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We study the collapse transition of a polymer on a square lattice with both nearest-

neighbor and next nearest-neighbor interactions, by calculating the exact parti-

tion function zeros up to chain length 36. The transition behavior is much more

pronounced than that of the model with nearest-neighbor interactions only. The

crossover exponent and the transition temperature are estimated from the scaling

behavior of the first zeros with increasing chain length. The results suggest that the

model is of the same universality class as the usual θ point described by the model

with only nearest-neighbor interaction.
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I. INTRODUCTION

A flexible polymer chain in a dilute solution is influenced by both hydrophobic interac-

tions between the monomers and the excluded volume effect. The attractive interactions are

neglected at high temperatures or in a good solvent, but become significant as the temper-

ature T is lowered. As T reaches a special temperature θ, the linear polymer undergoes an

abrupt change from an expanded conformation for T > θ to a fully compact conformation

for T < θ1–3. Long polymer in a good solvent is a critical system, and the collapse transition

at T = θ has been identified as a tricritical transition3,4. The θ point behavior is well-

described by self-avoiding walks with attractive interaction energy assigned for each pair of

nonbonded nearest-neighbor monomers. The tricritical exponents take the mean-field values

for d > 3, and there are logarithmic corrections at d = 33–8. A great deal of studies have

been performed to understand the nature of the collapse transition in two dimensions5–33,

which is expected to exhibit much more non-trivial behavior than its higher dimensional

counterparts.

In this work, we study the collapse transition of a polymer on a square lattice, with both

nearest-neighbor (NN) and next nearest-neighbor (NNN) interactions present, by calculat-

ing the exact partition functions up to chain length N = 36. We estimate the crossover

exponent and the transition temperature from the zeros of the partition function, and also

from the specific heat. Although the method of partition function zeros became one of the

most popular tools for studying the critical phenomena with the advancement of computa-

tional power34,35, there are few works where partition function zeros of lattice polymers were

calculated. For examples, exact partition function zeros were computed for the simple-cubic

lattice up to chain length 1336, for the face-centered lattice up to chain length 937, and for

the square lattice up to chain length 3628,29. Only NN interactions were present in these

works. In fact, the current work is the first instance where a square-lattice polymer with

NNN interactions is ever studied. It was only on a hexagonal lattice that models with NNN

interactions were studied previously 8–13.

By introducing NNN interactions, the transition behavior is much more pronounced than

that of the model only with NN interactions29. The results suggest that the model belongs

to the same universality class as the one described by the model with only NN interactions.
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II. THE NUMBER OF CONFORMATIONS

Conformations of a polymer chain with N monomers are modeled as a two-dimensional

self-avoiding chain of length N on a square lattice. The position of the monomer i is given

by ri = (k, l), where integers k and l are the Cartesian coordinates relative to an arbitrary

origin. Chain connectivity requires |ri − ri+1| = 1, i.e., bond length is unity. Due to the

excluded volume, there can be no more than one monomer on each lattice site, ri 6= rj

for i 6= j. The attractive hydrophobic interaction is incorporated by assigning the energies

−ǫ1 < 0 and −ǫ2 < 0 for each non-bonded NN and NNN contact between monomers. The

resulting Hamiltonian is

H = −ǫ1
∑

i<j

∆(ri, rj)− ǫ2
∑

i<j

∆̃(ri, rj), (1)

where

∆(ri, rj) =







1 if |i− j| > 1 and |ri − rj | = 1,

0 otherwise,
(2)

and

∆̃(ri, rj) =







1 if |ri − rj| =
√
2,

0 otherwise.
(3)

The result when only NN interactions are present, corresponding to the θ point29, can be

reproduced by putting ǫ2 = 0. We consider the case with ǫ1 = ǫ2 ≡ ǫ. The energy of the

system is then E = −ǫ(K1 + K2) ≡ −ǫK, where K1 and K2 are the number of contacts

between NN and NNN monomers, respectively.

Here we define the reduced number of conformations ωN(K), where conformations related

by rigid rotations, reflections, and translations are regarded as equivalent, and counted only

once. On the other hand, due to an assumption that the polymer chain has an intrinsic

direction, the conformations with reverse labels i ↔ N − i + 1 for all (i = 1, 2, · · · , N) are

considered distinct. It is easy to see that the total number of conformations generated by

rotations and reflections from a given conformation is eight, except for the straight chain

where the total number of conformations generated by rotations and reflections is four due

to invariance with respect to reflection perpendicular to the chain. The total number of

conformations ΩN (K) is obtained from ωN(K) as follows:

ΩN (K) =







8ωN(K)− 4 if K = 0,

8ωN(K) otherwise.
(4)
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Thus, one can achieve about eight-fold reduction in the computing time by enumerating the

reduced number of conformations ωN(K) instead of ΩN (K)29. We obtained ωN(K) up to

N = 36 by the help of a parallel algorithm classifying conformations by sizes of rectangles

they span38.

III. PARTITION FUNCTION ZEROS IN THE COMPLEX

TEMPERATURE PLANE

Yang and Lee39 first introduced the concept of the partition function zeros in the complex

fugacity plane, and found a mechanism for the occurrence of phase transitions in thermo-

dynamic limit. Later, Fisher40 showed that the partition function zeros in the complex

temperature plane are very important in understanding phase transitions. For system ex-

hibiting the temperature-driven phase transition, the locus of Fisher zeros forms a line and

crosses the positive real axis in thermodynamic limit. The intersection point of the locus

with the positive real axis corresponds to the critical temperature. The zeros closest to

the positive real axis are called the first zeros, which approach the positive real axis as the

system size increases.

The partition function of our model is

Z =
∑

e−βH =
∑

K

ΩN (K)yK, (5)

where y ≡ exp(βǫ) and β ≡ 1/kBT . We see that since K is bounded, the partition function

(5) is a n-th order polynomial of y where n is the maximum value of K. The partition

function zeros yi (i = 1, 2, · · · , n) are then obtained by solving the polynomial equation

Z(y) = 0. The solution was found with mathematica. As can be seen from Fig. 1, the

first zeros approach the positive real axis in the complex temperature plane as polymer

length increases.

IV. THE SCALING BEHAVIOR AND THE CRITICAL EXPONENT

Near the critical temperature Tc, the radius of gyration (or the end-to-end distance) RN

of a polymer chain with N monomers is generally expressed by the scaling theory3,5,

〈R2
N 〉 ∼ N2νf(τNφ), (6)
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where the reduced temperature is defined as τ ≡ |T − Tc| /Tc and the scaling function f(x)

behaves as follows:

f(x) =



















x(6/(d+2)−2ν)/φ if x → ∞,

const. if x → 0,

x(2/d−2ν)/φ if x → −∞.

(7)

The exponent ν represents the geometrical properties of a polymer, and the crossover expo-

nent φ describes how rapidly the system undergoes the transition as T approaches Tc. The

crossover exponent φ also describes how rapidly the first zeros approach the positive real

axis as N increases29,

Im[y1(N)] ∼ N−φ, (8)

where y1(N) is a first zero for a polymer chain with N monomers. In finite-size systems

with even N , the crossover exponent is approximated as

φ(N) = − ln{Im[y1(N + 2)]/Im[y1(N)]}
ln{(N + 2)/N} , (9)

which reduces to the exact value of φ in N → ∞ limit, estimated by using the Bulirsch-Stoer

(BST) extrapolation41. We obtain 0.4422(14) for the crossover exponent as shown in Fig. 2,

where the estimated error could be further reduced by removing unreliable data obtained

from N < 18. The error is estimated by examining the robustness of the extrapolated

value with respect to perturbations of the data points, but it is not a statistically rigorous

confidence level29,41. Therefore, we estimated the error by slightly changing the ratio of

NNN and NN interactions, R ≡ ǫ2/ǫ1, which we set to 1 in the current work. We change

R by 0.5, and get φ = 0.428 for both R = 0.5 and 1.5. If we assume that R is irrelevant

and combine the results for R = 0.5, 1.0, and 1.5, the resulting range of the crossover

exponent is 0.428 ≤ φ ≤ 0.442. The result is consistent with the conjectured exact value of

φ = 3/7 = 0.4286 obtained from hexagonal lattice with random annealed forbidden faces8,

as well as our previous estimate from the model with NN interactions only, φ = 0.422(12),

suggesting that they belong to the same universality class. More extensive analysis for

various values of R is postponed for a future study.

Without additional information, we assumed the leading finite size correction to φ is

of order O(N−1) when performing the BST procedure. We estimated the range of φ also

by changing the leading exponent of the extraopolating function. With R = 1 fixed, we
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performed BST extrapolation with the leading finite size correction of order O(N−ω) with

ω = 0.5 and 1.5. We get φ = 0.418 and 0.458 for ω = 0.5 and 1.5 respectively, and combining

these results with that for ω = 1.0, we get 0.418 ≤ φ ≤ 0.458, again consistent with both

the conjectured exact value and the estimate from the model with NN interactions only.

Again, there is no evidence that our model belongs to a universality class different from that

of the model with NN interactions only.

The real parts of the first zeros can be used to estimate the critical temperature yc, by

estimating the point they approach in the limit of N → ∞,

Re[y1(N)]− yc ∼ N−φ, (10)

with the value of φ obtained above. The value of yc, obtained by extrapolating the data

for even N with N ≥ 18, is 1.3279(41), which corresponds to Tc/ǫ = 3.526(39) (Fig. 3).

It is also shown in Fig. 1 along with the result for the model where only NN interactions

are present29, corresponding to yc = 2.16(18) (Tc = 1.30(17)). The transition temperature

becomes much higher when additional attractive NNN interactions are included, which is to

be expected. We obtain yc = 1.3288(41) with the conjectured exact value φ = 3/78, which is

not much different from the result above. As can be seen from Fig. 1, the transition behavior

is much more visible when we introduce NNN interactions.

V. SPECIFIC HEAT

Now we estimate the critical temperature yc again by analyzing the behavior of the specific

heat per monomer, for comparison with the result obtained from the partition function zeros.

The specific heat per monomer is

C(T,N)

ǫ2N
=

1

ǫ2N

∂E

∂T

=
β2

ǫ2N

∂2 lnZ

∂β2
(11)

=
(ln y)2

N

[

∑

K K2ΩN(K)yK
∑

K ΩN (K)yK
−

(∑

K KΩN (K)yK
∑

K ΩN (K)yK

)2
]

,

which is plotted in Fig. 4 as a function of y for several values of N . The finite N approxima-

tion of the transition point, yc(N), is obtained from the condition ∂C
∂y

= 0. We observe a peak

around y ≃ 1.5, which becomes sharper as N increases. By applying the BST extrapolation

6



to the finite-size scaling

yc(N)− yc(∞) ∼ N−φ, (12)

we obtain the transition point yc(∞) = 1.265(19), equivalent to Tc/ǫ = 4.25(29), where the

data for even N with 18 ≤ N ≤ 36 were used. yc(N) is displayed in Fig. 5 as a function

of 1/Nφ, along with the extrapolated value yc(∞). The current result is not drastically

different from that obtained by the partition function zeros, but the precision is lower due

to the fact that the specific heat is riddled by noisy contributions from zeros other than the

first ones29.

VI. DISCUSSIONS

In this work, we studied the collapse transition of a square-lattice polymer with both

NN and NNN interactions, by calculating the exact partition function zeros up to chain

length N = 36. The crossover exponent φ and the transition temperature Tc were obtained

by examining their scaling behavior with increasing chain length. We estimated Tc also by

calculating the specific heat from the exact partition function. Our results suggest that the

polymer with both NN and NNN interactions on a square lattice belongs to the θ universality

class described by the model where only NN interactions are present, but by introducing

NNN interactions, the transition behavior becomes more pronounced than the model with

only NN interactions29.
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FIG. 1. Positions of the first zeros in the first quadrant of the complex temperature (y = eβǫ) plane

for N = 10, 12, · · · , 36. Open circles indicate the results when both NN and NNN interactions are

present, and open squares are those for the model with NN interactions only. Two dots indicated

by arrows are the corresponding values of yc.
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FIG. 2. The finite size approximations of the crossover exponent, φ(N), are shown as a function

of 1/N for even N with 10 ≤ N < 18 (open circles) and N ≥ 18 (solid circles). The value

of φ = 0.4422(14) for N → ∞ (the open circle with an error bar) is estimated by the BST

extrapolation for N ≥ 18.
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FIG. 3. The real parts of the first zeros are shown as a function of 1/Nφ for even N with 10 ≤

N < 18 (open circles) and N ≥ 18 (solid circles). The value of yc = 1.3279(41) (the open circle

with an error bar) for N → ∞ is estimated by the BST extrapolation for N ≥ 18 with φ = 0.4422.
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FIG. 4. The specific heat for N = 20, 28, and 36 from bottom to top.
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FIG. 5. The finite size approximation of yc obtained from the specific heat, yc(N), are shown as a

function of 1/Nφ for even N with 10 ≤ N < 18 (open circles) and N ≥ 18 (solid circles). The value

of yc(∞) = 1.265(19) (the open circle with an error bar) is estimated by the BST extrapolation for

N ≥ 18 with φ = 0.4422.
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