Developing improved catalysts based on a fundamental understanding of reaction mechanism has become one of the grand challenges in catalysis. A theoretical understanding and screening the metal-oxide composite catalysts for the water-gas shift (WGS) reaction is presented here. Density functional theory was employed to identify the key step for the WGS reaction on the Au, Cu–oxide catalysts, where the calculated reaction energy for water dissociation correlates well with the experimental measured WGS activity. Accordingly, the calculated reaction energy for water dissociation was used as the scaling descriptor to screen the inverse model catalysts, oxide/Cu(111), for the better WGS activity. Our calculations predict that the WGS activity increases in a sequence: Cu(111), ZnO/Cu(111) < TiO2/Cu(111), ZrO2/Cu(111) < MoO3/Cu(111). Our results imply that the high performances of Au, Cu–oxide nanocatalysts in the WGS reaction rely heavily on the direct participation of both oxide and metal sites. The degree that the oxide is reduced by Cu plays an important role in determining the WGS activity of oxide/Cu catalysts. The reducible oxide can be transformed from the fully oxidized form to the reduced form due to the interaction with Cu and, therefore, the transfer of electron density from Cu, which helps in releasing the bottleneck water dissociation and, therefore, facilitating the WGS reaction on copper.

1.
J. A.
Rodriguez
,
P.
Liu
,
X.
Wang
,
W.
Wen
,
J.
Hanson
,
J.
Hrbek
,
J.
Pérez
, and
M.
Evans
,
Catal. Today
143
,
45
(
2009
).
2.
J. K.
Norskov
,
T.
Bligaard
,
J.
Rossmeisl
, and
C. H.
Christensen
,
Nat. Chem.
1
,
37
(
2009
);
[PubMed]
P.
Strasser
,
Q.
Fan
,
M.
Devenney
,
W. H.
Weinberg
,
P.
Liu
, and
J. K.
Nørskov
,
J. Phys. Chem. B
107
,
11013
(
2003
).
3.
H. Y.
Kim
,
H. M.
Lee
,
R. G. S.
Pala
,
V.
Shapovalov
, and
H.
Metiu
,
J. Phys. Chem. C
112
,
12398
(
2008
).
4.
Catalyst Handbook
, edited by
M. V.
Twigg
(
Wolfe
,
England
,
1989
).
5.
R.
Burch
,
Phys. Chem. Chem. Phys.
8
,
5483
(
2006
).
6.
Q.
Fu
,
H.
Saltsburg
, and
M.
Flytzani-Stephanopoulos
,
Science
301
,
935
(
2003
).
7.
J. B.
Park
,
J.
Graciani
,
J.
Evans
,
D.
Stacchiola
,
S. D.
Senanayake
,
L.
Barrio
,
P.
Liu
,
J. F.
Sanz
,
J.
Hrbek
, and
J. A.
Rodriguez
,
J. Am. Chem. Soc.
132
,
356
(
2010
).
8.
J. A.
Rodríguez
,
J.
Evans
,
J.
Graciani
,
J.
Park
,
P.
Liu
,
J.
Hrbek
, and
J. F.
Sanz
,
J. Phys. Chem. C
113
,
7364
(
2009
).
9.
J. B.
Park
,
J.
Graciani
,
J.
Evans
,
D.
Stacchiola
,
S.
Ma
,
P.
Liu
,
A.
Nambu
,
J. F.
Sanz
,
J.
Hrbek
, and
J. A.
Rodriguez
,
Proc. Natl. Acad. Sci. U.S.A.
106
,
4975
(
2009
).
10.
J. A.
Rodriguez
,
J.
Graciani
,
J.
Evans
,
J. B.
Park
,
F.
Yang
,
D.
Stacchiola
,
S. D.
Senanayake
,
S.
Ma
,
M.
Pérez
,
P.
Liu
,
J. F.
Sanz
, and
J.
Hrbek
,
Angew. Chem. Int. Ed.
48
,
8047
(
2009
).
11.
J. A.
Rodriguez
,
S.
Ma
,
P.
Liu
,
J.
Hrbek
,
J.
Evans
, and
M.
Pérez
,
Science
318
,
1757
(
2007
).
12.
J. A.
Rodriguez
,
P.
Liu
,
J.
Hrbek
,
M.
Pérez
, and
J.
Evans
,
J. Mol. Catal. A
281
,
59
(
2008
).
13.
R.
Si
and
M.
Flytzani-Stephanopoulos
,
Angew. Chem. Int. Ed.
47
,
2884
(
2008
);
W. Q.
Han
,
W.
Wen
,
J. C.
Hanson
,
X.
Teng
,
N.
Marinkovic
, and
J. A.
Rodriguez
,
J. Phys. Chem. C
113
,
21949
(
2009
).
14.
J. A.
Rodriguez
,
P.
Liu
,
J.
Hrbek
,
J.
Evans
, and
M.
Perez
,
Angew. Chem. Int. Ed.
46
,
1329
(
2007
).
15.
L. M.
Molina
,
M. D.
Rasmussen
, and
B.
Hammer
,
J. Chem. Phys.
120
,
7673
(
2004
);
[PubMed]
S.
Laursen
and
S.
Linic
,
Phys. Chem. Chem. Phys.
11
,
11006
(
2009
);
[PubMed]
Z.
Liu
,
X.
Gong
,
J.
Kohanoff
,
C.
Sanchez
, and
P.
Hu
,
Phys. Rev. Lett.
91
,
266102
(
2003
).
[PubMed]
16.
P.
Liu
and
J. A.
Rodriguez
,
J. Chem. Phys.
126
,
164705
(
2007
).
17.
Q.
Fu
,
W.
Li
,
Y.
Yao
,
H.
Liu
,
H.
Su
,
D.
Ma
,
X.
Gu
,
L.
Chen
,
Z.
Wang
,
H.
Zhang
,
B.
Wang
, and
X.
Bao
,
Science
328
,
1141
(
2010
).
18.
M. C.
Payne
,
D. C.
Allan
,
T.
Arias
, and
J. D.
Johannopoulus
,
Rev. Mod. Phys.
64
,
1045
(
1992
).
19.
P.
Liu
and
J. A.
Rodriguez
,
J. Phys. Chem. B
110
,
19418
(
2006
);
[PubMed]
P.
Liu
,
J. A.
Rodriguez
,
Y.
Takahashi
, and
K.
Nakamura
,
J. Catal.
262
,
294
(
2009
).
20.
D.
Vanderbilt
,
Phys. Rev. B
41
,
7892
(
1990
).
21.
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B
13
,
5188
(
1976
).
22.
B.
Hammer
,
L. B.
Hansen
, and
J. K.
Nørskov
,
Phys. Rev. B
59
,
7413
(
1999
).
23.
L.
Grabow
,
Y.
Xu
, and
M.
Mavrikakis
,
Phys. Chem. Chem. Phys.
8
,
3369
(
2006
).
24.
K. B.
Wiberg
and
P. R.
Rablen
,
J. Comput. Chem.
14
,
1504
(
1993
);
H. J.
Chang
,
F.
Harrison
,
T. A.
Kaplan
, and
S. D.
Mahanti
,
Phys. Rev. B
49
,
15753
(
1994
);
B. J. C.
W
. and
P. S.
Bagus
,
J. Chem. Phys.
81
,
5889
(
1984
).
25.
A. A.
Gokhale
,
J. A.
Dumesic
, and
M.
Mavrikakis
,
J. Am. Chem. Soc.
130
,
1402
(
2008
).
26.
Q. L.
Tang
,
Z. X.
Chen
, and
X.
He
,
Surf. Sci.
603
,
2138
(
2009
).
27.
G. C.
Chinchen
,
M. S.
Spencer
,
K. C.
Waugh
, and
D. A.
Waugh
,
J. Chem. Soc., Faraday Trans. 1
83
,
2193
(
1987
);
P. B.
Rasmussen
,
P. M.
Holmblad
,
T.
Askgaard
,
C. V.
Ovesen
,
P.
Stoltze
,
J. K.
Nørskov
, and
I.
Chorkendorff
,
Catal. Lett.
26
,
373
(
1994
).
28.
Q. L.
Tang
and
Z. P.
Liu
,
J. Phys. Chem. C
114
,
8423
(
2010
);
L. C.
Grabow
,
A. A.
Gokhale
,
S. T.
Evans
,
J. A.
Dumesic
, and
M.
Mavrikakis
,
J. Phys. Chem. C
112
,
4068
(
2008
).
29.
J.
Graciani
,
J. J.
Plata
,
J. F.
Sanz
,
P.
Liu
, and
J. A.
Rodriguez
,
J. Chem. Phys.
131
,
104703
(
2010
).
30.
N.
Schumacher
,
A.
Boisen
,
S.
Dahl
,
A. A.
Gokhale
,
S.
Kandoi
,
L. C.
Grabow
,
J. A.
Dumesic
,
M.
Mavrikakis
, and
I.
Chorkendorff
,
J. Catal.
229
,
265
(
2005
).
31.
M. A.
Henderson
,
Surf. Sci. Rep.
46
,
1
(
2002
);
G.
Ketteler
,
S.
Yamamoto
,
S.
Bluhm
,
K.
Andersson
,
D. E.
Starr
,
D. F.
Ogletree
,
H.
Ogasawara
,
A.
Nilsson
, and
M.
Salmeron
,
J. Phys. Chem. C
111
,
8278
(
2007
);
S.
Li
,
Z.
Zhang
,
S.
Sheppard
,
B. D.
Kay
,
J. M.
White
,
Y.
Du
,
I.
Lyubinetsky
,
G.
Henkelman
, and
Z.
Dohnlek
,
J. Am. Chem. Soc.
130
,
9080
(
2008
).
[PubMed]
32.
C. T.
Campbell
,
K. A.
Daube
, and
J. M.
White
,
Surf. Sci.
182
,
458
(
1987
);
T.
Fujitani
,
I.
Nakamura
,
U.
T
., and
J.
Nakamura
,
Surf. Sci.
383
,
285
(
1997
).
33.
M.
Kunat
,
S. G.
Girol
,
U.
Burghaus
, and
C.
Woll
,
J. Phys. Chem. B
107
,
14350
(
2003
).
34.
T.
Matsuhisa
, in
Catalysis
, edited by
J. J.
Spivey
(
The Royal Society of Chemistry
,
Thomas Graham House, Cambridge
,
1996
), Vol.
12
, p.
14
.
35.
I.
Nakamura
,
T.
Fujitani
,
T.
Uchijima
, and
J.
Nakamura
,
Surf. Sci.
400
,
387
(
1998
).
36.
P. D. C.
King
,
T. D.
Veal
,
A.
Schleife
,
J.
Zúñiga-Pérez
,
B.
Martel
,
P. H.
Jefferson
,
F.
Fuchs
,
V.
Muñoz-Sanjosé
,
F.
Bechstedt
, and
C. F.
McConville1
,
Phys. Rev. B
79
,
205205
(
2009
).
37.
R.
Coquet
and
D. J.
Willock
,
Phys. Chem. Chem. Phys.
7
,
3819
(
2005
).
38.
D. O.
Scanlon
,
G. W.
Watson
,
D. J.
Payne
,
G. R.
Atkinson
,
R. G.
Egdell
, and
D. S. L.
Law
,
J. Phys. Chem. C
114
,
4636
(
2010
).
39.
F.
Corà
,
M. G.
Stachiotti
,
C. R. A.
Catlow
, and
C. O.
Rodriguez
,
J. Phys. Chem. B
101
,
3945
(
1997
).
40.
F.
Corà
,
A.
Patel
,
N. M.
Harrison
,
C.
Roettic
, and
C. R. A.
Catlowa
,
J. Mater. Chem.
7
,
959
(
1997
).
You do not currently have access to this content.