energy gradient
in Eq. (30). The statistical error of the PMF is comparable to the width of the
plotted curve (see the supplementary material116 for more details).

geometries {R(ξ ′
k)} obtained from the mean-field calculation.

The free energy gradient was integrated to obtain the PMF in
Fig. 2 (labeled as “direct QM/MM”). Note that the integra-
tion involves 22 grid points of ξ k, thus performing a total of
∼2000 ps QM/MM run to obtain a single PMF. Remarkably,
the PMF thus obtained agrees quite well with that obtained
from the mean-field QM/MM calculation, indicating that the
self-consistent mean-field approximation works very well for
the present system. This in turn suggests that statistical fluc-
tuations of the QM wave function (about the self-consistent
state) is of minor importance once the average distortion of
the QM wave function is properly taken into account in the
free energy calculation.

The above direct QM/MM calculation is not conventional
in that the solute geometry is fixed in space during the trajec-
tory calculation. A more standard approach is to move all the
degrees of freedom other than the reaction coordinate ξ (R).
The corresponding PMF is given by

G(ξ ′) = − 1

β
ln

∫
dR

∫
drN

× exp[−βEtot(R, r)]δ[ξ (R, r) − ξ ′]. (42)

For comparison, we also calculated the above G(ξ ′) by per-
forming a series of umbrella sampling calculations followed
by the weighted histogram analysis. Here, the umbrella poten-
tial was defined for each grid point of {ξ ′

k} (with an equal spac-
ing of 0.2 Å) and with the harmonic frequency of 30, 50, 80
kcal/mol/Å2 for ξ ′

k ∈ [−4.0,−2.6], [−2.4,−1.0], and [− 0.8,
0.2], respectively. For each umbrella potential, we performed
a direct QM/MM sampling for 60 ps at the HF/6-31G(d) level,
thus running a total of ∼1300 ps QM/MM calculation to ob-
tain a single PMF. The PMF thus obtained is shown in Fig.
2 (labeled as “direct QM/MM*”), whose barrier is higher by
3–4 kcal/mol than that of AMF(R). This difference arises from
solute thermal/entropic contribution, which needs to be taken
into account when making a quantitative comparison with ex-
periment (see below).
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FIG. 3. PMF of the Finkelstein reaction Cl− + CH3Cl → ClCH3 + Cl− in
water and acetone solutions calculated with the mean-field QM/MM method.
Solvents are described with the TIP3P and OPLS models in the nonpolar-
izable case (dashed lines) and with the CRK model in the polarizable case
(solid line). The QM calculation is performed at the BHHLYP/6-31+G(d,p)
level.

Figure 3 displays the profile of AMF(R) in aqueous and
acetone solutions calculated at the BHHLYP level. In aque-
ous solution, the PMF obtained with the polarizable model is
almost identical to that obtained with the TIP3P model, re-
sulting in a barrier height of 23 kcal/mol. Indeed, the PMF in
aqueous solution hardly depends on the type of water models
employed, as seen from comparison among several different
models (see the supplementary material).116 In acetone solu-
tion, on the other hand, the free energy barrier calculated with
the polarizable model (16 kcal/mol) is considerably higher
than that obtained with the OPLS model (11 kcal/mol). To

obtain more insight, we depict in Fig. 4 the profile of aver-
age solvent ESP V̄ acting on the solute molecule. In aqueous
solution, the ESP profiles obtained with the polarizable and
nonpolarizable models are almost identical, while in acetone
solution the ESP profiles are rather different between the two
models. Figure 4(c) displays the ES contribution to the solva-
tion free energy calculated with the linear response approx-
imation, namely, 1/2Q̃ · (V̄ − V0), where V0 is the Wigner
potential.75–78 This figure shows that in acetone solution, the
solvation free energy decreases by −15 kcal/mol for the re-
actant and by −8 kcal/mol for the transition state, resulting
in the increased free energy barrier shown in Fig. 3. On the
other hand, the solvation free energies in aqueous solution
calculated with the polarizable and nonpolarizable models are
almost identical with a slight overall shift of ∼2 kcal/mol.

Figure 5(a) displays the profile of AMF(R) calculated for
various solvents with the polarizable models. As seen, the
PMFs exhibit different barrier heights depending on the type
of solvents. Polar protic solvents (water and methanol) ex-
hibit the highest barrier of 23–24 kcal/mol due to the pres-
ence of solute-solvent hydrogen bonds. Polar aprotic solvents
(DMF, acetonitrile, and acetone) exhibit an intermediate bar-
rier height (16–18 kcal/mol), while a nonpolar aprotic sol-
vent (cyclohexane) gives a low barrier of 9 kcal/mol. The
barrier heights obtained with different levels of QM theory
are summarized in Table I. For comparison, we also calcu-
lated the PMF using the COSMO continuum model.79 The
obtained PMFs are plotted in Fig. 5(b), which shows that the
COSMO model provides a reasonable estimate of the free
energy barrier in aqueous solution (21 kcal/mol). However,
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FIG. 4. Solvent electrostatic potentials (ESPs) acting on the solute atoms, 〈Vα〉, for the Finkelstein reaction in (a) water and (b) acetone solutions. The results
obtained with the polarizable and nonpolarizable solvent models are shown by solid and dashed lines, respectively. Cl* and Cl indicate the attacking and leaving
chloride atoms, respectively. The curve labeled with CH3 shows the mean value of ESP acting on the methyl group. Panel (c) displays the solvation free energy
calculated with the linear response approximation (see the main text). The ESP values in panels (a) and (b) include the contribution of the Wigner potential.
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FIG. 5. PMF of the Finkelstein reaction in various solvents calculated with
(a) the mean-field QM/MM method and (b) the COSMO continuum solvation
model. In panel (a), all the solvents are described with the polarizable CRK
model. The QM calculation is performed at the BHHLYP/6-31G+(d,p) level.

it is also seen that the PMF is rather insensitive to the value of
dielectric constant, and as a result the COSMO model can-
not distinguish solvents other than cyclohexane. A similar
trend is observed for the PCM model (see the supplemen-
tary material)116 and also observed previously for different
reactions.80, 81 The above trend may be attributed to the inad-
equate description of solute-solvent specific interactions in-
cluding hydrogen bonds. Another possible reason is that the
apparent surface charge used in the continuum model is pro-
portional to f(ε) = (ε − 1)/(ε + 1/2), which is a rather flat
function for ε > 20.

To compare the calculated value of �A‡ with experi-
ment, we need to make two further corrections for �A‡.
The first is the correction for solute thermal motions, which
we estimated using the standard separable rotation/vibration
approximation.82, 83 The necessary input for this is the Hessian
matrix of AMF(R) at stationary points, which was obtained by

TABLE I. Free energy barrier �A‡ (in kcal/mol) for the Finkelstein re-
action (Cl− + CH3Cl → ClCH3 + Cl−) obtained with the mean-field
QM/MM method. �A‡ is calculated as A(ξ = 0.0) − A(ξ = −4.0). The
solvents are described with the polarizable CRK model. Values in parenthe-
ses are obtained with the nonpolarizable solvent models. The basis sets are
6-311++G(3df,3p) for MP2 and 6-31+G(d,p) for BHHLYP method.

QM method Water Methanol Acetone DMF

MP2 25.6 (26.0) 25.8 (23.6) 17.1 (11.6) 16.3 (11.7)
BHHLYP 23.0 (23.3) 24.2 (21.9) 16.2 (11.2) 15.6 (11.1)
HF/6-31G(d) 24.2 (24.6) 25.3 (23.3) 17.5 (12.3) 17.0 (12.5)

TABLE II. Free energy correction for statistical fluctuations of the QM
wave function [namely, the second term in Eq. (C1)] calculated for the
Finkelstein reaction in solution (in kcal/mol). The QM level is BHHLYP/6-
31+G(d,p) and the solvents are described with the polarizable CRK model.
Values in parentheses are obtained with the nonpolarizable solvent models.

ξ (Å) Water Methanol Acetone DMF

−4.0 −0.15 (−0.36) −0.12 (−0.34) −0.17 (−0.29) −0.22 (−0.36)
0.0 −0.34 (−0.97) −0.30 (−0.95) −0.11 (−0.16) −0.09 (−0.14)

finite difference of the free energy gradient in Eq. (30). The
solute thermal correction thus obtained with the standard state
of 1 M is 4.0 kcal/mol in aqueous solution and 4.6 kcal/mol
in the gas phase. Since those values are rather close, we used
the average value (4.3 kcal/mol) for all the solvents consid-
ered. The second correction for �A‡ is on the statistical fluc-
tuations of QM wave function about the self-consistent state
(see Appendix C). The latter correction was estimated using
the CRK of the solute molecule and is provided in Table II.
The result shows that the correction for �A‡ is on the order of
0.1 kcal/mol and is thus rather minor compared to the solute
thermal correction.

Table III summarizes the activation free energy �G‡ thus
obtained by adding the above two corrections for �A‡ (here-
after we denote the corrected free energy as �G‡). This ta-
ble shows that in nonaqueous solutions the agreement with
experiment84, 85 is significantly improved by using the polar-
izable model. For example, �G‡ in acetone solution is cal-
culated to be 20.6 and 15.6 kcal/mol with the polarizable
and nonpolarizable models, respectively, where the former is
in better agreement with experiment (21.8 kcal/mol). On the
other hand, �G‡ in aqueous solution obtained with the CRK
and TIP3P models (27.1 and 27.0 kcal/mol) are both in excel-
lent agreement with experiment (26.6 kcal/mol). The substan-
tial improvement observed for nonaqueous solutions is partly
attributed to the relatively large polarizability of solvent (see
Table IV). For example, the molecular polarizability of ace-
tone (6.4 Å3) is considerably larger than that of water (1.5 Å3),
implying much stronger electronic polarization in acetone so-
lution. This expectation is consistent with the profile of sol-
vent ESP and solvation free energy shown in Fig. 4. Another
likely reason for the different behavior of water and organic
solvents is the parametrization of empirical solvent models;
this point will be discussed in Sec. IV B.

TABLE III. Activation free energy �G‡ (in kcal/mol) for the Finkelstein
reaction Cl− + CH3Cl → ClCH3 + Cl− calculated with the mean-field
QM/MM method. The QM calculation is performed at the BHHLYP/6-
31+G(d,p) level, and the solvents are described with the polarizable CRK
model. The values include the corrections for solute thermal motions
(4.3 kcal/mol, see the main text) and statistical fluctuations of the QM wave
function (Table II). Values in parentheses are the results obtained with the
nonpolarizable models. �G

‡
expt refers to the experimental estimate.85

Solvent Water Methanol Acetone DMF

�G‡ 27.1 (27.0) 28.3 (25.6) 20.6 (15.6) 20.0 (15.6)

�G
‡
expt 26.6 28.2 21.8 22.7
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TABLE IV. Dielectric constants and molecular polarizability of water,
methanol (MeOH), acetonitrile (MeCN), acetone, N,N-dimethylformamide
(DMF), and cyclohexane (CHX).

Water MeOH MeCN Acetone DMF CHX

ε 78.5 32.7 36.0 21.4 37.1 2.0
α (Å3) 1.5 3.3 4.4 6.4 11.5 10.9

B. Menshutkin reaction

We next study the Type-II SN2 (Menshutkin) reaction

NH3 + CH3Cl −→ NH3CH3
+ + Cl−. (43)

This reaction is known to exhibit significantly enhanced
rates in polar solvents due to strong electrostatic stabiliza-
tion of the products.64 This is in contrast to the Finkel-
stein reaction discussed in Sec. IV A, which are deceler-
ated by the electrostatic stabilization of the reactants. Be-
cause of this, a number of theoretical studies25, 34, 60, 86–97

have been performed for the model reaction in Eq. (43).
Those studies suggest the free energy of activation in aque-
ous solution to be around 20–30 kcal/mol and the free energy
of reaction to be −20 to −35 kcal/mol (including solute ther-
mal correction),98 although the results depend significantly
on the detail of calculation. To our knowledge, no experi-
mental result is available for the activation free energy, while
the free energy of reaction in aqueous solution is known to
be −34 ± 10 kcal/mol.60

We first present the potential energy profile in the gas
phase at various QM levels (Fig. 6). The CCSD(T) and MP2
results agree well with each other, and thus they can be uti-
lized as the reference. In comparison, the DFT methods un-
derestimate the reaction barrier by 5–10 kcal/mol, and the HF
method underestimates the potential energy at ξ = 2.0 Å by
10 kcal/mol. Since the BHHLYP method gives a well-
balanced description of the entire profile, we will utilize the
latter for the QM/MM calculation. The use of the BHHLYP
method is also motivated by the previous studies that employ
the same functional.34, 90, 94 It should be noted, however, that
the free energy barrier obtained with the CCSD(T) or MP2
theory would be greater by ∼5 kcal/mol than that obtained
with the BHHLYP method.
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FIG. 7. PMF of the Menshutkin reaction NH3 + CH3Cl → NH3CH3
+

+ Cl− in water, DMF, and cyclohexane solutions calculated with the mean-
field QM/MM method. Solvents are described with the TIP3P and OPLS
models in the nonpolarizable case (dashed lines) and with the CRK model
in the polarizable case (solid line). The QM calculation is performed at the
BHHLYP/6-31+G(d,p) level.

Figure 7 displays the PMF in water, DMF, and cyclohex-
ane solutions obtained with the mean-field QM/MM method.
In aqueous solution, the PMF obtained with the CRK and
TIP3P models are almost identical, as observed for the Finkel-
stein reaction. With the CRK model, the free energy of reac-
tion (including solute thermal correction)98 is calculated to be
–36.5 + 7.5 = –29.0 kcal/mol, which falls within the error bar
of the experimental result (−34 ± 10 kcal/mol).60 In contrast,
in DMF and cyclohexane solutions the PMF obtained with the
CRK and OPLS models are rather different. In DMF, the free
energy barrier �A‡ and the reaction free energy �Ar [calcu-
lated as AMF(ξ = 2.0) − AMF(ξ = −2.0)] decrease by 3 and
12 kcal/mol when using the polarizable model. In cyclohex-
ane, the �A‡ and �Ar decrease by 6 and 18 kcal/mol when
using the polarizable model. The significant decrease in the
PMF suggests that the product ion pair is solvated more
strongly by the polarizable model. Figure 8 depicts the sol-
vent ESP for the Menshutkin reaction. In aqueous solution,
the ESP profile is essentially identical between the CRK and
TIP3P models, implying that the TIP3P model is doing a
rather good job for describing the ionic solvation. On the other
hand, in DMF and cyclohexane the ESP value increases by
up to 1.0 V in the product region, which leads to a sizable
(negative) increase in the solvation free energy [Fig. 8(d)]. A
closer look at Fig. 8 also reveals that in aqueous solution the
ESP acting on the chloride ion is greater (in magnitude) than
that acting on the NH3 moiety, while the opposite is true for
DMF and cyclohexane solutions (that is, the ESP acting on
NH3 is greater than that acting on Cl−). This is a reflection
of the fact that water is a good solvator of anions due to hy-
drogen bonds, while aprotic solvents favor cations due to lone
pairs/π -electrons in the solvent molecules.64

There are two likely reasons why the PMF in aqueous so-
lution is not much different between polarizable and nonpo-
larizable models, while the PMF in nonaqueous solutions is
modified significantly by explicit polarization. First, as noted
in Sec. IV A, the polarizability of water is much smaller
than organic solvents (see Table IV). The latter is thus ex-
pected to exhibit larger induced dipole in the vicinity of sol-
vated ions. The second likely reason is that the empirical
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FIG. 8. Solvent electrostatic potentials (ESPs) acting on the solute atoms, 〈Vα〉, for the Menshutkin reaction in (a) water, (b) DMF, and (c) cyclohexane
solutions. The results obtained with the polarizable and nonpolarizable solvent models are shown by solid and dashed lines, respectively. Panel (d) displays the
solvation free energy calculated with the linear response approximation (see the main text). In panel (c), the ESP value calculated with the OPLS-UA model for
cyclohexane is identically zero because the latter has no partial charge on the united CH2 atoms.

nonpolarizable models are parametrized using the bulk prop-
erties of solvent. This means that implicit polarization in-
cluded in the empirical models is highly dependent on the
type of solvent. In protic solvents, the molecules interact
strongly with each other via hydrogen bonds and thus their
wave functions are distorted significantly by the surrounding
molecules. Indeed, it has been suggested that the wave func-
tions of water molecules are nearly maximally polarized in
the bulk and thus no further polarization can be expected in
the vicinity of ions.99 The above observation is quite consis-
tent with the present results for aqueous solution. On the other
hand, the intermolecular interactions in nonaqueous solvents
are relatively weak and they are probably insufficient for de-
scribing the ES interaction with a solvated ion. An extreme
case of this is cyclohexane, for which the OPLS-UA model
carries no partial charge and hence the model is not able to
describe ES interactions at all.58 We expect that the above
two factors, namely, the relatively large polarizability of or-
ganic solvents and small implicit polarization included in the
empirical models, are mainly responsible for the significant
changes in the PMF observed above.

Figure 9 compares the PMF obtained with the mean-field
QM/MM method and the COSMO continuum model. Here,
all the QM/MM calculations are performed with the polar-
izable model. The PMF obtained with the QM/MM method
reflects the type of solvents (i.e., protic versus aprotic), as ex-
pected, while the PMF obtained with the continuum model is
rather insensitive to the value of dielectric constant. A similar
trend is observed for the PCM model (see the supplementary

material).116 We can also see from Fig. 9 that the reaction free
energy in aqueous solution is underestimated by the contin-
uum model (−26 kcal/mol) compared to the QM/MM method
(−36 kcal/mol). This is probably because of the inadequate
description of solute-solvent hydrogen bonds for the products
by the continuum model.

C. Phosphoryl dissociation reaction

We now study the dissociation reaction of methyl phos-
phate dianion in solution

CH3OPO3
2− −→ CH3O− + PO−

3 . (44)

Since the solute has a large net charge of −2e, we can ex-
pect that the solvent effects are stronger than those observed
for the Finkelstein and Menshutkin reactions. Experimentally,
phosphoryl dissociation reactions, such as Eq. (44), have been
studied as model reactions of phosphoryl transfer in biologi-
cal systems, and it is known that the reaction rate depends dra-
matically on the polarity of solvents.100–103 Theoretical work
has also been performed for the above reaction, including a
semiempirical QM/MM free energy calculation for aqueous
solution104 and a comparison of free energy profile in various
solvents at the continuum level.105

We first calculated an approximate reaction path for
Eq. (44) using the string method50 at the B3LYP/6-
31+G(d)/COSMO level. The string method determines an ap-
proximate minimum free energy path by optimizing a chain
of replicas on the free energy surface.50 Using the reaction
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FIG. 9. PMF of the Menshutkin reaction in various solvents calculated with
(a) the mean-field QM/MM method and (b) the COSMO continuum solvation
model. In panel (a), all the solvents are described with the polarizable CRK
model. The QM calculation is performed at the BHHLYP/6-31+G(d,p) level.

path thus obtained, the QM/MM PMF was calculated by inte-
grating the free energy gradient in Eq. (30) along the reaction
path. The reason for doing so is that a simple choice of dis-
tinguished reaction coordinate [e.g., ξ = r(P − O)] failed to
optimize the transition state on the QM/MM free energy sur-
face. This problem may be due to the flatness of free energy
surface in the transition state region.105

Figure 10 presents the potential energy profiles at var-
ious QM levels calculated along the reaction path obtained
above. The CCSD(T) and MP2 methods again predict almost
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FIG. 10. Potential energy profiles of the phosphoryl dissociation reaction
CH3OPO3

2 − → CH3O− + PO3
− in the gas phase. The basis sets are 6-

311++G(3df,3p) for CCSD(T) and MP2 methods and 6-31+G(d,p) other-
wise.

identical results with a barrier height of 27 kcal/mol. Among
the DFT methods employed, the MPW1PW91 and BHHLYP
functionals give the best agreement with the CCSD(T) and
MP2 results, while the B3LYP method somewhat underesti-
mates the reaction barrier. We thus employ the MPW1PW91
method in the following calculations. (The latter functional
has also been used in a recent study of phosphate hydrolysis
reactions).106

Figure 11 displays the PMF in acetone and cyclohexane
solutions obtained from the QM/MM calculation. In acetone,
the free energy barrier obtained with the polarizable model
(44 kcal/mol) is much higher than that obtained with the
OPLS model (32 kcal/mol). A similar trend is observed for
cyclohexane, in which the barrier height increases from 25 to
36 kcal/mol by using the polarizable model.58 Thus, the po-
larization effect is significant for this reaction. Although ex-
perimental results for the activation free energy are not avail-
able for acetone and cyclohexane, the activation free energy
for aqueous solution is known to be 44 kcal/mol (Ref. 101),
which is close to the polarizable QM/MM result for acetone.
For comparison, we also display in Fig. 11 the PMF obtained
with the COSMO model. The latter gives reasonable PMF for
both acetone and cyclohexane, although the excellent agree-
ment for cyclohexane seems somewhat fortuitous considering
the discrepancy between the COSMO and QM/MM results
observed in Secs. IV A and IV B.

Figure 12 displays the ESP profiles in acetone and cy-
clohexane. Since the solute has a large net charge of −2e,
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FIG. 11. PMF of the phosphoryl dissociation reaction CH3OPO3
2 −

→ CH3O− + PO3
− in (a) acetone and (b) cyclohexane solutions calculated

with the mean-field QM/MM method. For comparison, PMF obtained with
the COSMO model and the potential energy profile in the gas phase are also
shown. The QM calculation is performed at the MPW1PW91/6-31+G(d,p)
level.
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FIG. 12. Solvent electrostatic potentials (ESPs) acting on the solute atoms, 〈Vα〉, for the phosphoryl dissociation reaction in (a) acetone and (b) cyclohexane
solutions. The results obtained with the polarizable and nonpolarizable solvent models are shown by solid and dashed lines, respectively. Panel (c) displays the
solvation free energy calculated with the linear response approximation (see the main text). The ESP values in panels (a) and (b) include the contribution of the
Wigner potential.

the polarization effect is much more significant than observed
for the Finkelstein and Menshutkin reactions. Indeed, the
use of the polarizable models increases the solvent ESP by
2.0–2.5 V, which corresponds to an increase in the solvation
free energy by >50 kcal/mol (evaluated with the linear re-
sponse approximation). The solvation free energy for cyclo-
hexane amounts to 60–80 kcal/mol in magnitude, which is
produced solely by electronic polarization. It should be noted,
however, that the PMF is not determined by the magnitude
of solvation free energy but its variation along the reaction
coordinate. Since the solute has a more localized charge dis-
tribution in the reactant state, the electronic polarization sta-
bilizes the reactant more strongly than the transition state
[Fig. 12(c)], and as a result, the electronic polarization in-
creases the free energy barrier as observed in Fig. 11.

In addition to acetone and cyclohexane, we also at-
tempted the mean-field QM/MM calculation for protic sol-
vents (water and methanol). However, we find that the latter
calculations are unstable when the TIP3P and OPLS models
are used. Specifically, the partial charge on the oxygen atom
of the methoxide ion (CH3O−) diverged during the solute-
solvent iterations in the mean-field calculation. Similar diver-
gence was observed with the polarizable CRK model. On one
hand, this may be reasonable because the methoxide ion tends
to remove a proton from the surrounding water molecules and
is thus not very stable in aqueous solution. (Nevertheless, it
should be noted that experimental free energies of reaction
and activation are available for aqueous reaction).101, 107 On
the other hand, the instability may be attributed in part to the
ESP charge operator Q̂ that tends to overestimate the solute-

solvent electrostatic interactions. To verify this, we have per-
formed a preliminary calculation that employs a modified
ESP charge operator that includes charge penetration effects
at short range.108 As a result, we find that the mean-field cal-
culation can indeed be converged without severe difficulty.
This indicates that the above instability is not an inherent lim-
itation of the mean field approximation but rather due to in-
sufficient accuracy of the (raw) charge operator for describ-
ing highly charged systems in protic solvents. To investigate
the latter problem further, however, is somewhat beyond the
scope of this paper and thus left for future study.108

V. CONCLUSIONS

In this paper, we have presented a mean-field QM/MM
theory for electronically polarizable systems by employing
a fragment based description of the total system and using
a variational principle of free energy. The main advantage
here is that it can reduce the number of QM calculations sig-
nificantly while representing the molecular environment ex-
plicitly. We then applied the obtained method to prototypical
reactions in solution and made a systematic comparison of po-
larization effects on PMF. The main conclusions can be sum-
marized as follows:

� The PMF obtained from the mean field QM/MM cal-
culation agrees quite well with that obtained from a di-
rect QM/MM calculation (with fixed QM geometry).
This indicates that statistical fluctuations of the QM
wave function is of minor importance once the average
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distortion of the QM wave function is properly taken
into account in the free energy calculation.

� The empirical nonpolarizable models for water (such
as the TIP3P) provide a PMF very close to that ob-
tained with the polarizable model. This is presumably
because water molecules in bulk condition are nearly
maximally polarized and they cannot be further polar-
ized in the vicinity of a charged molecule.

� The empirical models for organic solvents, on the other
hand, underestimate the solvation of a charged species.
This is because the empirical models are parametrized
so as to reproduce the bulk condition, in which the or-
ganic molecules are often not significantly polarized.
An extreme case of this is cyclohexane, which pos-
sesses no or little dipole moment in the bulk but it can
solvate a charged molecule rather strongly via induced
dipole moment.

� As a result, the PMF in nonaqueous solution is affected
much more strongly by polarization than in aqueous
solution. This trend is most evident for reactions with
a large net charge, e.g., a phosphoryl dissociation re-
action in Eq. (44). For the latter, the free energy bar-
rier in acetone and cyclohexane solutions increases by
>10 kcal/mol when using the polarizable model. This
observation suggests that for quantitative comparison
of some property between aqueous and nonaqueous
environments, it is desirable to employ a polarizable
force field at least for the latter environment, particu-
larly when the solute has net charge.

� The PMF obtained with the continuum model is found
to be rather insensitive to the dielectric constant of
solvent for ε > 20. The obtained PMF is roughly in
between the QM/MM results for polar protic solvents
(e.g., water) and aprotic polar solvents (e.g., acetone).

� The ESP charge operator works well for the SN2 reac-
tions studied in Sec. IV, but has some difficulty in de-
scribing multiply charged ions in protic solvents. This
is probably because the charge operator tends to over-
estimate the solute-solvent electrostatic interactions at
short range. A more accurate description of the latter
is thus desirable to study highly charged systems in
aqueous solution.
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APPENDIX A: CRK SOLVENT MODEL

1. Derivation of Eq. (25)

To obtain Eq. (25), we expand the eigenenergy εi in
Eq. (23) with respect to vi such that

εi(ri , vi) = ε0
i (ri) +

(
∂εi

∂vi

)0

· vi

+ 1

2
vT

i

(
∂2εi

∂vi∂vi

)0

vi + O(v3), (A1)

where superscript 0 means that the quantity is evaluated at
vi = 0. The first derivative of εi is(

∂εi

∂vi

)0

= 〈
ψ0

i

∣∣q̂i

∣∣ψ0
i

〉 ≡ q0
i , (A2)

which can be obtained from the Hellmann-Feynman theorem
for Eq. (23). The second derivative of εi is given by(

∂2εi

∂vi∂vi

)0

=
(

∂qi

∂vi

)0

≡ K0
i , (A3)

where by the last equality we define the charge response ma-
trix K0

i . Substitution of the above results into Eq. (A1) gives

εi(ri , vi) � ε0
i + q0

i · vi + 1

2
vi · K0

i · vi , (A4)

where ε0
i and q0

i are the energy and partial charge of the iso-
lated solvent molecule. By differentiating the above equation
with respect to vi , we obtain

qi = q0
i + K0

i vi + O(v2). (A5)

Furthermore, by using the identity relation

εi = 〈ψi |ĥ0
i |ψi〉 + qi · vi , (A6)

which follows from Eq. (23), we obtain the expansion of the
internal molecular energy

〈ψi |ĥ0
i |ψi〉 � ε0

i − 1

2
vi · K0

i · vi + O(v3). (A7)

Now inserting Eq. (A7) into Eq. (21), we obtain Eq. (25).
In practical simulation, we model the first term in Eq. (25),
[namely,

∑
i ε

0
i ] with a classical force field consisting of

bonds/angles/dihedrals (for flexible molecules) or simply set
it to zero (for rigid molecules). The gas-phase charge q0

i

and the response matrix K0
i are obtained from ab initio cal-

culation for an isolated molecule.45 Polarizable force fields
thus obtained have been utilized successfully in previous MD
simulations.45, 48, 109–113

2. Validation of the CRK solvent model

In this paper, the CRK solvent model is obtained by re-
placing the permanent charge of an empirical nonpolarizable
model with the gas-phase partial charge q0

i and adding the
charge response matrix K0

i . The latter are calculated with
ab initio methods, while the molecular geometry and the
LJ parameters are taken from the underlying nonpolarizable
model. This approach has been utilized previously to model
various solvents with reasonable success.48, 109, 113 Since we
have performed no further tuning of the CRK model (espe-
cially the LJ parameters), it is important to check the valid-
ity of the obtained model. For this purpose, we calculated
the density and vaporization enthalpy of each solvent using
the present CRK model (Table V). The radial distribution
functions for water are also presented in the supplementary
material.116 Table V shows that the present CRK model pro-
vides reasonable agreement with experiment, although there
is a slight tendency that density and vaporization enthalpy are
overestimated for aprotic polar solvents. To check whether
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TABLE V. Density ρ (in g/cm3) and vaporization enthalpy �Hv (in
kcal/mol) of bulk solvents calculated with the CRK and empirical (non-
polarizable) models. Vaporization enthalpy was calculated as �Hv � −E
+ RT, where E is the average interaction energy per molecule and R is the
gas constant.

Water MeOH MeCN Acetone DMF CHX

ρ(pol) 0.999 0.765 0.894 0.841 0.976 0.739
ρ(nonpol) 0.987 0.761 0.802 0.774 0.911 0.739
ρ(expt) 0.997 0.787 0.782 0.791 0.873 0.779
�Hv(pol) 9.1 9.0 8.8 8.5 12.0 8.3
�Hv(nonpol) 10.2 8.6 7.5 7.2 9.5 8.3
�Hv(expt) 10.5 8.4–8.9 7.9 7.5 10.4 7.6

this does not affect the main conclusions in this paper, we
performed additional test calculations. Specifically, we calcu-
lated QM/MM PMF with a modified CRK model obtained
by (i) using slightly different values of the A parameter in
Eq. (39) that affects the strength of Coulomb interactions at
short range; (ii) removing the diffuse basis functions from the
calculation of q0

i and K0
i (to account for the suppression of

polarizability in condensed phases);113, 114 or (iii) using the
SPC (Ref. 115) model as the underlying water model. The
obtained results are summarized in Table VI, which shows
that the PMF is rather insensitive to the above modifications.
More specifically, the variation of the free energy barrier is at

TABLE VI. Density ρ (in g/cm3) and vaporization enthalpy �Hv (in
kcal/mol) of bulk water and acetone at 298 K and 1 atm calculated with the
polarizable and nonpolarizable models. “pol-TIP3P” refers to the CRK water
model derived from the TIP3P model, while “pol-SPC” refers to the CRK
water model derived from the SPC model. The CRK model for acetone is de-
rived from the OPLS-AA model. “TIP3P,” “SPC,” and “OPLS-AA” refer to
the standard empirical models. The value of Coulomb damping parameter A
is given in parentheses. In the main text, A was set to 2.7 for water and 2.6 for
other solvents. The �A‡ stands for the free energy barrier (in kcal/mol) for
the Finkelstein reaction Cl− + CH3Cl → ClCH3 + Cl− calculated with the
mean-field QM/MM method at the BHHLYP/6-31+G(d,p) level. The CRK
matrix was calculated with the B3LYP/aug-cc-pVTZ method unless other-
wise noted.

Model ρ �Hv �A‡

Water
TIP3P 0.987 10.17 23.3
pol-TIP3P (A = 2.6)a 0.992 9.23 23.3
pol-TIP3P (A = 2.6) 1.024 10.34 23.9
pol-TIP3P (A = 2.7) 0.999 9.08 23.0
pol-TIP3P (A = 2.8) 0.963 8.10 22.3
SPC 0.977 10.55 23.4
pol-SPC (A = 2.6)a 0.985 10.21 23.4
pol-SPC (A = 2.6) 0.993 11.98 24.2
pol-SPC (A = 2.7) 0.995 10.05 23.1
pol-SPC (A = 2.8) 0.967 8.73 22.1

Acetone
OPLS-AA 0.774 7.2 11.2
pol (A = 2.6)a 0.826 8.0 15.8
pol (A = 2.6) 0.841 8.5 16.2
pol (A = 2.7) 0.841 8.5 16.2
pol (A = 2.8) 0.840 8.5 16.2

aCRK matrix calculated with the B3LYP/cc-pVTZ method.

most ±1 kcal/mol compared to the reference values in Table I,
although the bulk properties are more sensitive to the above
modifications. We thus expect that, although the present po-
larizable model is not of highest accuracy compared to other
calibrated models, it is sufficient for making quantitative dis-
cussion of polarization effects on the PMF.

APPENDIX B: FREE ENERGY GRADIENT IN THE
MEAN FIELD APPROXIMATION

Here we consider the nuclear derivative of AMF(R), i.e.,

∂

∂R
AMF(R) = ∂

∂R
[〈�̃|Ĥ 0|�̃〉 + �μ(R, Q̃)], (B1)

where R is an arbitrary element of R. The derivative of the
first term, 〈�̃|Ĥ 0|�̃〉, can be obtained as

∂

∂R
〈�̃|Ĥ 0|�̃〉 = ∂

∂R
{EQM(R, V̄) − V̄ · Q̃}

= ∂EQM(R, V̄)

∂R

∣∣∣∣
V̄

− V̄ · ∂Q̃
∂R

, (B2)

where we used the definition of EQM(R, V̄) in Eq. (18) and the
relation

∂EQM(R, V̄)

∂V̄

∣∣∣∣
R

= Q̃, (B3)

which follows from the Hellmann-Feynman theorem. The
derivative of the second term, i.e., �μ(R, Q̃), can be written
as

∂

∂R
�μ(R, Q̃) = ∂�μ(R, Q̃)

∂R

∣∣∣∣∣
Q̃

+ ∂�μ(R, Q̃)

∂Q̃

∣∣∣∣∣
R

· ∂Q̃
∂R

.

(B4)
Using the definition of �μ(R, Q̃) in Eq. (29), we can express
the partial derivative of �μ(R, Q̃) as follows:

∂�μ(R, Q̃)

∂R

∣∣∣∣∣
Q̃

=
〈

∂EMM(R, r, Q̃)

∂R

∣∣∣∣∣
r,Q̃

〉
, (B5a)

∂�μ(R, Q̃)

∂Q̃

∣∣∣∣∣
R

=
〈

∂EMM(R, r, Q̃)

∂Q̃

∣∣∣∣∣
R,r

〉
, (B5b)

where the ensemble average is defined by Eq. (20). The partial
derivative of EMM(R, r, Q̃) can be readily obtained by consid-
ering virtual displacements of EMM with respect to (R, r, Q̃),
that is

δEMM =
∑

i

δεi + δQ̃ ·
∑

i

Diqi +
∑

i

Q̃ · (δDi) · qi

+ 1

2

∑
i �=j

qi · (δDij ) · qj + δUvdW, (B6)

which suggests

∂EMM(R, r, Q̃)

∂R

∣∣∣∣∣
r,Q̃

=
∑

i

Q̃ · ∂Di

∂R
· qi + ∂UvdW

∂R
,

(B7a)
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∂EMM(R, r, Q̃)

∂Q̃

∣∣∣∣∣
R,r

=
∑

i

Diqi = V, (B7b)

where we have utilized Eqs. (24) and (26) to cancel several
terms in Eq. (B6), and also assumed that K0

i is independent of
ri . The derivative of �μ(R, Q̃) then becomes

∂

∂R
�μ(R, Q̃) =

〈∑
i

Q̃ · ∂Di

∂R
· qi + ∂UvdW

∂R

〉
+ 〈V〉 · ∂Q̃

∂R
.

(B8)
Combining Eqs. (B2) and (B8), we obtain the gradient expres-
sion for AMF(R) in Eq. (30). Importantly, the latter expres-
sion is identical to that obtained previously for nonpolariz-
able models.34 This is because the function EMM(R, r, Q̃) is
stationarized with respect to the solvent wave function {ψ i},
and hence all the derivatives with respect to qi or vi vanish in
the final expression.

APPENDIX C: FLUCTUATION OF THE SOLUTE
WAVE FUNCTION

In the mean-field QM/MM calculation, the solute wave
function is fixed at the self-consistent state �̃(R). This means
that we neglect statistical fluctuations of the true wave func-
tion �(R, r) about the self-consistent state �̃(R). Here, we
consider how to evaluate the latter effect by using the CRK
of the solute molecule. Specifically, we first write the exact
QM/MM free energy as

A(R) = AMF(R) − 1

β
ln〈exp(−β�Etot)〉, (C1)

where �Etot = Etot − E
(MF)
tot , and the ensemble average is de-

fined by Eq. (20). Here, Etot(R, r) denotes the exact total en-
ergy given by

Etot(R, r) = 〈� ′|Ĥ 0|� ′〉 + Q′ · V′ + EMM(q′, v′) (C2)

with Q′ = 〈� ′|Q̂|� ′〉 and V′ = ∑
i Diq′

i , and EMM is defined
by

EMM(q′, v′) =
∑

i

ε0
i − 1

2

∑
i

v′
i · K0

i · v′
i

+ 1

2

∑
i �=j

q′
i · Dij · q′

j + UvdW. (C3)

Note that the prime symbol is attached on quantities appearing
in the exact QM/MM calculation. The E

(MF)
tot (R, r) represents

the mean-field approximation to Etot(R, r) given by

E
(MF)
tot (R, r) = 〈�̃|Ĥ 0|�̃〉 + Q̃ · V + EMM(q, v) (C4)

with Q̃ = 〈�̃|Q̂|�̃〉 and V = ∑
i Diqi . The QM wave func-

tions � ′ and �̃ are calculated in the presence of V′ and
V̄ = 〈V〉, respectively. Using the eigenenergy corresponding
to � ′ and �̃, one can rewrite Eqs. (C2) and (C4) as follows:

Etot(R, r) = EQM(R, V′) + EMM(q′, v′), (C5a)

E
(MF)
tot (R, r) = EQM(R, V̄) + Q̃ · (V − V̄) + EMM(q, v).

(C5b)

As noted earlier, it is expensive to calculate EQM(R, V′)
for many solvent configurations. To avoid this, we expand
EQM(R, V′) in terms of V′ up to second order, namely,

EQM(R, V′) � EQM(R, V̄) + Q̃ · (V′ − V̄)

+ 1

2
(V′ − V̄) · K̄QM · (V′ − V̄), (C6)

where

K̄QM = ∂2EQM(R, V)

∂V∂V

∣∣∣∣
V=V̄

= ∂Q
∂V

∣∣∣∣
V=V̄

(C7)

is the CRK of the solute molecule. By using the above ap-
proximation, we obtain

�Etot � 1

2
(V′ − V̄) · K̄QM · (V′ − V̄) + Q̃ · (V′ − V)

+EMM(q′, v′) − EMM(q, v). (C8)

The remaining problem is how to evaluate q′, v′, and V′, given
that V̄ and Q̃ are already available from the mean-field calcu-
lation. While the q′, v′, Q′, and V′ depend implicitly on � ′,
we want to avoid any repeated calculation of � ′. To achieve
this, we expand Q′ up to first order in terms of V′. One can
then obtain those variables by solving the following coupled
equations:

q′
i = q0

i + K0
i v′

i , (C9a)

v′
i =

∑
j (�=i)

Dij q′
j + DT

i Q′, (C9b)

Q′ = Q̃ + K̄QM · (V′ − V̄), (C9c)

V′ =
∑

i

Diq′
i . (C9d)

In this way, one can evaluate �Etot in Eq. (C1) without
explicitly calculating � ′ for each solvent configuration. We
note that when the solvent is described with a nonpolarizable
model, the �Etot takes a much simpler form34

�Etot � 1

2
(V′ − V̄) · K̄QM · (V′ − V̄). (C10)
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