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We propose and experimentally validate a first-principles based model for the nonlinear
piezoelectric response of an electroelastic energy harvester. The analysis herein highlights the
importance of modeling inherent piezoelectric nonlinearities that are not limited to higher order
elastic effects but also include nonlinear coupling to a power harvesting circuit. Furthermore, a
nonlinear damping mechanism is shown to accurately restrict the amplitude and bandwidth of the
frequency response. The linear piezoelectric modeling framework widely accepted for theoretical
investigations is demonstrated to be a weak presumption for near-resonant excitation amplitudes as
low as 0.5 g in a prefabricated bimorph whose oscillation amplitudes remain geometrically linear for
the full range of experimental tests performed �never exceeding 0.25% of the cantilever overhang
length�. Nonlinear coefficients are identified via a nonlinear least-squares optimization algorithm
that utilizes an approximate analytic solution obtained by the method of harmonic balance. For lead
zirconate titanate �PZT-5H�, we obtained a fourth order elastic tensor component of
c1111

p =−3.6673�1017 N /m2 and a fourth order electroelastic tensor value of e3111=1.7212
�108 m /V. © 2010 American Institute of Physics. �doi:10.1063/1.3486519�

I. INTRODUCTION

Flexible piezoelectric devices have a long history of suc-
cessful research pertaining to actuation and sensing technol-
ogy for smart material systems. Most recently, their utility
has been promulgated throughout a wide body of literature
focusing on converting the sensor problem to one of vibra-
tory energy harvesting instead. Vibratory energy harvesting
is the process by which self-reliant electronic systems are
realized by transforming environmental excitation sources
into usable electricity.1,2 Success in this endeavor is largely
attributed to reduced power demands for electronic devices
to the micro- and milliwatt scale.3,4 In addition, self-
sustaining energy harvesting systems are viewed as an en-
abling technology for cost-effective wireless sensor networks
whose proposed application venues �i.e., remote-area, in
vivo, bridges, etc.� render regular maintenance and battery
replacement problematic.5–8 To date, most piezoelectric har-
vesters presume linear response and thus seek electrome-
chanical resonance to extract maximum energy.2,9–11 How-
ever, considering many environmental excitation sources are
instead broadband, strategies ranging from control
theoretic12–14 to purposeful inclusion of nonlinearity15–22 are
gaining momentum. For very low excitation levels for all
such harvesters, linear behavior of the piezoelectric compo-
nents is an accurate presumption.

Linear modeling of piezoelectric harvesters is accom-
plished according to the variational framework established
by Hagood et al.23 for electroelastic actuators and sensors.
Wang and Cross24 later discussed how polarization of bi-

morph piezoelectric cantilevers connected series and parallel
effects the linear piezoelectric constitutive equations. Sodano
et al.10 were among the first to apply these results to the
analysis of an energy harvester and du Toit et al.9 updated
the model to include effects of end masses with rotary iner-
tia. In a series of papers, Erturk and Inman25,26 studied in
detail linear models for both unimorph and bimorph cantile-
vered harvesters with both a translational and a small rotary
base excitation with further analysis of resonance shifts
brought about by electrical impedance interactions. Further-
more, the same authors addressed errors in simplified single
degree of freedom models27 and other unsound modeling
practices that began to emerge in the literature.28,29

Nonlinear behavior within piezoceramics and associated
influence on the energy harvesting problem, however, has
only begun to receive attention. Hu et al.30 numerically stud-
ied the large amplitude hardening response of a piezoelectric
plate under thickness/shear vibration. The physical basis for
their model was the cubic theory of nonlinear
electroelasticity31–33 with up to fourth order elastic effects
but higher order coupling and electrical effects neglected due
to the weak nature of the electric fields. The same electro-
elasticity model was previously applied by Wolf and
Gottlieb34,35 to describe the large amplitude motion of atomic
force microscopes with later experimental validation by
Usher and Sim.36 Triplett and Quinn37 theoretically studied
nonlinear piezoelectric energy harvester models with nonlin-
ear coupling effects as observed by Crawley and Anderson38

and Crawley and Lazarus.39 However, the nonlinearity in the
coupling in Refs. 38 and 39 was due to induced actuation
strain as a consequence of large electric fields as explained
and modeled by Tiersten.33 Whereas the insignificance of thea�Electronic mail: samuel.stanton@duke.edu.
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electric field prompted Hu et al. to neglect coupling nonlin-
earities, von Wagner and Hagedorn40,41 and Samal et al.42

have demonstrated significant nonlinear effects in piezoelec-
tric actuators experiencing weak electric fields. Considering
this observation, Stanton and Mann43 recently derived and
experimentally verified governing equations for the large
amplitude motion of prototypical energy harvesting beams
carrying an end mass. The model included piezoelectric non-
linearities by augmenting the model in Ref. 30 to reflect
higher order coupling effects as observed in Ref. 40. How-
ever, there is some uncertainty in the estimates for the non-
linear tensor components due to a multitude of sources con-
tributing to nonlinear behavior in the experimental device:
large amplitude mechanical motion, end mass inertia, vis-
coelasticity in the substrate, heterogeneous piezoceramic dis-
tribution, possible unmodeled nonlinear damping, and non-
linear piezoelectricity.

To address this problem, the objective of this paper is to
focus on manifestation of nonlinearity in a cantilevered pi-
ezoelectric harvester with geometrically linear behavior
�small amplitude oscillations� and no end mass. This essen-
tially isolates piezoelectric effects as the principal source of
nonlinearity. The results of our investigation are organized as
follows: In Sec. II, we use energy methods to derive a model
based on the analysis in Ref. 43, but with the simplifying
assumption of linear strain. As a result, the nonlinear terms
only reflect piezoelectric material nonlinearities. Sec. III de-
scribes the experimental set up and frequency content of the
data, which motivates inclusion of a nonlinear damping term.
Following parameter identification, Sec. IV provides a sum-
mary and conclusions.

II. THEORETICAL MODELING

Consider a symmetric bimorph cantilever connected in
series to a resistive load as shown in Fig. 1. The cantilever
extends a length � from the clamp location and has piezoce-
ramics with density �p of individual thickness hp symmetri-
cally laminated above and below an electrically inactive sub-
strate of density �s with thickness hs /2 on either side of the
neutral bending axis. Also, the piezoceramic is homogeneous
along the length of the cantilever. Nonlinear electroelasticity
is postulated to develop in accordance with the following
nonlinear constitutive equations:31,32,40

T1 = c11
p S1 + c111

p S1
2 + c1111

p S1
3 − e31E3 − e311S1E3

− e3111S1
2E3, �1a�

D3 = e31E3 + e311S1E3 + e3111S1
2E3 + �33

s E3, �1b�

where T1 and S1 represent the stress and strain along the
length of the beam while D3 and E3 indicate the electric
displacement and electric field that develops through the
thickness of the piezoelectric laminates. The material con-
stants c11

p , c111
p , and c1111

p and e31, e311, and e3111 are second,
third, and fourth order elastic and electroelastic tensor com-
ponents, respectively. The elastic tensor values are as mea-
sured in a zero electric field. The tensor subscripts �1,2,3�
correspond to the Cartesian system �x ,y ,z�. The electric per-
mittivity at zero strain is given by �33

s . In Eqs. �1a� and �1b�,
the weak nature of the electric fields motivates exclusion of
nonlinear dielectric effects and electrostriction. Also, time
dependent dissipative effects, viscoelasticity, and gravity in-
duced asymmetry are presumed insignificant. While the
analysis due to Guyomar et al.44 considered a second order
expansion of the linear constitutive equations, the third order
expansion and nonlinear coupling in our model is selected so
that nonlinear terms do not cancel in the derivation of the
equations of motion due to the symmetry of the cantilever.
Considering that the experimental model readily exhibits a
nonlinear frequency response and presuming perfect symme-
try, the model would be incapable of predicting nonlinear
phenomena otherwise.

Mechanical strain is modeled by Euler–Bernoulli beam
theory such that S1=−zw�, where w=w�x , t� is the deflection
of the beam and the prime notation � �� is shorthand for � /�x.
Finally, the electrical field is presumed to be linear and uni-
form through the thickness of each laminate so that the so-

lution to Gauss’ equation is truncated to E3= ��̇ /2hp, where
� is the flux linkage coordinate and the sign of the field is
opposite for the upper and lower laminates.

Flux linkage coordinates facilitate a unified variational
derivation for the electromechanical dynamics of the entire
energy harvesting device.45 We note that a nonuniform elec-
tric field assumption is worthy of future consideration in
light of the analysis due to Tabesh and Fechette46 and Low
and Guo.47

A. Nonlinear electroelastic energy expressions

The kinetic energy within the harvester is distributed
along the length of the beam as

T =
1

2
m�

0

�

�ẇ + ż�2dx , �2�

where m=�shs+2�php is the mass per unit length of the beam
and ż is the velocity of the base. The total conservative bend-
ing potential through each layer of the bimorph is given by

U =
1

2
EIs�

0

�

w�2dx +
1

2
�

Vp

�T1S1 − D3E3�dVp, �3�

where Vp is the total volume of the piezoceramic laminates
and EIs is the substrate bending rigidity. Upon integrating
over the appropriate dimensions, Eq. �3� becomes

z(t)R

PZT-5H, thickness hp
Brass, thickness hs

FIG. 1. �Color online� Illustration of a prototypical piezoelectric energy
harvester connected in series to a resistive load.
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U =
1

2
�

0

� �EIw�2 +
1

6
Gw�4 − 2��̂w� +

1

6
�̂w�3	�̇
dx

−
1

2
C�̇2, �4�

where the coefficients are defined as

EI = EIs + 1
6c11

p bhp�4hp
2 + 6hphs + 3hs

2� , �5a�

G = 3
20c1111

p bhp�16hp
4 + 40hp

3hs + 40hp
2hs

2 + 20hphs
3 + 5hs

4� ,

�5b�

�̂ = 1
2e31b�hp + hs� , �5c�

�̂ = 3
4e3111b�hp + hs��2hp

2 + 2hphs + hs
2� , �5d�

and

C =
�33

s b�

2hp
. �5e�

The first term in Eq. �4� is the linear bending energy, the term

proportional to �̂ is the linear coupling coefficient, and C is
the series capacitance of both piezoelectric laminates. Non-
linear piezoelasticity is modeled by the second term and non-
linear coupling is proportional to �̂. Due to the symmetry of
the bimorph configuration, third order nonlinearities from
terms proportional to c111

p and e311 vanish. As can be inferred
from the potential field, sources of nonlinearity in a bimorph
piezoelectric device will primarily be cubic.

B. Derivation of the governing nonlinear partial
differential equations

To derive the governing equations for the harvester,
Hamilton’s principle requires the variation in the sum of the
Lagrangian L=T−U and nonconservative work terms to
reach a stationary value between two instances in time, i.e.,

0 = �
t0

t1

	L + 	Wdt , �6�

where 	 is a variational derivative,45

	L�ẇ,�̇,w�� =
�L
�ẇ

	ẇ +
�L

��̇
	�̇ +

�L
�w�

	w�, �7�

and the variation in the nonconservative work is

	W = − cẇ	w −
�̇

R
	� . �8�

In Eq. �8�, above, dissipative structural effects are modeled
as proportional damping in the first term and the second term
models the power delivered to a resistive load R. Later, in
Sec. III, the presumption of linear damping alone will be
revisited. Applying methods of Calculus of Variations and
collecting terms common in virtual motions of deflection and
flux linkage coordinates yields the variational indicator

0 = �
t1

t2��−
�

�t
� �L

�ẇ
	 − cẇ

+
�2

�x2� �L
�w�

	
	
 + �−
�

�t� �L

��̇
	 −

�̇

R
	�

+ �−
�

�x
� �L

�w�
	
	w�0

L +
�L
�w�

	w��0
L
dt . �9�

By performing the partial derivatives within the variational
indicator and considering Eqs. �2�, �4�, and �8�, the following
nonlinear partial differential equations are obtained:

mẅ + cẇ + EIwiv + Gw��w�wiv + 2w�2�

− ��̂�	̂��x� − 	̂��x − L�� + �̂�w�wiv + w�2���̇ = mz̈ , �10�

C�̈ +
1

R
�̇ + �

0

L ��̂ +
1

2
�̂w�2	ẇ�dx = 0, �11�

where time dependent linear coupling has been inserted into
the equation for mechanical displacement with the Dirac

delta function 	̂�x�. By removing nonlinear piezoelectric ef-
fects proportional to G and �̂, the linear model of Erturk and
Inman25 is recovered.

C. Distributed parameters model

To facilitate parameter identification for near-resonant
excitations, Galerkin’s method is applied to transform the
nonlinear partial differential equations in Eqs. �10� and �11�
into a set of coupled nonlinear ordinary differential equa-
tions. In particular, we separate the transverse deflection
w�x , t� into a summation of N generalized displacements
xn�t� and orthogonal basis function �n�x� as

w�x,t� = �
n=1

�

xn�t��n�x� . �12�

The orthogonal basis functions utilized in this analysis are
the linear basis functions for Euler–Bernoulli beams with
fixed-free boundary conditions48 with the additional condi-
tion of mass normalization according to

m�
0

L

�n� jdx = �0 for n � j

1 for n = j

 . �13�

Inserting Eq. �12� into Eqs. �10� and �11�, multiplying Eq.
�10� by �n�x� and subsequently integrating over the length of
the beam yields ordinary differential equations of motion �for
n=1,2 ,3 , . . . ,N�

ẍn + 2

nẋn + 
n
2xn + �

j,k,�=1

N

�njk�xjxkx�

− ��n + �
j,k=1

N

�njkxjxk	�̇ = �nz̈ , �14�

074903-3 Stanton et al. J. Appl. Phys. 108, 074903 �2010�

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

128.173.126.47 On: Tue, 05 May 2015 16:04:01



C�̈ + R−1�̇ + ��n + �
j,k=1

N

�njkxjxk	ẋn = 0, �15�

where the coefficients are defined by

�njk� = G�
0

L

�n�� j���k���
iv + 2�k������dx , �16a�

�n = �̂�n��L� , �16b�

�njk = �̂�
0

L

�n�� j��k
iv + � j��k��dx , �16c�

�n = m�
0

L

�ndx , �16d�

and

�njk =
1

2
�̂�

0

L

�n�� j��k�dx . �16e�

Again, due to the presumed symmetry of the problem, no
quadratic nonlinearities result from the conservative poten-
tial field in Eq. �4�. Sources of elastic nonlinearity are cubic
and the nonlinear coupling is third order as well. In the linear
case, coupling between the mechanical and electrical do-
mains is proportional to the modal velocity. Equations �10�
and �11�, however, indicate that upon consider piezoelectric
nonlinearities, the modal displacement also plays a role
transferring energy to the impedance load. Stanton and
Mann43 showed that for large amplitude motion a coupling
component proportional to the modal amplitude squared is
present even when piezoelectric nonlinear effects are ig-
nored. The same result has recently been obtained by Mas-
sana and Daqaq49 for the large amplitude motion of axially
loaded piezoelectric harvesters with clamped-clamped
boundary conditions and no piezoelectric material nonlinear-
ity.

III. EXPERIMENTAL INVESTIGATION

The experimental setup used in this paper is shown in
Fig. 2�a�. The bimorph cantilever �T226-H4-203X, Piezo
Systems Inc.� is clamped onto an electromagnetic shaker

�B&K 4808� as displayed in Fig. 2�b�. The bimorph consists
of two oppositely poled lead zirconate titanate �PZT-5H� lay-
ers bracketing a brass layer that provides electrical conduc-
tivity between the piezoelectric elements �series connection�.
The properties of the cantilever are listed in Table I along
with the plane-stress elastic, piezoelectric and dielectric
properties of the piezoceramic.

A small accelerometer �PCB Piezotronics U352C67� is
attached via wax close to the root of the cantilever on the
clamp �Fig. 2�b��. The transverse tip velocity response of the
cantilever relative to the fixed reference frame is measured
using a laser vibrometer �Polytec OFV353 laser head with
OFV3001 vibrometer� by attaching a small reflector tape at
the cantilever tip. Chirp excitation of low acceleration level
�burst type with ten averages� is sent from the data acquisi-
tion system �SigLab 20-42� in order to extract the linear
electromechanical frequency response functions �FRFs� for a
set of resistors. After obtaining from the linear electrome-
chanical FRFs �voltage-to-base acceleration and tip velocity-
to-base acceleration� that the resonance frequency for a
100 k� load is around 542 Hz, the focus is placed on the
following frequencies for the high-sampling-frequency time
domain measurements: 530, 535, 540, 545, and 550 Hz. Base
excitation was harmonic of the form z̈=Ze cos �et, where Ze

is the base acceleration amplitude and �e is the excitation
frequency.

For 11 different values of base acceleration the steady
state tip velocity and voltage output are recorded with a sam-
pling frequency of 50 kHz. The base acceleration values
were held constant for each excitation frequency since non-
linear responses are sensitive to variations in excitation am-
plitude. Base acceleration levels were 60 mg, 145 mg, 230
mg, 310 mg, 430 mg, 560 mg, 840 mg, 1.12 g, 1.4 g, 1.7 g,
and 2 g, where g=9.81 m /s2. The time histories are re-
corded after the electromechanical system reached the steady
state. For convenience, all measurements are taken for a
fixed resistive load of 100 k�.

Figure 3 illustrates immediate discrepancy observed be-
tween linear modeling and steady state experimental data.
The linear FRF �Ref. 25� is in excellent agreement with ex-
perimental observations for the lowest excitation value of
Ze=60 mg. However, for Ze=2 g, a clear softening type re-
sponse becomes evident and the linear model becomes
highly inaccurate. Steady-state transverse oscillations mea-
sured at the location of the laser vibrometer reading �wss

� � are

(a) (b)

FIG. 2. �Color online� �a� Experimental setup used for the electromechani-
cal measurements of the bimorph cantilever and �b� a close-up view of the
cantilever, its clamp and the accelerometer. All experimental tests were per-
formed at the Center for Intelligent Material Systems and Structures at Vir-
gina Tech.

TABLE I. Geometric and material properties of the PZT-5H bimorph can-
tilever.

Parameter
Piezoceramic

�PZT-5H�
Substructure

�brass�

Length � �mm� 24.06 24.06
Width b �mm� 6.4 6.4
Thickness �hp ,hs� �mm� 0.265 �each� 0.140
Mass density ��p ,�s� �kg /m3� 7500 9000
Elastic modulus �c11

p ,E� �GPa� 60.6 105
Piezoelectric constant �e31� �C /m2� �16.6 ¯

Permittivity constant �33
s �nF/m� 25.55 ¯
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on the order of micrometers and are well within the elasti-
cally linear regime. Therefore, piezoelectric nonlinearities
are adequately engaged.

The steady state voltage vss and displacement wss
� ampli-

tudes were determined by Fourier transform techniques upon
60 s of transient-free data. For Ze=2 g, the left column of
Fig. 4 shows the experimental time series and reconstructed
signals using the amplitude of the first harmonic only for the
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FIG. 3. �Color online� Good theoretical agreement with the linear piezoelectric model for low base acceleration Ze=60 mg in the deflection �a� and voltage
�b�. For Ze=2 g, however, �c� and �d� illustrate the inadequacy of the linear framework.
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FIG. 4. �Color online� Experimental time series data �left column� and corresponding frequency content �right column�. In �a�, �c�, and �f�, experimental
measurements are given by the solid line while the circles are points for a reconstructed signal using the amplitude of the first harmonic only. All data is for
Ze=2 g and �e=540 Hz.
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base acceleration, beam tip velocity, and voltage. The corre-
sponding amplitude of the transformed data in the frequency
domain is shown in the right column of Fig. 4. Even though
most of the signal energy is within the first harmonic as
illustrated by the agreement shown in the first column, there
exists expected signal energy at odd superharmonics of the
excitation frequency but additional unanticipated signal en-
ergy at even superhamonics as well. Asymmetric configura-
tions yield quadratic nonlinearities and even small imperfec-
tions in a seemingly symmetric structure can amplify the role
of quadratic terms an thus produce signal energy at twice the
forcing frequency. Considering the excellent agreement be-
tween the linear FRFs and the experimental data at weak
excitation, asymmetry in the experimental beam was as-
sumed insignificant. As an initial attempt, this study will uti-
lize the equations of motion with cubic nonlinearity to pro-
vide the basis for which piezoelectric nonlinearity will be
investigated. Future efforts will relax the presumption of an
ideal symmetric configuration and thus introduce full consid-
eration of both quadratic and cubic nonlinear influences.

Upon initial parameter identification trials, it was addi-
tionally observed that retaining only cubic nonlinearities
would result in softening responses that would consistently
overshoot the peak response in both the mechanical and elec-
trical domains. Therefore, nonlinear damping was included
in the theoretical model to account for the theoretical over-
shoot of experimental data. This explanation is further sup-
ported by the results of Malatkar and Nayfeh,50 who ob-
served similar trends for the nonlinear response of a beam
�see, in particular, Fig. 6 of Ref. 50�.

A. Parameter identification

Equations �14� and �15� are reduced to a single mode
approximation for parameter identification to facilitate an ap-
proximate analytic solution for implementation in an optimi-
zation routine. For harmonic excitation near a particular fun-
damental frequency, this simplification is sufficiently
accurate for describing steady state oscillations. Also, since
the potential difference across the resistive load is measured
directly, it is convenient to re-express the flux linkage coor-

dinates �̇�t� and �̈�t� as v�t� and v̇�t�, respectively. Accord-
ingly, with the addition of nonlinear damping, a reduced or-
der model for the harvester is as follows:

ẍ + 2

ẋ + 
aẋ�ẋ� + 
2x + �x3 − �� + �x2�v = �Ze cos��et� ,

�17a�

Cv̇ + R−1v + �� + �x2�ẋ = 0, �17b�

where 
 is the first natural frequency of the cantilever and 
a

is a nonlinear damping coefficient that is to be determined.
Furthermore, the convenient result �111=�111�� has been
utilized. The model is next rendered dimensionless by defin-
ing a characteristic time, length, and voltage as �=1 /
, �c

=�Ze�
2, and vc=�c�

−1C−1/2. With these parameters, Eqs.
�17a� and �17b� take the form

ẍ + �1ẋ + �2ẋ�ẋ� + x + �x3 − �� + �x2�� = cos �� , �18a�

�̇ + �3� + �� + �x2�ẋ = 0. �18b�

This model is used from this point forward in our analysis.
An approximate solution for the nonlinear amplitude-
frequency relationship of the two degree-of-freedom model
is found through the method of harmonic balance. Accord-
ingly, we presume steady state solutions for the dimension-
less modal displacement and voltage as

x = a cos��� + �x� , �19a�

� = b cos��� + ��� , �19b�

where �x and �v is the respective phase offset. Following the
technique originally proposed by Jacobsen,51 the nonlinear
damping term is modeled as an equivalent viscous damping
�see also Ravindra and Mallik52�

�2ẋ�ẋ� � �2��2a2 sin��� + �x� , �20�

where � is a damping force ratio defined by

� =
4

�
�

0

�/2

cos3 udu =
2

��

��2�
�� 5

2� , �21�

and � above is the standard Gamma function. Inserting the
result above along with the assumed solutions into Eqs. �18a�
and �18b� and neglecting all but the first harmonic yields the
set of equations

�1 − �2 + 3
4�a2�a − b�� + 3

4�a2�cos��� − �x� = cos �x,

�22a�

��1 +
8

3�
�2�a	�a − b�� +

1

4
�a2	sin��� − �x� = sin �x,

�22b�

�� + 1
4�a2��a sin��� − �x� = �3b , �22c�

�� + 1
4�a2��a cos��� − �x� = �b . �22d�

The voltage amplitude can be solved for by squaring and
adding Eqs. �22c� and �22d� and the result used to solve for
the phase difference relationships such that

b =
�

��3
2 + �2

�� +
1

4
�a2	a , �23a�

sin��� − �x� = −
�3

��3
2 + �2

, �23b�

cos��� − �x� = −
�

��3
2 + �2

. �23c�

Substituting Eqs. �23a� and �23c� into Eqs. �22a� and �22b�
and subsequently squaring and adding the result yields a
tenth order polynomial expression for the steady state me-
chanical amplitudes as function of the excitation frequency
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m10a
10 + m8a8 + m7a7 + m6a6 + m5a5 + m4a4 + m3a3 + m2a2

= 1, �24�

where the mj terms are listed in the Appendix. Numerically
resolving the roots of the nonlinear algebraic expression
above for a range of excitation frequencies yields the ampli-
tude dependent frequency response of the harvester.

A nonlinear least-squares algorithm, in particular
LSQNONLIN in MATLAB, was used to find an optimal fit to the
experimental data for the full range of excitation frequencies
and amplitudes described in Sec. III. The following values
were obtained for the unknown elastic, coupling, and damp-
ing nonlinearity coefficients expressed in dimensional terms
as

� = − 9.3722 � 1017 kg/m2 s2, �25a�

� = − 1.3642 � 1010 C/m3, �25b�


a = 1.4038 � 104 m−1, �25c�

which, upon considering Eqs. �16a� and �16c�, yield the fol-
lowing higher order electroelasticity tensor values for PZT-
5H:

c1111
p = − 3.6673 � 1017 N

m2 ,

and e3111 = 1.7212 � 108 m

V
.

The results for both the mechanical and voltage response
are illustrated in Fig. 5, where the agreement can be seen to
be quite good. Qualitatively, it was observed that the opti-
mizing with an elastic nonlinearity alone would strongly
shift the peak response to the left, undershooting the data
recorded at 550 Hz. Adding the coupling nonlinearity would
begin to shift the nonlinear response back toward the right,

but the peak response would continue to well overshoot the
peak experimental values near 535 Hz. The addition of qua-
dratic nonlinear damping, however, was able to generate an
optimal set of parameters for all nonlinear coefficients with
very good agreement in both the mechanical and electrical
response.

For an asymmetric microcantilever actuator, Mahmoodi
et al.53 observed and modeled softening frequency response
curves with a second order expansion of the linear constitu-
tive laws. Cubic terms in their equations were a consequence
of geometric nonlinearity that were significantly dominated
by quadratic material nonlinearity terms due to the small size
of the device. Since our device does not exhibit geometric
nonlinear behavior and quadratic terms canceled due to sym-
metry, our results suggest that third order material nonlinear-
ity was capable of inducing softening effects as well. How-
ever, we note that this modeling framework presumes an
ideal symmetric configuration.

The shortcomings of the linear model in comparison to
the new nonlinear model is shown by Fig. 6. Deviation from
the linear model prediction occurs as early as Ze=0.5 g and
further divergence underscores the importance of modeling
inherent piezoelectric nonlinearity as well as nonlinear
damping. Furthermore, since many piezoelectric harvesters
are designed to operate at resonance, a linear model would
suggest design parameters that do not reflect the frequency at
which true peak response occurs. This is due to the softening
effects as observed in this investigation. For example, Fig. 7
illustrates how the peak voltage response drifts in a nonlinear
manner as base excitation is increased. This result cannot be
predicted by the linear theory.

IV. SUMMARY AND CONCLUSIONS

This paper investigated the manifestation and influence
of nonlinearity on the dynamic response of geometrically
linear piezoelectric energy harvester. A first-principles based
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FIG. 5. �Color online� Theoretical agreement in both the mechanical re-
sponse �a� and the voltage across the resistive load �b� upon optimizing
nonlinear parameters to reflect experimental observations �O�.
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FIG. 6. �Color online� Comparison between linear theory �dotted line�, non-
linear theory �solid line�, and experimental measurements �O� at a fixed
excitation frequency �e=545 Hz for the �a� mechanical response and �b�
voltage across the resistive load.
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model was derived using Hamilton’s principle to physically
justify nonlinear terms in the ensuing partial differential
equations. Upon application of Galerkin’s method and order
reduction, a convenient set of ordinary differential equations
for the harvester was established to facilitate derivation of an
approximate analytic solution. The choice to add a quadratic
dissipation term was rationalized based on frequency analy-
sis of the experimental data. Third order nonlinearities in the
equations of motion were a consequence of the cubic theory
of nonlinear electroelasticity and the model suggests both
that both elastic and electroelastic nonlinearities have a non-
trivial influence on the response of the harvester. Parameter
identification was accomplished by fitting a nonlinear alge-
braic equation derived via the method of harmonic balance
with a nonlinear least-squares optimization algorithm. Good
theoretical agreement with experimental data was demon-
strated and fourth order tensor components for PZT-5H were
suggested.

Most past work in energy harvesting has used linear
theory to model experimentally observed behavior. Although
an equivalent linear model can sometimes suffice to model
the experimentally observed behavior over a very narrow
range of excitations, substantial errors will arise when the
excitation level is outside the narrow window unless the
physical coefficients that describe the system are changed as
well; however, there should be no reason why the physical
parameters of the system change with excitation level.
Proper inclusion of nonlinear terms in the physical models
can be used to adequately capture the experimentally ob-
served behavior.

Although the analysis herein focused on transverse os-
cillations of a cantilever with piezoceramics using d31 poling,
the authors strongly suspect similar results in d33 poled pi-
ezostack type energy harvesters. This hypothesis is based on
observations in Refs. 54 and 41 and is worthy of future in-
vestigation. The results presented in this paper are not lim-

ited to energy harvesting applications and are applicable to
any device utilizing piezoelectric cantilevers. Since nonlinear
effects became discernible at fairly low base acceleration
values, the results of this investigation underscore the neces-
sity for inclusion of material nonlinearity in the performance
assessment of piezoelectric energy harvesters operating near
resonance. Future studies will more deeply explore the
source of even superharmonics in the experimental system,
which may involve re-examination of the presumption that
electrostrictive behavior is negligible.
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APPENDIX: NONLINEAR COEFFICIENTS
The coefficients of Eq. �24� are as follows:

m2 =
1

�3
2 + �2 ��3

2���1
2 − 2��2 + �4 + 1�

+ �2��2��1
2 − 2�2 − 2� + �4 + ��2 + 1�2�

+ 2�1�3�2�2� , �A1�

m3 =
16�2�3��1��3

2 + �2� + �3�2�
3���3

2 + �2�
, �A2�

m4 =
1

18�2��3
2 + �2�2 �128�2

2�4��3
2 + �2�2

− 9�2�3���3
2 + �2���3

2��2 − 1� + �2��2 − �2 − 1��

− 2�2����1�3
3 + �1�3�2 + �3

2�− 2�2 + �2 + 2�

+ 2�2�− �2 + �2 + 1���� , �A3�

m5 =
8�2�3�3��

3���3
2 + �2�

, �A4�

m6 =
1

16��3
2 + �2�2 �9�2��3

2 + �2�2 + 24��2����3
2 + �2�

+ 2�2�2��1�3
3 + �1�3�2 + �3

2�− 3�2 + 3�2 + 3�

+ �2�− 3�2 + 11�2 + 3��� , �A5�

m7 =
�2�3�3�2

3���3
2 + �2�

, �A6�

m8 =
�2�2�9���3

2 + �2� + 2����3
2 + 6�2��

32��3
2 + �2�2 , �A7�

m10 =
�2�4��3

2 + 9�2�
256��3

2 + �2�2 . �A8�
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